
Journal of Software Engineering and Applications, 2017, 10, 288-309
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.103017 March 30, 2017

A Neuro-Based Software Fault Prediction with
Box-Cox Power Transformation

Momotaz Begum, Tadashi Dohi

Department of Information Engineering, Hiroshima University, Hiroshima, Japan

Abstract
Software fault prediction is one of the most fundamental but significant man-
agement techniques in software dependability assessment. In this paper we
concern the software fault prediction using a multilayer-perceptron neural
network, where the underlying software fault count data are transformed to the
Gaussian data, by means of the well-known Box-Cox power transformation.
More specially, we investigate the long-term behavior of software fault counts
by the neural network, and perform the multi-stage look ahead prediction of
the cumulative number of software faults detected in the future software test-
ing. In numerical examples with two actual software fault data sets, we com-
pare our neural network approach with the existing software reliability growth
models based on nonhomogeneous Poisson process, in terms of predictive
performance with average relative error, and show that the data transformation
employed in this paper leads to an improvement in prediction accuracy.

Keywords
Software Reliability, Artificial Neural Network, Box-Cox Power Transformation,
Long-Term Prediction, Fault Count Data, Empirical Validation

1. Introduction

As software systems play an increasingly important role in our lives, their com-
plexity and size continue growing. The increased complexity of software systems
makes the assurance of software quality much difficult. In fact many of software
applications require critical functionality because of their increasing size and
complexity. Software reliability is an important facet of software quality, and is
defined as the probability of failure-free software operation for a specified period
of time in a specified environment. For the purpose of quantitative assessment,
software reliability growth models (SRGMs) have been widely used during the
last four decades [1] [2] [3] [4] [5]. It is worth mentioning that SRGMs specify

How to cite this paper: Begum, M. and
Dohi, T. (2017) A Neuro-Based Software
Fault Prediction with Box-Cox Power Trans-
formation. Journal of Software Engineering
and Applications, 10, 288-309.
https://doi.org/10.4236/jsea.2017.103017

Received: February 3, 2017
Accepted: March 27, 2017
Published: March 30, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.103017
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.103017
http://creativecommons.org/licenses/by/4.0/

M. Begum, T. Dohi

289

any parametric form of random processes that describe the behavior of software
failure occurrence with respect to time. Since SRGMs are essentially stochastic
models with abstractions, they must be built under several simplified mathemat-
ical assumptions, and, at the same time, their parameter estimation with the fault
count data observed in software testing is not a trivial task. Because the maxi-
mum likelihood estimation, which is commonly used, is reduced to a multi-
modal nonlinear optimization problem with constraints, and requires more
computation efforts. Another problem on SRGMs is the model selection from a
great number of SRGM candidates. During the last four decades, over three
hundred SRGMs have been proposed in the literature. The conclusion from the
empirical research suggests that the best SRGM in terms of the goodness-of-fit
performance depends on the kind of software fault count data. In other words,
there does not exist the best SRGM which can fit every software fault count data.
Sharma et al. [6] proposed a selection method of the best SRGM by using the
concept of distance. Unfortunately, it is noted that the best SRGM which can fit
the past observation experienced before does not always provide the best predic-
tion model for the future (or remaining) testing period.

Apart from SRGMs based on stochastic modeling, artificial neural network
(ANN) has gained much popularity to deal with non-linear phenomena arising
in applications to time series forecasting, pattern recognition, function approxi-
mation, etc. Comparing with non-trivial stochastic models, it is easy to imple-
ment the ANN for the software fault prediction, since the feed-forward back-
propagation (BP) type of learning algorithm can be widely used to estimate the
internal parameters, such as connection weights. Software fault prediction using
the ANN was proposed first by Karunanithi et al. [7], Karunanithi and Malaiya
[8] [9]. They applied simple multi-layered perceptron (MLP) feed forward neur-
al networks, which enjoy a universal approximation ability [10] to represent an
arbitrary nonlinear mapping with any degree of accuracy, in the prediction of
software fault-detection time in software testing. Since their seminal contribu-
tions, the ANN approach has been frequently applied to different estimation/
prediction problems in software engineering. Khoshgoftaa et al. [11] [12],
Khoshgoftaar and Szabo [13] considered different problems to identify fault-
prone modules in software quality assessment. For more recent survey, see Va-
shisht et al. [14].

While, it should be pointed out that the ANN approach has some drawbacks
in application to software fault prediction. First, there is no efficient way to de-
termine the best neural network architecture in each application domain. Even
though the number of input neurons and output neurons may be determined
from physical requirements, the number of hidden layers and hidden neurons
significantly influences the prediction performance in MLP feed forward neural
networks. In many applications, these sizes must be determined through trial-
and-error heuristics in pre-experiments. In other words, the predictive perfor-
mance of software fault count strongly depends on the ANN architecture as-
sumed for the analysis. Second, the ANN is a kind of nonlinear regression mod-

M. Begum, T. Dohi

290

el, but can be regarded as a deterministic model to output the deterministic val-
ues as estimates or predictions. Dissimilar to the familiar SRGMs, it is impossi-
ble to quantify the software reliability as a probability by applying the common
ANN approach. This feature penalizes us to use the ANN when quantifying the
software reliability measures such as the software reliability, mean time to soft-
ware failure, etc. On the other hand, though the ANN is a simple connectionist
model depending on the architecture, it can be considered as a statistically non-
parametric model without specific model assumptions. As mentioned above, a
huge number of SRGMs have been developed in the literature [15]-[25], but al-
most all of them are based on some parametric assumptions which cannot be va-
lidated for every fault count data. In that sense, the ANN approach can be
viewed as one of nonparametric models with no specific model assumptions. In
fact, the ANN approach provides a data-driven modeling framework and can
bridge several kinds of machine learning techniques. Yang et al. [26] applied a
model mining technique to provide a generic data-driven SRGM. Xiao and Dohi
[27] proposed a nonparametric wavelet method to estimate nonhomogeneous
Poisson process (NHPP)-based SRGM. Cheng et al. [28] considered a multistep-
ahead a time series prediction with the MLP approach. Park et al. [29] also
compared several data-driven approaches with the existing SRGMs. Recently,
Begum and Dohi [30] [31] applied an idea on multiple-input multiple-output
(MIMO) neural computation by Park et al. [29], and proposed a refined neural
network approach to predict the long-term behavior of software fault count with
the grouped data. They impose an assumption that the underlying fault count
process obeys the Poisson law with an unknown mean value function, and pro-
pose to utilize several data transform methods from the Poisson count data to
the Gaussian data. However, it is worth noting that even the Poisson assumption
can be regarded as a simplified assumption in SRGM modeling and has not been
validated empirically.

In this paper we refine the existing MLP approach as a data-driven model
from the view point of software fault prediction. In particular, we deal with the
grouped data which consists of the number of software fault counts detected at
each testing date, although the existing MLP approaches focus on only the soft-
ware fault-detection time data which are not easily available in actual software
testing. We apply the well-known data transformation technique called the
Box-Cox power transformation [32], from an arbitrary probability law to the
Gaussian law, and transform the underlying software fault prediction problem to
a nonlinear Gaussian regression problem with the MLP. First, Tukey [33] intro-
duced a family of power transformations such that the transformed values obey
a monotonic function of the observations over some admissible range, where an
arbitrary transformation parameter is involved in the power transformations.
Box and Cox [32] proposed the maximum likelihood as well as the Bayesian
methods for estimation of the parameter, and derived the asymptotic distribu-
tion of the likelihood ratio to test some hypotheses about the parameter. The
main contributions by Box and Cox [32] are two-folds: The first one is to com-

M. Begum, T. Dohi

291

pute the profile likelihood function and to obtain an approximate confidence
interval from the asymptotic property of the maximum likelihood estimator. The
second one is to ensure that the probability model is fully identifiable in the
Bayesian approach. In neural computation contexts, Dashora et al. [34] used the
Box-Cox power transformation for data driven prediction models with single
output neuron in MLP and analyzed the intermittent stream flow for Narmada
river basin. They compared the MLP with seasonal autoregressive integrated
moving average and Thomas-Fiering models. Sennaroglu and Senvar [35] eva-
luated the process capability indices in industry and compared the Box and Cox
power transformation with weighted variance methods in the Weibull distribu-
tion model in terms of the process variation with the product specifications. In
this way, an applicability of the Box and Cox power transform can be recognized
in many research fields.

In this paper we transform the discrete integer-valued data which denote the
cumulative number of software faults detected in software system testing to the
Gaussian data by the Box-Cox transform. Next we input the transformed data
into the MIMO MLP to make the long-term prediction of the software fault
count. Note that almost all papers in past, [7] [8] [9] [11] [12] [13] [36] [37] [38]
[39] [40] just considered the one-stage look ahead prediction. Hence, our chal-
lenge with MIMO and the Box-Cox power transformation overcomes the limita-
tion for the existing neuro-based approaches. Recently, the same authors [30]
considered a different transformation technique for the software fault predic-
tion, where only the one-stage look ahead prediction is made in terms of predic-
tion interval. Also, though they implicitly assume the Poisson law for the under-
lying fault count data, we do not restrict the Poisson law for the software fault
count data, because the Box-Cox transform is a general data transformation
scheme. The present paper is organized as follows. In Section 2, we overview the
SRGMs based on nonhomogeneous Poisson process (NHPP). Section 3 intro-
duces a refined ANN for the purpose of prediction, where the Box-Cox power
transformation is applied in the pre-processing of input data. In Section 4, we
analyze two actual software fault count data sets and compare our refined neural
network approach with eleven NHPP-based SRGMs [41] from the view point of
predictive performance with relative average error. We show here that our ANN
approach affords a more appropriate prediction device and tends to have an en-
hanced performance from the standpoint of predictability. Finally the paper is
concluded with remarks in Section 5.

2. NHPP-Based Software Reliability Modeling

We summarize the software reliability growth modeling with the nonhomoge-
neous Poisson process (NHPP). Suppose that software system test starts at time

0t = . Let ()X t denote the cumulative number of software faults detected by
time t, where (){ }, 0X t t ≥ means a stochastic (non-decreasing) counting
process in continuous time. In particular, it is said that ()X t is an NHPP if the
following conditions hold:

M. Begum, T. Dohi

292

• ()0 0,X =
• ()X t has independent increments,
• () (){ } ()Pr 2 ,X t h X t o h+ − ≥ =
• () (){ } () ()Pr 1 ; ,X t h X t t h o hθ+ − = =∅ +
where ()o h is the higher term of infinitesimal time h , and ();t θ∅ is the
intensity function of an NHPP which denotes the instantaneous fault detection
rate per each fault. In the above definition, θ is the model parameter (vector) in-
cluded in the intensity function. Then, the probability that the cumulative num-
ber of software faults detected by time t equals x is given by

(){ } (){ } (){ };
Pr exp ; ,

!

x
t

X t x t
x
θ

θ
Λ

= = −Λ (1)

where

() ()
0

; ; d
t

t x xθ θΛ = ∅∫ (2)

is called the mean value function and indicates the expected cumulative number
of software faults up to time t, say, () ();t E X tθΛ = .

If the mean value function ();t θΛ or the intensity function ();t θ∅ is spe-
cified, then the identification problem of the NHPP is reduced to a statistical es-
timation problem of the unknown model parameter θ. In this way, when the pa-
rametric form of the mean value function or the intensity function is given, the
resulting NHPP-based SRGMs are called parametric NHPP-based SRGMs. Ta-
ble 1 contains the representative NHPP-based SRGMs and their mean value
functions. Okamura and Dohi [41] summarized these eleven parametric NHPP-
based SRGMs and developed a parameter estimation tool, SRATS, based on the
maximum likelihood method and the EM (Expectation-Maximization) algo-
rithm. In SRATS, the best SRGM with the smallest AIC (Akaike Information
Criterion) is automatically selected, so the resulting best SRGM can fit best the
past observation data on software fault counts among the eleven models.

Suppose that n realizations of ()iX t , ()1,2, , ,ix i n= � are observed up to
the observation point t. We estimate the model parameter θ by means of the
maximum likelihood method. Then, the log likelihood function for the grouped
data ()(), 1, 2, ,i it x i n= � is given by

() () () (){ } (){ }() ()1 1 1LLF log ; ; log ! ; ,
n

i i i i i i n
i

x x t t x x tθ θ θ θ− − −= − Λ −Λ − − −Λ∑ (3)

where ()0; 0θΛ = , 0 0x = and nt t= for simplification. The maximum like-
lihood estimate of model parameter θ̂ , can be obtained by maximizing Equa-
tion (3) with respect to the model parameter θ. Once the model parameter is es-
timated, our next concern is to predict the future value of the intensity function
or the mean value function at an arbitrary time ()1,2,n lt l+ = � , where l de-
notes the prediction length [42]. In parametric modeling, the prediction at time

n lt + is easily done by substituting estimated model parameter θ̂ into the time
evolution ();t θΛ , where the unconditional and conditional mean value func-
tions at an arbitrary future time n lt + are given by

M. Begum, T. Dohi

293

Table 1. NHPP-based SRGMs.

Model (Abbr.) Mean value function

Exponential (exp) [17]
() ()t aF tΛ =

() (){ }1 expF t a bt= − −

Gamma (gamma) [24]
() ()t aF tΛ =

() ()
()

1

0

exp
d

b b
t c s cs

F t s
b

− −
=

Γ∫

Pareto (pareto) [15] [20]
() ()t aF tΛ =

() 1
bcF t

t c
 = − +

Truncated normal (tnorm) [23]

() () ()
()

0
1 0

F t F
t a

F
−

Λ =
−

() ()2

2

1 exp d
22

t s c
F t s

bbπ −∞

 −
= −

∫

Log normal (lnorm) [16] [23]

() ()logt aF tΛ =

() ()2

2

1 exp d
22

t s c
F t s

bbπ −∞

 −
= −

∫

Truncated logistic (tlogist) [21]

() () ()
()

0
1 0

F t F
t a

F
−

Λ =
−

() 1

1 exp
F t

t c
b

=
− + −

Log logistic (llogist) [19]

() ()logt aF tΛ =

() 1

1 exp
F t

t c
b

=
− + −

Truncated extreme value maximum
(txvmax) [22]

() () ()
()

0
1 0

F t F
t a

F
−

Λ =
−

() exp exp t cF t
b

 − = − −

Log extreme value maximum
(lxvmax) [22]

() ()logt aF tΛ =

() exp exp t cF t
b

 − = − −

Truncated extreme value
minimum(txvmin) [22]

() () ()
()

0
0

F F t
t a

F
−

Λ =

() exp exp t cF t
b

 − = − −

Log extreme value minimum
(lxvmin) [18] [22]

() ()()1 logt a F tΛ = − −

() exp exp t cF t
b

 − = − −

M. Begum, T. Dohi

294

() ()0
ˆ ˆ; ; d ,n lt

n lt x xθ θ+

+Λ = ∅∫ (4)

()() ()
() ()

ˆ ˆ; ; d

ˆ ˆ; ; .

n l

n

t
n l n n n t

n n l n

t X t x x x x

x t t

θ θ

θ θ

+

+

+

Λ = = + ∅

= +Λ −Λ

∫
 (5)

When the mean value function is unknown, a few nonparametric approaches
have been developed [43] [44]. However, it should be noted that those ap-
proaches can deal with the fault-detection time data, but do not work for predic-
tion in future. The wavelet-based method in [27] can treat the grouped data, but
fails to make the long-term prediction in nature. In the following section, we use
an elementary MLP for the purpose of the long-term software fault prediction.

3. A Refined MLP Architecture

Artificial neural network is a computational metaphor inspired by the brain and
nervous system study, and consists of an input layer with some inputs, multiple
hidden layers with hidden neurons and one output layer. The input layer of
neurons can be used to capture the inputs from the outside world. Since the
hidden layer of neurons has no communication with the external world, the
output layer of neurons sends the final output to the external world. Hence, de-
termining an appropriate number of hidden neurons is an important design is-
sue in neural computation. In this paper we consider an MIMO type of MLP
with only one hidden layer. Similar to Section 2, suppose that n software fault
count data ()(), 1, 2, ,i it x i n= � are observed at the observation point ()nt t= .
Our concern is about the future prediction of the cumulative number of software
faults at time ()1,2,n lt l+ = � .

3.1. Preliminary Set-Up

In the common neural computation, it is noted that the neural network includ-
ing the simplest MLP with only one output neuron is regarded as a nonlinear
regression model, where the explanatory variables are randomized by the Gaus-
sian white nose. In other words, the output data in the MLP is implicitly as-
sumed to be a realization of a nonlinear Gaussian model. On the other hand,
since one handles the fault count data as integer values in the software fault pre-
diction, the underlying data shall be transformed to the Gaussian data in ad-
vance. Such a pre-data processing is common in the wavelet shrinkage estima-
tion [27] although it specifies the underlying data as the Poisson data. According
to the idea in the literature [27], we apply the Box-Cox power transformation
technique [32] from an arbitrary random data to the Gaussian data. As men-
tioned in Section 1, Box and Cox [32] developed a procedure to identify an ap-
propriate exponent λ to transform data into a “normal shape”. Table 2 presents
the Box-Cox power transformation and its inverse transform formula. In this ta-
ble, ix denotes the cumulative number of software faults detected at
()1,2, ,i n� -th testing day. Then, we have the transformed data ix� by means of

the Box-Cox power transformation. The transformation parameter λ indicates

M. Begum, T. Dohi

295

Table 2. Box-Cox power transformation formulae.

Box-Cox
Formulae

Data transform Inversion transform

0λ = ()logi ix x=� ()exp n lx +�

0λ ≠ 1i
i

xx
λ

λ
−

=� ()11n lx λλ + +�

the power to which all data should be raised, where the parameter λ has to be
adjusted in the Box-Cox power transformation. It is common to determine the
optimal λ in the pre-experiments before time series prediction.

Let ()1,2, ,ix i n=� � and ()1,2,n lx l+ =� � be the input and output for the
MIMO type of MLP, respectively. Then, the prediction of the cumulative num-
ber of software faults is given by the inversion of the data transform. Figure 1
depicts the architecture of back propagation type MIMO, where n is the num-
ber of software fault count data experienced before the observation point nt
and l is the prediction length. We suppose that there is only one hidden layer
with ()1,2,k = � hidden neurons in our MIMO type of MLP.

3.2. Training Phase

Suppose that all the connection weights (nk weights from input to hidden layer,
kl weights from hidden to output layer in Figure 1) are first given by the un-
iformly distributed pseudo random varieties. In the MIMO, if these weights are
completely known, then it is possible to calculate ()1, ,n n lx x+ +� �� from the input
()1, , nx x� �� directly. However, since it is impossible to train all the weights in-
cluding ()k n l+ unknown patterns in principle via the common BP algorithm,
it is needed to develop a new long-term prediction scheme for the MIMO. In
short, we briefly introduce the long-term prediction scheme developed by Be-
gum and Dohi [31]. Suppose that n l> without any loss of generality. In Fig-
ure 2, we illustrate the configuration of our prediction scheme. In order to pre-
dict the cumulative number of software faults for l testing days from the ob-
servation point nt , the prediction has to be made at the point n lt − . This implies
that only ()n l k kl nl− + = weights can be estimated with the training data ex-
perienced for the period (],n l nt t− and that the remaining ()k n l nl+ − weights
are not trained at time nt . We call these ()k n l nl+ − weights the
non-estimable weights in this paper. As the prediction length is longer, the
number of non-estimable weights becomes greater and the prediction uncer-
tainty also increases more. In this scheme, the Box-Cox transformed data
()1, , n lx x −� �� with given λ are used for the input in the MIMO, and the remain-
ing data ()1, ,n l nx x− +� �� are used for the teaching signals in the training phase.

The BP algorithm is the well-known gradient descent method to update the
connection weights, so as to minimize the squared error between the network
output values and the teaching signals. For the value coming out an input neu-
ron, ()1,2, ,ix i n l= −� � , it is common to add two special inputs; bias units

M. Begum, T. Dohi

296

Figure 1. Architecture of back propagation type MIMO.

Figure 2. Configuration of prediction scheme via MIMO.

which always have the unit values. These inputs are used to evaluate the bias to
the hidden neurons and output neurons, respectively. Let []1,1ijw ∈ − be the
connection weights from i -th input neuron to j-th hidden neuron, where 0 jw
and 0sw′ denote the bias weights for j-th hidden neuron and s-th output neu-
ron, respectively, for the training phase with 0,1, ,i n l= −� , 0,1, ,j k= � and

1, 2, , .s n l n l n= − + − + � Each hidden neuron calculates the weighted sum of
the input neuron, jh , in the following equation:

01 .n l
j ij ij jih x w w−

=
= +∑ � (6)

Since there is no universal method to determine the number of hidden neu-
rons, we change k in the pre-experiments and choose an appropriate value.
After calculating jh for each hidden neuron, we apply a sigmoid function

() ()1 expj jf h h= − as a threshold function in the MIMO. Since jh are sum-
mative and weighted inputs from respective hidden neurons, the s-th output
()1, 2, ,s n l n l n= − + − + � in the output layer is given by

() 01 .k
s j js sjx f h w w

=
′ ′= +∑� (7)

M. Begum, T. Dohi

297

Because sx� are also summative and weighted inputs from respective hidden
neurons in the output layer, the weight jsw′ is connected from j-th hidden
neuron to s-th output neuron. The output value of the network in the training
phase, sx� is calculated by () ()1 exps sf x x= −� � . In the BP algorithm, the error
is propagated from an output layer to a successive hidden layer by updating the
weights, where the error function is defined by

()
()

2

1SSE
1

n o
s ss n l x x

l
= − +

−
=

−
∑ � �

 (8)

with the prediction value sx� and the teaching signal o
sx� observed for the pe-

riod (]1,n l nt t− + .
Next we overview the BP algorithm. It updates the weight parameters so as to

minimize SSE between the network output values ()1, 2, ,sx s n l n l n= − + − +� �
and the teaching signals o

sx� where each connection weight is adjusted using the
gradient descent algorithm according to the contribution to SSE in Equation (8).
The momentum, α, and the learning rate, η, are controlled to adjust the weights
and the convergence speed in the BP algorithm, respectively. Since these are the
most important tuning parameters in the BP algorithm, we carefully examine
these parameters in pre-experiments. In this paper we set α = 0.25 ~ 0.90 and η =
0.001 ~ 0.500. Then, the connection weights are updated in the following:

() ()new , 1, 2, , , 1, , ,ij ij jijw w w h i n l j kα ηδ= + + = − =� � (9)

() ()new , 1, 2, , , 1, , ,js js sjsw w w x j k s n l nα ηδ′ ′ ′= + + = = − +� � � (10)

where jhδ and sxδ � are the output gradient of j-th hidden neuron and the
output gradient in the output layer, and are defined by

() ()()1 ,j j jh f h f hδ δ= − (11)

()()1 ,o
s s s s sx x x x xδ = − −� � � � � (12)

respectively. Also, the updated bias weights for hidden and output neurons are
respectively given by

() 0 00 new ,j j jjw w w hα ηδ= + + (13)

() 0 00 new s s ssw w w xα ηδ′ ′ ′= + + � . (14)

The above procedure is repeated until the desired output is achieved.

3.3. Prediction Phase

Once the nl weights are estimated with the training data experienced for the
period (],n l nt t− through the BP algorithm, we need to obtain the remaining
()k n l nl+ − non-estimable weights for prediction. Unfortunately, since these

cannot be trained with the information at time nt , we need to give these values
by the uniform pseudo random variates in the range []1,1− . By giving the ran-
dom connection weights, the output as the prediction of the cumulative number
of software faults, ()1, ,n n lx x+ +� �� , are calculated by replacing Equations (6) and

M. Begum, T. Dohi

298

(7) by

() () ()new new 0 new1 ,n
ijj ij jih x w w

=
= +∑ � (15)

()() () ()new new 0 new1 ,k
n s j js sjx f h w w+ =

′ ′= +∑� (16)

respectively, for 1,2, ,i n= � , 1, ,j k= � and 1,2, ,s l= � . Note that the re-
sulting output is based on one sample by generating a set of uniform pseudo
random variates. In order to obtain the prediction of the expected cumulative
number of software faults, we generate m sets of random varieties and take the
arithmetic mean of the m predictions of ()1, ,n n lx x+ +� �� , where m = 1000 is con-
firmed to be enough in our preliminary experiments. In other words, the predic-
tion in the MIMO type of MLP is reduced to a combination of the BP learning
and a Monte Carlo simulation on the connection weights.

4. Numerical Experiments
4.1. Data Sets

We use two real project data sets cited in the reference [2]; DS1 and DS2, which
consist of the software fault count (grouped) data. In these data sets, the length
of software testing and the total number of detected software faults are given by
(62, 133) and (41, 351), respectively. To find out the desired output via the BP
algorithm, we need much computation cost to calculate the gradient descent,
where the initial guess of weights, ijw , jsw′ , 0 jw and 0sw′ , are given by the
uniform random variates ranged in []1, 1− + , the number of total iterations in
the BP algorithm run is 1000 and the convergence criteria on the minimum er-
ror is 0.001 which is same as our previous paper [30]. In Figure 3 and Figure 4,
we give two examples on how to determine the optimal transformation parame-
ter *λ . In our experiments, it is shown that the search range of λ should be
[]3, 2− + .

4.2. Predictive Performance Criterion

Suppose that the observation point is given by the n -th testing day, nt . In this
case, ()n l− software fault counts data are used for training the MIMO type of
MLP. The capability of the prediction model is measured by the average error
(AE);

1RE
AE ,

l
ss

l l
== ∑ (17)

where REs is called the relative error for the future time t n s= + and is given
by

()
()RE 1,2, , .

o
n s n s

s o
n s

x x
s l

x
+ +

+

−
= =
� �

�
�

 (18)

So we regard the prediction model with smaller AE as a better prediction
model.

M. Begum, T. Dohi

299

Figure 3. Determination of the transformation parameter λ (DS1 with 50% observation
point).

Figure 4. Determination of the transformation parameter λ (DS2 with 50% observation
point).

M. Begum, T. Dohi

300

4.3. Results

Tables 3-6 summarize the results on AE for the underlying data set DS1 at 50%
~ 90% observation points of the whole data for the prediction length l = 5, 10, 15
and 20 days, where *λ denotes the optimal transformation parameter in the
sense of minimum AE, and the bold number implies the best prediction model
in the same category. For instance, Table 3 gives the prediction results on the
cumulative number of software faults for 5 days prediction at respective obser-
vation points, when the number of hidden neurons changes from k = 10 to 50.
In the MIMO type of MLP neural network, we compare the Box-Cox power
transformation with the non-transformed case (Normal) and the best SRGM in
Table 1. In the column of SRGM, we denote the best SRGMs in terms of predic-
tive performance (in the sense of minimum AE) and estimation performance (in
the sense of minimum AIC) by P and E, respectively.

It is seen that our MIMO-based approaches provide smaller AEs than the
common SRGMs in almost all cases when the observation points are 50% and
70%. In the 60% observation point, the best prediction model is the non-trans-
formed MIMO (Normal) with k = 50. On the other hand, in the latter phase of
software testing, i.e., 80% ~ 90% observation points, SRGMs, such as txvmax and
txvmin, offer less AEs than the MIMO type of MLPs. Even in these cases, it
should be noted the best SRGM with the minimum AIC is not always equivalent
to the best SRGM with the minimum AE. This fact tells us that one cannot know
exactly the best SRGM in advance in terms of predictive performance. Compar-
ing the data transform methods with the non-transformed one, we can find only
one case where Normal provides the best prediction result in Table 3 for DS1
and Table 8 for DS2. However, in the other early prediction phases, it is seen
that the data transform can work well to give more accurate prediction results in
the MIMO type of MLPs.

Tables 7-10 present the prediction results on AE for DS2. Similar to DS1, the
MIMO type of MLPs can predict the cumulative number of software faults more
accurately in the early testing phase, say, 50% ~ 60% observation points, than
SRGMs. Focusing on the number of hidden neurons in the MIMO type of MLPs,
we expected first that the larger k may lead to the better predictive performance.
However, it is not true from the results in Tables 4-6. In the MIMO-based ap-
proach, it is essential to determine feasible k and λ values, because the number of
hidden neurons results the expensive computation cost with different prediction
length l. In the original paper by Box and Cox [32] they suggest that “fix one, or
possibly a small number, of λ’s and go ahead with the detailed estimation”. In
their examples, they use what is usually called “snap to the grid” method to
choose the transformation parameter. Unfortunately, no universal method to
determine the optimal λ has not been reported yet in the literature. Hence, it is
needed to give an appropriate λ even though it is not optimal. From Figure 3
and Figure 4, it can be recognized that the adjustment of λ is quite sensitive to
the predictive performance and has to be done through the try-and-error heuris-
tics. However, for an arbitrary λ, we can know that the multi-stages look ahead

M. Begum, T. Dohi

301

Table 3. Comparison of average relative errors for five days prediction with DS1 (l = 5).

50% observation (tn = 31)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 0.832 1.115 0.970 1.452 0.950 0.826 0.157 (−0.5) 0.224

P: pareto
(1.280)

E:txvmax
(2.286)

20 0.985 1.763 0.989 1.306 0.313 0.384 0.115 (1.8) 0.137

30 0.814 0.592 1.006 0.345 0.913 1.938 0.028 (0.7) 1.078

40 1.617 1.384 1.491 3.835 0.408 0.787 0.294 (1.9) 0.136

50 2.154 1.158 0.972 0.488 0.516 1.543 0.435 (1.3) 0.078

60% observation (tn = 37)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 3.188 2.172 0.789 0.931 0.867 1.277 0.052 (0.2) 0.056

P:lnorm
(0.023)

E:txvmax
(0.764)

20 2.203 2.203 1.419 1.632 0.929 0.823 0.116 (1.6) 0.038

30 0.876 1.510 4.025 1.210 0.293 1.862 0.072 (1.1) 0.043

40 2.151 0.473 1.331 0.881 0.978 1.523 0.126 (0.8) 0.029

50 2.185 3.521 1.240 1.529 1.272 0.211 0.099 (−0.3) 0.018

70% observation (tn = 43)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.234 0.677 0.821 1.540 3.125 1.548 0.245 (0.6) 0.268

P:txvmax
(0.017)

E:txvmax
(0.017)

20 1.723 1.113 3.521 3.127 1.415 1.365 0.151 (0.3) 0.172

30 2.262 3.296 1.833 1.928 1.835 1.211 1.105 (1.3) 0.083

40 2.204 4.089 2.405 1.210 0.829 1.541 0.016 (0.8) 0.098

50 1.707 1.331 0.232 0.914 0.637 0.971 0.122 (0.9) 0.056

80% observation (tn = 50)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.669 1.245 0.864 0.912 1.183 0.872 0.031 (1.7) 0.017

P:txvmin
(0.007)

E:lxvmin
(0.022)

20 2.626 0.924 1.436 1.293 0.791 0.379 0.044 (−0.4) 0.059

30 1.676 1.472 0.265 2.053 0.529 0.080 0.019 (0.2) 0.027

40 2.185 1.861 2.547 1.997 1.380 0.509 0.029 (0.9) 0.018

50 2.785 0.925 3.237 0.590 1.455 2.551 0.119 (0.8) 0.127

90% observation (tn = 56)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.652 1.695 0.478 0.717 0.985 1.243 0.145 (0.4) 0.291

P:txvmax
(0.020)

E:lxvmin
(0.030)

20 1.658 0.424 0.581 0.985 0.068 1.717 0.068 (1.0) 0.043

30 2.202 1.751 1.318 1.351 1.598 3.761 0.184 (0.6) 0.186

40 1.625 1.243 0.558 0.869 1.662 1.120 0.023 (1.7) 0.034

50 2.915 0.501 0.956 2.127 1.273 0.831 0.134 (1.3) 0.161

M. Begum, T. Dohi

302

Table 4. Comparison of average relative errors for ten days prediction with DS1 (l = 10).

50% observation (tn = 31)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 3.253 1.804 1.037 0.508 0.051 0.414 0.051 (1.0) 0.958

P:lxvmin
(1.120)

E:txvmax
(3.480)

20 3.172 2.144 1.242 0.166 0.513 0.789 0.166 (0) 0.479

30 1.123 0.767 0.862 1.241 0.708 0.961 0.341(0.9) 0.841

40 2.078 0.818 0.762 0.831 1.129 0.639 0.069 (0.6) 0.057

50 1.201 0.539 0.603 1.811 0.814 0.791 0.479 (1.3) 1.023

60% observation (tn = 37)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.273 1.438 1.645 0.098 1.029 0.953 0.043 (0.7) 1.087

P:tlogist
(0.025)

E:txvmax
(1.287)

20 1.985 1.383 0.946 1.261 1.698 1.048 0.946 (−1.0) 1.106

30 2.012 2.924 0.594 1.128 0.537 1.715 0.537 (1.0) 1.746

40 1.025 1.187 1.137 0.991 1.263 0.961 0.035 (1.6) 0.850

50 1.876 1.236 0.785 0.864 1.019 1.149 0.623 (1.1) 0.513

70% observation (tn = 43)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.193 0.689 2.647 1.043 1.088 0.088 0.088 (2.0) 1.088

P:txvmax
(0.077)

E:txvmax
(0.077)

20 4.983 0.937 1.723 1.066 0.219 0.613 0.219 (1.0) 0.079

30 1.133 4.089 3.345 1.549 1.790 3.519 0.265 (1.4) 0.871

40 1.254 1.237 1.304 1.139 3.129 1.145 0.359 (0.9) 1.058

50 3.173 1.096 1.129 0.387 2.187 2.153 0.106 (1.2) 1.099

80% observation (tn = 50)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.160 0.183 1.058 1.235 1.443 2.198 0.183 (−2.0) 0.382

P:lxvmax
(0.018)

E:lxvmin
(0.056)

20 3.121 0.897 0.636 1.074 0.058 0.582 0.058 (1.0) 3.039

30 1.386 0.541 1.903 0.474 1.031 1.865 0.452 (1.5) 1.052

40 3.189 1.259 1.126 0.635 0.962 1.813 0.198 (1.9) 0.907

50 2.175 2.067 1.048 1.269 1.458 1.617 0.339 (1.2) 0.839

M. Begum, T. Dohi

303

Table 5. Comparison of average relative errors for fifteen days prediction with DS1 (l = 15).

50% observation (tn = 31)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.025 0.448 0.664 0.573 0.491 1.033 0.056 (−1.4) 0.348

P:lxvmin
(1.550)

E:txvmax
(4.981)

20 4.259 1.713 0.531 1.391 1.723 1.632 0.339 (0.3) 1.728

30 3.585 0.296 0.846 0.931 0.635 1.461 0.087 (1.2) 1.298

40 1.313 1.331 1.234 1.381 1.208 1.220 0.641 (−1.1) 1.461

50 2.932 1.062 1.432 0.775 1.041 2.140 0.331 (0.2) 1.073

60% observation (tn = 37)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.405 1.451 0.041 1.249 1.329 1.049 0.041 (−1.0) 1.028

P:tlogist
(0.042)

E:txvmax
(0.049)

20 1.844 2.480 1.682 1.105 0.279 0.347 0.279 (1.0) 1.047

30 3.696 2.265 0.906 0.936 1.141 0.639 0.198 (0.7) 2.076

40 1.904 1.289 1.113 2.076 1.985 1.481 0.792 (0.6) 1.037

50 2.326 1.076 1.234 1.176 1.028 1.149 0.427 (0.5) 0.076

70% observation (tn = 43)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.394 1.439 0.864 0.955 1.194 1.402 0.524 (0.6) 2.394

P:txvmax
(0.028)

E:txvmax
(0.028)

20 2.175 1.226 2.367 1.061 0.187 0.255 0.187 (1.0) 0.087

30 2.321 1.247 1.369 0.653 0.519 1.527 0.151 (−1.8) 0.519

40 2.061 1.058 1.152 1.516 1.658 0.932 0.719 (0.8) 1.129

50 0.987 1.256 1.321 0.293 1.183 0.681 0.137 (0.7) 0.072

Table 6. Comparison of average relative errors for twenty days prediction with DS1 (l = 20).

50% observation (tn = 31)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.218 1.105 0.692 1.962 0.677 1.450 0.018 (−0.6) 1.240

P:lxvmin
(1.088)

E:txvmax
(6.103)

20 0.910 1.031 1.629 0.169 0.683 0.573 0.169 (0) 0.390

30 0.599 1.611 1.309 0.825 0.483 2.062 0.421 (0.6) 0.634

40 1.155 1.004 1.194 1.016 0.924 1.407 0.293 (0.2) 3.226

50 0.712 1.389 0.631 0.980 1.906 0.952 0.591 (−1.1) 0.451

60% observation (tn = 37)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.345 0.071 0.384 0.744 1.632 1.722 0.071 (−2.0) 0.524

P:tlogist
(0.033)

E:txvmax
(0.042)

20 0.987 0.184 0.519 0.663 1.510 1.523 0.241 (1.3) 2.072

30 1.277 1.078 0.240 0.864 0.331 0.819 0.034 (−0.7) 0.630

40 1.080 1.812 1.199 1.573 1.183 0.720 0.641 (0.8) 2.041

50 1.397 1.748 1.094 1.613 0.265 0.056 0.056 (2.0) 0.379

M. Begum, T. Dohi

304

Table 7. Comparison of average relative errors for five days prediction with DS2 (l = 5).

50% observation (tn = 21)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.920 1.289 2.398 0.876 0.955 0.902 0.055 (0.4) 0.073

P:lxvmax
(0.211)

E: lxvmin
(2.011)

20 1.395 0.572 1.072 1.079 1.892 1.005 0.046 (1.3) 1.207

30 1.390 1.841 1.572 1.229 0.902 1.981 0.555 (1.1) 1.390

40 1.908 1.978 1.870 1.105 1.171 0.927 0.279 (1.7) 0.253

50 2.387 2.167 1.870 1.012 1.198 0.538 0.180 (−0.9) 0.165

60% observation (tn = 25)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.562 1.694 1.751 1.598 0.472 0.657 0.472 (1.0) 1.174

P:tlogist
(0.039)

E:lxvmin
(0.075)

20 1.997 1.817 1.684 0.058 0.289 0.327 0.058 (0) 0.152

30 2.106 2.463 1.617 0.474 0.657 0.829 0.657 (1.0) 0.173

40 1.901 2.658 1.312 0.489 0.463 0.401 0.031 (1.9) 0.332

50 2.678 1.348 2.470 2.559 0.921 0.966 0.374 (0.4) 1.015

70% observation (tn = 29)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.895 0.745 0.926 1.506 1.006 0.828 0.476 (0.6) 1.159

P:lxvmin
(0.021)

E:lxvmin
(0.021)

20 2.116 1.379 1.981 0.380 0.475 0.491 0.380 (0) 0.466

30 2.153 2.829 2.147 1.927 1.246 1.061 0.899 (−0.7) 0.395

40 0.976 1.537 2.340 0.853 1.554 1.556 0.206 (0.9) 1.055

50 1.389 1.478 1.421 1.246 1.829 1.391 0.331 (0.7) 0.786

80% observation (tn = 33)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.463 2.816 0.841 0.396 0.817 0.719 0.394 (0.5) 1.819

P:lxvmin
(0.026)

E:lxvmin
(0.026)

20 1.713 0.673 1.817 1.452 0.541 0.312 0.312 (2.0) 0.988

30 2.876 1.922 0.592 1.392 0.339 1.393 0.339 (1.0) 1.195

40 1.993 1.037 1.325 0.471 0.723 0.835 0.471 (0) 1.023

50 2.106 1.317 0.927 1.612 2.743 0.916 0.107 (−0.3) 0.885

90% observation (tn = 56)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.874 4.027 1.029 0.984 1.489 0.647 0.876 (1.3) 1.152

P:txvmax
(0.002)

E:lxvmin
(0.039)

20 1.312 1.198 1.217 1.716 0.916 0.186 0.149 (0.6) 1.182

30 3.016 1.912 0.949 0.967 0.427 0.416 0.297 (1.5) 1.050

40 2.956 2.847 1.813 0.229 0.647 0.017 0.017 (2.0) 1.133

50 2.053 1.113 1.972 1.284 0.263 0.229 0.063 (1.8) 0.603

M. Begum, T. Dohi

305

Table 8. Comparison of average relative errors for ten days prediction with DS2 (l = 10).

50% observation (tn = 21)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 3.680 2.078 1.398 0.978 1.701 1.098 0.067 (1.3) 0.541

P:txvmin
(0.059)

E:lxvmin
(2.613)

20 1.011 0.650 1.123 0.844 1.826 2.118 0.139 (−0.7) 0.216

30 2.203 0.984 0.947 2.497 1.791 0.791 0.791 (2.0) 0.035

40 2.742 1.880 2.118 0.757 1.526 2.572 0.114 (1.5) 0.058

50 3.641 2.393 0.852 0.821 0.383 0.941 0.383 (1.0) 0.065

60% observation (tn = 25)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 3.325 2.126 1.985 1.876 1.323 0.814 0.814 (2.0) 0.189

P:llogist
(0.102)

E:lxvmin
(0.134)

20 2.053 2.971 0.878 0.755 0.943 0.928 0.755 (0) 0.359

30 1.917 2.048 1.278 2.293 0.313 0.927 0.313 (1.0) 0.273

40 1.993 1.901 2.861 0.983 1.386 1.147 0.983 (0) 0.704

50 2.882 2.106 1.278 1.518 1.278 0.083 0.083 (2.0) 0.136

70% observation (tn = 29)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.559 2.072 1.517 1.656 1.773 0.613 0.585 (1.8) 1.051

P:tnorm
(0.015)
P:tnorm
(0.015)

20 1.528 0.991 2.658 2.158 0.289 1.089 0.289 (1.0) 0.367

30 1.818 2.522 1.905 1.898 1.893 1.713 0.385 (0.8) 0.551

40 2.615 1.528 2.703 0.845 2.819 1.028 0.291 (1.1) 0.341

50 1.333 1.929 2.974 2.114 0.950 1.616 0.173 (0.6) 0.284

Table 9. Comparison of average relative errors for fifteen days prediction with DS2 (l = 15).

50% observation (tn = 21)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 2.702 1.949 1.870 1.69 2.659 2.974 0.219 (−0.1) 2.556

P:tnorm
(0.227)

E:lxvmin
(2.865)

20 2.971 1.844 1.378 2.166 1.486 0.476 0.476 (2.0) 0.756

30 1.912 1.416 1.999 2.848 0.116 1.213 0.116 (1.0) 1.569

40 1.389 2.791 2.016 1.375 1.313 1.481 0.336 (1.7) 0.238

50 1.121 1.017 2.085 1.316 1.126 1.391 0.215 (1.4) 0.533

60% observation (tn = 25)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.017 2.143 0.913 0.852 0.159 1.109 0.159 (1) 3.162

P:llogist
(0.161)

E:lxvmin
(0.184)

20 2.345 1.831 1.041 2.127 1.563 1.515 0.705 (1.6) 1.158

30 1.568 2.819 1.825 2.326 1.117 1.261 0.211 (1.3) 2.190

40 3.839 1.792 2.834 1.019 1.179 0.839 0.839 (2.0) 1.097

50 2.413 2.087 1.124 1.236 1.946 1.619 0.039 (1.1) 0.385

M. Begum, T. Dohi

306

Table 10. Comparison of average relative errors for twenty days prediction with DS2 (l = 20).

50% observation (tn = 21)

k
MIMO SRGM

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ Normal

10 1.792 1.991 1.498 1.403 0.473 0.513 0.473 (1.0) 1.016

P:lxvmax
(0.310)

E:lxvmin
(2.960)

20 3.107 1.984 1.443 1.101 1.458 0.672 0.672 (2.0) 1.023

30 2.044 2.715 1.007 1.938 1.406 1.236 0.745 (0.5) 1.302

40 2.983 1.907 2.043 1.513 1.764 1.149 1.036 (−0.9) 1.251

50 1.155 2.085 1.713 0.818 1.376 0.305 0.305 (2.0) 0.392

prediction of software fault count is possible with the MIMO type of MLP and
that the Box-Cox power transformation improves the predictive accuracy, espe-
cially, in the early prediction phase.

5. Concluding Remarks

In this paper we have investigated an applicability of the Box-Cox power trans-
formation to the neuro-based software fault prediction. The ANN employed in
this paper is an MIMO type of MLP, and can handle the grouped data on soft-
ware fault counts as well as make the long-term prediction. To our best know-
ledge, this paper is the primary challenge to treat the long-term prediction of
software faults with the grouped data in the ANN approach. Throughout a
comprehensive comparison with the existing SRGMs, it has been shown that our
MIMO type of MLP could work well to predict the cumulative number of soft-
ware faults in the early testing phase. In the future, we will apply the proposed
neural network approach to the other software fault count data and conduct
more comprehensive data analysis to validate our method with data transforma-
tion. Especially, a challenging issue is to develop the prediction interval of the
cumulative number of software faults. Even if SRGMs are assumed, it is almost
impossible to get the exact predictive intervals of the cumulative number of
software faults without applying any approximation method. We will extend our
prediction scheme based on the MIMO type of MLP to the interval prediction
problem. We will also consider how to select the optimal transformation para-
meter in the Box-Cox transformation.

Acknowledgements

The first author (M.B.) was partially supported by the MEXT (Ministry of Edu-
cation, Culture, Sports, Science, and Technology) Japan Government Scholar-
ship.

References
[1] Cai, K.Y. (1998) Software Defect and Operational Profile Modeling. Kluwer Aca-

demic Publishers, Boston. https://doi.org/10.1007/978-1-4615-5593-3

[2] Lyu, M.R. (1996) Handbook of Software Reliability Engineering. McGraw-Hill, New

https://doi.org/10.1007/978-1-4615-5593-3

M. Begum, T. Dohi

307

York.

[3] Musa, J.D., Iannino, A. and Okumoto, K. (1987) Software Reliability, Measurement,
Prediction, Application. McGraw-Hill, New York.

[4] Pham, H. (2000) Software Reliability. Springer-Verlag, London.

[5] Xie, M. (1991) Software Reliability Modelling. World Scientific, Singapore.
https://doi.org/10.1142/1390

[6] Sharma, K., Garg, R., Nagpal, C.K. and Garg, R.K. (2010) Selection of Optimal
Software Reliability Growth Models Using a Distance Based Approach. IEEE
Transactions on Reliability, 59, 266-276. https://doi.org/10.1109/TR.2010.2048657

[7] Karunanithi, N., Malaiya, Y.K. and Whitley, D. (1991) Prediction of Software Relia-
bility Using Neural Networks. Proceedings of the 2nd International Symposium on
Software Reliability Engineering, Austin, 17-18 May 1991, 124-130.

[8] Karunanithi, N. and Malaiya, Y.K. (1992) The Scaling Problem in Neural Networks
for Software Reliability Prediction. Proceedings of the 3rd International Symposium
of Software Reliability Engineering, Research Triangle Park, 7-10 October 1992, 76-
82. https://doi.org/10.1109/issre.1992.285856

[9] Karunanithi, N. and Malaiya, Y.K. (1996) Neural Networks for Software Reliability
Engineering. In: Lyu, M.R., Ed., Handbook of Software Reliability Engineering,
McGraw-Hill, New York, 699-728.

[10] Blum, E.K. and Li, L.K. (1991) Approximation Theory and Feed forward Networks.
Neural Networks, 4, 511-515.

[11] Khoshgoftaar, T.M., Lanning, D.L. and Pandya, A.S. (1993) A Neural Network
Modeling for Detection of High-Risk Program. Proceedings of the 4th International
Symposium on Software Reliability Engineering, Denver, 3-6 November 1993, 302-
309.

[12] Khoshgoftaar, T.M., Allen, E.B., Hudepohl, J.P. and Aud, S.J. (1997) Application of
Neural Networks to Software Quality Modeling of a Very Large Telecommunication
System. IEEE Transactions on Neural Networks, 8, 902-909.
https://doi.org/10.1109/72.595888

[13] Khoshgoftaa, T.M. and Szabo, R.M. (1994) Predicting Software Quality during
Testing Using Neural Network Models: A Comparative Study. International Journal
of Reliability, Quality and Safety Engineering, 1, 303-319.
https://doi.org/10.1142/S0218539394000222

[14] Vashisht, V., Lal, M. and Sureshchandar, G.S. (2015) A Framework for Software
Defect Prediction Using Neural Networks. Journal of Software Engineering and
Applications, 8, 384-394. https://doi.org/10.4236/jsea.2015.88038

[15] Abdel-Ghaly, A.A., Chan, P.Y. and Littlewood, B. (1986) Evaluation of Competing
Software Reliability Predictions. IEEE Transactions on Software Engineering, 12,
950-967. https://doi.org/10.1109/TSE.1986.6313050

[16] Achcar, J.A., Dey, D.K. and Niverthi, M. (1998) A Bayesian Approach Using Non-
homogeneous Poisson Processes for Software Reliability Models. In: Basu, A.P.,
Basu, K.S. and Mukhopadhyay, S., Eds., Frontiers in Reliability, World Scientific,
Singapore, 1-8.

[17] Goel, A.L. and Okumoto, K. (1979) Time-Dependent Error-Detection Rate Model
for Software Reliability and Other Performance Measures. IEEE Transactions on
Reliability, 28, 206-211. https://doi.org/10.1109/TR.1979.5220566

[18] Goel, A.L. (1985) Software Reliability Models: Assumptions, Limitations and Ap-
plicability. IEEE Transactions on Software Engineering, 11, 1411-1423.
https://doi.org/10.1109/TSE.1985.232177

https://doi.org/10.1142/1390
https://doi.org/10.1109/TR.2010.2048657
https://doi.org/10.1109/issre.1992.285856
https://doi.org/10.1109/72.595888
https://doi.org/10.1142/S0218539394000222
https://doi.org/10.4236/jsea.2015.88038
https://doi.org/10.1109/TSE.1986.6313050
https://doi.org/10.1109/TR.1979.5220566
https://doi.org/10.1109/TSE.1985.232177

M. Begum, T. Dohi

308

[19] Gokhale, S.S. and Trivedi, K.S. (1998) Log-Logistic Software Reliability Growth
Model. Proceedings of the 3rd IEEE International High-Assurance Systems Engi-
neering Symposium, Washington DC, 13-14 November 1998, 34-41.
https://doi.org/10.1109/hase.1998.731593

[20] Littlewood, B. (1984) Rationale for a Modified Duane Model. IEEE Transactions on
Reliability, 33, 157-159. https://doi.org/10.1109/TR.1984.5221762

[21] Ohba, M. (1984) Infection S-Shaped Software Reliability Growth Model. In: Osaki,
S. and Hatoyama, Y., Eds., Stochastic Models in Reliability Theory, Springer-Verlag,
Heidelberg, 144-165. https://doi.org/10.1007/978-3-642-45587-2_10

[22] Ohishi, K., Okamura, H. and Dohi, T. (2009) Gompertz Software Reliability Model:
Estimation Algorithm and Empirical Validation. Journal of Systems and Software,
82, 535-543.

[23] Okamura, H., Dohi, T. and Osaki, S. (2013) Software Reliability Growth Models
with Normal Failure Time Distributions. Reliability Engineering & System Safety,
116, 135-141.

[24] Yamada, S., Ohba, M. and Osaki, S. (1983) S-Shaped Reliability Growth Modeling
for Software Error Detection. IEEE Transactions on Reliability, 32, 475-478.
https://doi.org/10.1109/TR.1983.5221735

[25] Zhao, M. and Xie, M. (1996) On Maximum Likelihood Estimation for a General
Non-Homogeneous Poisson Process. Scandinavian Journal of Statistics, 23, 597-
607.

[26] Yang, B., Li, X., Xie, M. and Tan, F. (2010) A Generic Data-Driven Software Relia-
bility Model with Model Mining Technique. Reliability Engineering & System Safe-
ty, 95, 671-678.

[27] Xiao, X. and Dohi, T. (2013) Wavelet Shrinkage Estimation for NHPP-Based Soft-
ware Reliability Models. IEEE Transactions on Reliability, 62, 211-225.
https://doi.org/10.1109/TR.2013.2240897

[28] Cheng, H., Tan, P.-N., Gao, J. and Scripps, J. (2006) Multistep-Ahead Time Series
Prediction. In: Ng, W.K., Kitsurewa, M. and Li, J., Eds., Advances in Knowledge
Discovery and Data Mining, LNAI 3918, Springer-Verlag, New York, 765-774.

[29] Park, J., Lee, N. and Baik, J. (2014) On the Long-Term Predictive Capability of Da-
ta-Driven Software Reliability Model: An Empirical Evaluation. Proceedings of the
25th International Symposium on Software Reliability Engineering, Naples, 3-6
November 2014, 45-54.

[30] Begum, M. and Dohi, T. (2016) Prediction Interval of Cumulative Number of Soft-
ware Faults Using Multi-Layer Perceptron. In: Lee, R., Ed., Applied Computing &
Information Technology, Studies in Computational Intelligence, Vol. 619, Springer,
Berlin, 43-58.

[31] Begum, M. and Dohi, T. (2016) A Refined Neural Network Approach for Software
Fault Prediction with Grouped Data, under Submission.

[32] Box, G.E.P. and Cox, D.R. (1964) An Analysis of Transformations. Journal of the
Royal Statistical Society, Series B, 26, 211-252.

[33] Tukey, J.W. (1957) On the Comparative Anatomy of Transformations. The Annals
of Mathematical Statistics, 28, 602-632. https://doi.org/10.1214/aoms/1177706875

[34] Dashora, I., Singal, S.K. and Srivastav, D.K. (2015) Software Application for Data
Driven Prediction Models for Intermittent Stream Flow for Narmada River Basin.
International Journal of Computer Applications, 113, 9-17.

[35] Sennaroglu, B. and Senvar, O. (2015) Performance Comparison of Box-Cox Trans-
formation and Weighted Variance Methods with Weibull Distribution. Journal of

https://doi.org/10.1109/hase.1998.731593
https://doi.org/10.1109/TR.1984.5221762
https://doi.org/10.1007/978-3-642-45587-2_10
https://doi.org/10.1109/TR.1983.5221735
https://doi.org/10.1109/TR.2013.2240897
https://doi.org/10.1214/aoms/1177706875

M. Begum, T. Dohi

309

Aeronautics and Space Technologies, 8, 49-55.

[36] Hu, Q.P., Xie, M., Ng, S.H. and Levitin, G. (2007) Robust Recurrent Neural Net-
work Modeling for Software Fault Detection and Correction Prediction. Reliability
Engineering & System Safety, 92, 332-340.

[37] Mahajana, R., Guptab, S.K. and Bedib, R.K. (2015) Design of Software Fault Predic-
tion Model Using BR Technique. Procardia Computer Science, 46, 849-858.

[38] Noekhah, S., Hozhabri, A.A. and Rizi, H.S. (2013) Software Reliability Prediction
Model Based on ICA Algorithm and MLP Neural Network. Proceedings of the 7th
International Conference on e-Commerce in Developing Countries, Kish Island, 17-
18 April 2013, 1-15. https://doi.org/10.1109/ecdc.2013.6556733

[39] Tian, L. and Noore, A. (2005) Evolutionary Neural Network Modeling for Software
Cumulative Failure Time Prediction. Reliability Engineering & System Safety, 87,
45-51.

[40] Tian, L. and Noore, A. (2005) On-Line Prediction of Software Reliability Using an
Evolutionary Connectionist Model. Journal of Systems and Software, 77, 173-180.

[41] Okamura, H. and Dohi, T. (2013) SRATS: Software Reliability Assessment Tool on
Spreadsheet. Proceedings of the 24th International Symposium on Software Relia-
bility Engineering, Pasadena, 4-7 November 2013, 100-117.

[42] Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M. and Torner, F. (2013)
Evaluating Long-Term Predictive Power of Standard Reliability Growth Models on
Automotive Systems. Proceedings of the 24th International Symposium on Software
Reliability Engineering, Pasadena, 4-7 November 2013, 228-237.

[43] Kaneishi, T. and Dohi, T. (2013) Software Reliability Modeling and Evaluation un-
der Incomplete Knowledge on Fault Distribution. Proceedings of the 7th IEEE In-
ternational Conference on Software Security and Reliability, Gaithersburg, 18-20
June 2013, 3-12. https://doi.org/10.1109/sere.2013.28

[44] Saito, Y. and Dohi, T. (2015) Software Reliability Assessment via Non-Parametric
Maximum Likelihood Estimation. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, 98, 2042-2050.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

https://doi.org/10.1109/ecdc.2013.6556733
https://doi.org/10.1109/sere.2013.28
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	A Neuro-Based Software Fault Prediction with Box-Cox Power Transformation
	Abstract
	Keywords
	1. Introduction
	2. NHPP-Based Software Reliability Modeling
	Model (Abbr.)

	3. A Refined MLP Architecture
	3.1. Preliminary Set-Up
	3.2. Training Phase
	3.3. Prediction Phase

	4. Numerical Experiments
	4.1. Data Sets
	4.2. Predictive Performance Criterion
	4.3. Results

	5. Concluding Remarks
	Acknowledgements
	References

