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Abstract 
Software fault prediction is one of the most fundamental but significant man-
agement techniques in software dependability assessment. In this paper we 
concern the software fault prediction using a multilayer-perceptron neural 
network, where the underlying software fault count data are transformed to the 
Gaussian data, by means of the well-known Box-Cox power transformation. 
More specially, we investigate the long-term behavior of software fault counts 
by the neural network, and perform the multi-stage look ahead prediction of 
the cumulative number of software faults detected in the future software test-
ing. In numerical examples with two actual software fault data sets, we com-
pare our neural network approach with the existing software reliability growth 
models based on nonhomogeneous Poisson process, in terms of predictive 
performance with average relative error, and show that the data transformation 
employed in this paper leads to an improvement in prediction accuracy. 
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1. Introduction 

As software systems play an increasingly important role in our lives, their com-
plexity and size continue growing. The increased complexity of software systems 
makes the assurance of software quality much difficult. In fact many of software 
applications require critical functionality because of their increasing size and 
complexity. Software reliability is an important facet of software quality, and is 
defined as the probability of failure-free software operation for a specified period 
of time in a specified environment. For the purpose of quantitative assessment, 
software reliability growth models (SRGMs) have been widely used during the 
last four decades [1] [2] [3] [4] [5]. It is worth mentioning that SRGMs specify 
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any parametric form of random processes that describe the behavior of software 
failure occurrence with respect to time. Since SRGMs are essentially stochastic 
models with abstractions, they must be built under several simplified mathemat-
ical assumptions, and, at the same time, their parameter estimation with the fault 
count data observed in software testing is not a trivial task. Because the maxi-
mum likelihood estimation, which is commonly used, is reduced to a multi- 
modal nonlinear optimization problem with constraints, and requires more 
computation efforts. Another problem on SRGMs is the model selection from a 
great number of SRGM candidates. During the last four decades, over three 
hundred SRGMs have been proposed in the literature. The conclusion from the 
empirical research suggests that the best SRGM in terms of the goodness-of-fit 
performance depends on the kind of software fault count data. In other words, 
there does not exist the best SRGM which can fit every software fault count data. 
Sharma et al. [6] proposed a selection method of the best SRGM by using the 
concept of distance. Unfortunately, it is noted that the best SRGM which can fit 
the past observation experienced before does not always provide the best predic-
tion model for the future (or remaining) testing period. 

Apart from SRGMs based on stochastic modeling, artificial neural network 
(ANN) has gained much popularity to deal with non-linear phenomena arising 
in applications to time series forecasting, pattern recognition, function approxi-
mation, etc. Comparing with non-trivial stochastic models, it is easy to imple-
ment the ANN for the software fault prediction, since the feed-forward back- 
propagation (BP) type of learning algorithm can be widely used to estimate the 
internal parameters, such as connection weights. Software fault prediction using 
the ANN was proposed first by Karunanithi et al. [7], Karunanithi and Malaiya 
[8] [9]. They applied simple multi-layered perceptron (MLP) feed forward neur-
al networks, which enjoy a universal approximation ability [10] to represent an 
arbitrary nonlinear mapping with any degree of accuracy, in the prediction of 
software fault-detection time in software testing. Since their seminal contribu-
tions, the ANN approach has been frequently applied to different estimation/ 
prediction problems in software engineering. Khoshgoftaa et al. [11] [12], 
Khoshgoftaar and Szabo [13] considered different problems to identify fault- 
prone modules in software quality assessment. For more recent survey, see Va-
shisht et al. [14]. 

While, it should be pointed out that the ANN approach has some drawbacks 
in application to software fault prediction. First, there is no efficient way to de-
termine the best neural network architecture in each application domain. Even 
though the number of input neurons and output neurons may be determined 
from physical requirements, the number of hidden layers and hidden neurons 
significantly influences the prediction performance in MLP feed forward neural 
networks. In many applications, these sizes must be determined through trial- 
and-error heuristics in pre-experiments. In other words, the predictive perfor-
mance of software fault count strongly depends on the ANN architecture as-
sumed for the analysis. Second, the ANN is a kind of nonlinear regression mod-
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el, but can be regarded as a deterministic model to output the deterministic val-
ues as estimates or predictions. Dissimilar to the familiar SRGMs, it is impossi-
ble to quantify the software reliability as a probability by applying the common 
ANN approach. This feature penalizes us to use the ANN when quantifying the 
software reliability measures such as the software reliability, mean time to soft-
ware failure, etc. On the other hand, though the ANN is a simple connectionist 
model depending on the architecture, it can be considered as a statistically non-
parametric model without specific model assumptions. As mentioned above, a 
huge number of SRGMs have been developed in the literature [15]-[25], but al-
most all of them are based on some parametric assumptions which cannot be va-
lidated for every fault count data. In that sense, the ANN approach can be 
viewed as one of nonparametric models with no specific model assumptions. In 
fact, the ANN approach provides a data-driven modeling framework and can 
bridge several kinds of machine learning techniques. Yang et al. [26] applied a 
model mining technique to provide a generic data-driven SRGM. Xiao and Dohi 
[27] proposed a nonparametric wavelet method to estimate nonhomogeneous 
Poisson process (NHPP)-based SRGM. Cheng et al. [28] considered a multistep- 
ahead a time series prediction with the MLP approach. Park et al. [29] also 
compared several data-driven approaches with the existing SRGMs. Recently, 
Begum and Dohi [30] [31] applied an idea on multiple-input multiple-output 
(MIMO) neural computation by Park et al. [29], and proposed a refined neural 
network approach to predict the long-term behavior of software fault count with 
the grouped data. They impose an assumption that the underlying fault count 
process obeys the Poisson law with an unknown mean value function, and pro-
pose to utilize several data transform methods from the Poisson count data to 
the Gaussian data. However, it is worth noting that even the Poisson assumption 
can be regarded as a simplified assumption in SRGM modeling and has not been 
validated empirically. 

In this paper we refine the existing MLP approach as a data-driven model 
from the view point of software fault prediction. In particular, we deal with the 
grouped data which consists of the number of software fault counts detected at 
each testing date, although the existing MLP approaches focus on only the soft-
ware fault-detection time data which are not easily available in actual software 
testing. We apply the well-known data transformation technique called the 
Box-Cox power transformation [32], from an arbitrary probability law to the 
Gaussian law, and transform the underlying software fault prediction problem to 
a nonlinear Gaussian regression problem with the MLP. First, Tukey [33] intro-
duced a family of power transformations such that the transformed values obey 
a monotonic function of the observations over some admissible range, where an 
arbitrary transformation parameter is involved in the power transformations. 
Box and Cox [32] proposed the maximum likelihood as well as the Bayesian 
methods for estimation of the parameter, and derived the asymptotic distribu-
tion of the likelihood ratio to test some hypotheses about the parameter. The 
main contributions by Box and Cox [32] are two-folds: The first one is to com-
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pute the profile likelihood function and to obtain an approximate confidence 
interval from the asymptotic property of the maximum likelihood estimator. The 
second one is to ensure that the probability model is fully identifiable in the 
Bayesian approach. In neural computation contexts, Dashora et al. [34] used the 
Box-Cox power transformation for data driven prediction models with single 
output neuron in MLP and analyzed the intermittent stream flow for Narmada 
river basin. They compared the MLP with seasonal autoregressive integrated 
moving average and Thomas-Fiering models. Sennaroglu and Senvar [35] eva-
luated the process capability indices in industry and compared the Box and Cox 
power transformation with weighted variance methods in the Weibull distribu-
tion model in terms of the process variation with the product specifications. In 
this way, an applicability of the Box and Cox power transform can be recognized 
in many research fields. 

In this paper we transform the discrete integer-valued data which denote the 
cumulative number of software faults detected in software system testing to the 
Gaussian data by the Box-Cox transform. Next we input the transformed data 
into the MIMO MLP to make the long-term prediction of the software fault 
count. Note that almost all papers in past, [7] [8] [9] [11] [12] [13] [36] [37] [38] 
[39] [40] just considered the one-stage look ahead prediction. Hence, our chal-
lenge with MIMO and the Box-Cox power transformation overcomes the limita-
tion for the existing neuro-based approaches. Recently, the same authors [30] 
considered a different transformation technique for the software fault predic-
tion, where only the one-stage look ahead prediction is made in terms of predic-
tion interval. Also, though they implicitly assume the Poisson law for the under-
lying fault count data, we do not restrict the Poisson law for the software fault 
count data, because the Box-Cox transform is a general data transformation 
scheme. The present paper is organized as follows. In Section 2, we overview the 
SRGMs based on nonhomogeneous Poisson process (NHPP). Section 3 intro-
duces a refined ANN for the purpose of prediction, where the Box-Cox power 
transformation is applied in the pre-processing of input data. In Section 4, we 
analyze two actual software fault count data sets and compare our refined neural 
network approach with eleven NHPP-based SRGMs [41] from the view point of 
predictive performance with relative average error. We show here that our ANN 
approach affords a more appropriate prediction device and tends to have an en-
hanced performance from the standpoint of predictability. Finally the paper is 
concluded with remarks in Section 5. 

2. NHPP-Based Software Reliability Modeling 

We summarize the software reliability growth modeling with the nonhomoge-
neous Poisson process (NHPP). Suppose that software system test starts at time 

0t = . Let ( )X t  denote the cumulative number of software faults detected by 
time t, where ( ){ }, 0X t t ≥  means a stochastic (non-decreasing) counting 
process in continuous time. In particular, it is said that ( )X t  is an NHPP if the 
following conditions hold: 
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• ( )0 0,X =  
• ( )X t  has independent increments, 
• ( ) ( ){ } ( )Pr 2 ,X t h X t o h+ − ≥ =  
• ( ) ( ){ } ( ) ( )Pr 1 ; ,X t h X t t h o hθ+ − = =∅ +  
where ( )o h  is the higher term of infinitesimal time h , and ( );t θ∅  is the 
intensity function of an NHPP which denotes the instantaneous fault detection 
rate per each fault. In the above definition, θ is the model parameter (vector) in-
cluded in the intensity function. Then, the probability that the cumulative num-
ber of software faults detected by time t equals x  is given by 

( ){ } ( ){ } ( ){ };
Pr exp ; ,

!

x
t

X t x t
x
θ

θ
Λ

= = −Λ                 (1) 

where 

( ) ( )
0

; ; d
t

t x xθ θΛ = ∅∫                         (2) 

is called the mean value function and indicates the expected cumulative number 
of software faults up to time t, say, ( ) ( );t E X tθΛ =    . 

If the mean value function ( );t θΛ  or the intensity function ( );t θ∅  is spe-
cified, then the identification problem of the NHPP is reduced to a statistical es-
timation problem of the unknown model parameter θ. In this way, when the pa-
rametric form of the mean value function or the intensity function is given, the 
resulting NHPP-based SRGMs are called parametric NHPP-based SRGMs. Ta-
ble 1 contains the representative NHPP-based SRGMs and their mean value 
functions. Okamura and Dohi [41] summarized these eleven parametric NHPP- 
based SRGMs and developed a parameter estimation tool, SRATS, based on the 
maximum likelihood method and the EM (Expectation-Maximization) algo-
rithm. In SRATS, the best SRGM with the smallest AIC (Akaike Information 
Criterion) is automatically selected, so the resulting best SRGM can fit best the 
past observation data on software fault counts among the eleven models. 

Suppose that n  realizations of ( )iX t , ( )1,2, , ,ix i n= �  are observed up to 
the observation point t. We estimate the model parameter θ by means of the 
maximum likelihood method. Then, the log likelihood function for the grouped 
data ( )( ), 1, 2, ,i it x i n= �  is given by 

( ) ( ) ( ) ( ){ } ( ){ }( ) ( )1 1 1LLF log ; ; log ! ; ,
n

i i i i i i n
i

x x t t x x tθ θ θ θ− − −= − Λ −Λ − − −Λ∑ (3) 

where ( )0; 0θΛ = , 0 0x =  and nt t=  for simplification. The maximum like-
lihood estimate of model parameter θ̂ , can be obtained by maximizing Equa-
tion (3) with respect to the model parameter θ. Once the model parameter is es-
timated, our next concern is to predict the future value of the intensity function 
or the mean value function at an arbitrary time ( )1,2,n lt l+ = � , where l  de-
notes the prediction length [42]. In parametric modeling, the prediction at time 

n lt +  is easily done by substituting estimated model parameter θ̂  into the time 
evolution ( );t θΛ , where the unconditional and conditional mean value func-
tions at an arbitrary future time n lt +  are given by 
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Table 1. NHPP-based SRGMs. 

Model (Abbr.) Mean value function 

Exponential (exp) [17] 
( ) ( )t aF tΛ =  

( ) ( ){ }1 expF t a bt= − −  

Gamma (gamma) [24] 
( ) ( )t aF tΛ =  

( ) ( )
( )

1

0

exp
d

b b
t c s cs

F t s
b

− −
=

Γ∫  

Pareto (pareto) [15] [20] 
( ) ( )t aF tΛ =  

( ) 1
bcF t

t c
 = −  + 

 

Truncated normal (tnorm) [23] 

( ) ( ) ( )
( )

0
1 0

F t F
t a

F
−

Λ =
−

 

( ) ( )2

2

1 exp d
22

t s c
F t s

bbπ −∞

 −
= −  

 
∫  

Log normal (lnorm) [16] [23] 

( ) ( )logt aF tΛ =  

( ) ( )2

2

1 exp d
22

t s c
F t s

bbπ −∞

 −
= −  

 
∫  

Truncated logistic (tlogist) [21] 

( ) ( ) ( )
( )

0
1 0

F t F
t a

F
−

Λ =
−

 

( ) 1

1 exp
F t

t c
b

=
− + − 

 

 

Log logistic (llogist) [19] 

( ) ( )logt aF tΛ =  

( ) 1

1 exp
F t

t c
b

=
− + − 

 

 

Truncated extreme value maximum  
(txvmax) [22] 

( ) ( ) ( )
( )

0
1 0

F t F
t a

F
−

Λ =
−

 

( ) exp exp t cF t
b

  −  = − −   
   

 

Log extreme value maximum 
(lxvmax) [22] 

( ) ( )logt aF tΛ =  

( ) exp exp t cF t
b

  −  = − −   
   

 

Truncated extreme value  
minimum(txvmin) [22] 

( ) ( ) ( )
( )

0
0

F F t
t a

F
−

Λ =  

( ) exp exp t cF t
b

  −  = − −   
   

 

Log extreme value minimum 
(lxvmin) [18] [22] 

( ) ( )( )1 logt a F tΛ = − −  

( ) exp exp t cF t
b

  −  = − −   
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( ) ( )0
ˆ ˆ; ; d ,n lt

n lt x xθ θ+

+Λ = ∅∫                      (4) 

( )( ) ( )
( ) ( )

ˆ ˆ; ; d

ˆ ˆ; ; .

n l

n

t
n l n n n t

n n l n

t X t x x x x

x t t

θ θ

θ θ

+

+

+

Λ = = + ∅

= +Λ −Λ

∫
            (5) 

When the mean value function is unknown, a few nonparametric approaches 
have been developed [43] [44]. However, it should be noted that those ap-
proaches can deal with the fault-detection time data, but do not work for predic-
tion in future. The wavelet-based method in [27] can treat the grouped data, but 
fails to make the long-term prediction in nature. In the following section, we use 
an elementary MLP for the purpose of the long-term software fault prediction. 

3. A Refined MLP Architecture 

Artificial neural network is a computational metaphor inspired by the brain and 
nervous system study, and consists of an input layer with some inputs, multiple 
hidden layers with hidden neurons and one output layer. The input layer of 
neurons can be used to capture the inputs from the outside world. Since the 
hidden layer of neurons has no communication with the external world, the 
output layer of neurons sends the final output to the external world. Hence, de-
termining an appropriate number of hidden neurons is an important design is-
sue in neural computation. In this paper we consider an MIMO type of MLP 
with only one hidden layer. Similar to Section 2, suppose that n software fault 
count data ( )( ), 1, 2, ,i it x i n= �  are observed at the observation point ( )nt t= . 
Our concern is about the future prediction of the cumulative number of software 
faults at time ( )1,2,n lt l+ = � . 

3.1. Preliminary Set-Up 

In the common neural computation, it is noted that the neural network includ-
ing the simplest MLP with only one output neuron is regarded as a nonlinear 
regression model, where the explanatory variables are randomized by the Gaus-
sian white nose. In other words, the output data in the MLP is implicitly as-
sumed to be a realization of a nonlinear Gaussian model. On the other hand, 
since one handles the fault count data as integer values in the software fault pre-
diction, the underlying data shall be transformed to the Gaussian data in ad-
vance. Such a pre-data processing is common in the wavelet shrinkage estima-
tion [27] although it specifies the underlying data as the Poisson data. According 
to the idea in the literature [27], we apply the Box-Cox power transformation 
technique [32] from an arbitrary random data to the Gaussian data. As men-
tioned in Section 1, Box and Cox [32] developed a procedure to identify an ap-
propriate exponent λ to transform data into a “normal shape”. Table 2 presents 
the Box-Cox power transformation and its inverse transform formula. In this ta-
ble, ix  denotes the cumulative number of software faults detected at 
( )1,2, ,i n� -th testing day. Then, we have the transformed data ix�  by means of 

the Box-Cox power transformation. The transformation parameter λ indicates  



M. Begum, T. Dohi 
 

295 

Table 2. Box-Cox power transformation formulae. 

Box-Cox 
Formulae 

Data transform Inversion transform 

0λ =  ( )logi ix x=�  ( )exp n lx +�  

0λ ≠  1i
i

xx
λ

λ
−

=�  ( )11n lx λλ + +�  

 
the power to which all data should be raised, where the parameter λ has to be 
adjusted in the Box-Cox power transformation. It is common to determine the 
optimal λ in the pre-experiments before time series prediction. 

Let ( )1,2, ,ix i n=� �  and ( )1,2,n lx l+ =� �  be the input and output for the 
MIMO type of MLP, respectively. Then, the prediction of the cumulative num-
ber of software faults is given by the inversion of the data transform. Figure 1 
depicts the architecture of back propagation type MIMO, where n  is the num-
ber of software fault count data experienced before the observation point nt  
and l  is the prediction length. We suppose that there is only one hidden layer 
with ( )1,2,k = �  hidden neurons in our MIMO type of MLP. 

3.2. Training Phase 

Suppose that all the connection weights ( nk  weights from input to hidden layer, 
kl  weights from hidden to output layer in Figure 1) are first given by the un-
iformly distributed pseudo random varieties. In the MIMO, if these weights are 
completely known, then it is possible to calculate ( )1, ,n n lx x+ +� ��  from the input 
( )1, , nx x� ��  directly. However, since it is impossible to train all the weights in-
cluding ( )k n l+  unknown patterns in principle via the common BP algorithm, 
it is needed to develop a new long-term prediction scheme for the MIMO. In 
short, we briefly introduce the long-term prediction scheme developed by Be-
gum and Dohi [31]. Suppose that n l>  without any loss of generality. In Fig-
ure 2, we illustrate the configuration of our prediction scheme. In order to pre-
dict the cumulative number of software faults for l  testing days from the ob-
servation point nt , the prediction has to be made at the point n lt − . This implies 
that only ( )n l k kl nl− + =  weights can be estimated with the training data ex-
perienced for the period ( ],n l nt t−  and that the remaining ( )k n l nl+ − weights 
are not trained at time nt . We call these ( )k n l nl+ −  weights the 
non-estimable weights in this paper. As the prediction length is longer, the 
number of non-estimable weights becomes greater and the prediction uncer-
tainty also increases more. In this scheme, the Box-Cox transformed data 
( )1, , n lx x −� ��  with given λ are used for the input in the MIMO, and the remain-
ing data ( )1, ,n l nx x− +� ��  are used for the teaching signals in the training phase. 

The BP algorithm is the well-known gradient descent method to update the 
connection weights, so as to minimize the squared error between the network 
output values and the teaching signals. For the value coming out an input neu-
ron, ( )1,2, ,ix i n l= −� � , it is common to add two special inputs; bias units  
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Figure 1. Architecture of back propagation type MIMO. 

 

 
Figure 2. Configuration of prediction scheme via MIMO. 

 
which always have the unit values. These inputs are used to evaluate the bias to 
the hidden neurons and output neurons, respectively. Let [ ]1,1ijw ∈ −  be the 
connection weights from i -th input neuron to j-th hidden neuron, where 0 jw  
and 0sw′  denote the bias weights for j-th hidden neuron and s-th output neu-
ron, respectively, for the training phase with 0,1, ,i n l= −� , 0,1, ,j k= �  and 

1, 2, , .s n l n l n= − + − + �  Each hidden neuron calculates the weighted sum of 
the input neuron, jh , in the following equation: 

01 .n l
j ij ij jih x w w−

=
= +∑ �                        (6) 

Since there is no universal method to determine the number of hidden neu-
rons, we change k  in the pre-experiments and choose an appropriate value. 
After calculating jh  for each hidden neuron, we apply a sigmoid function 

( ) ( )1 expj jf h h= −  as a threshold function in the MIMO. Since jh  are sum-
mative and weighted inputs from respective hidden neurons, the s-th output 
( )1, 2, ,s n l n l n= − + − + �  in the output layer is given by 

( ) 01 .k
s j js sjx f h w w

=
′ ′= +∑�                      (7) 
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Because sx�  are also summative and weighted inputs from respective hidden 
neurons in the output layer, the weight jsw′  is connected from j-th hidden 
neuron to s-th output neuron. The output value of the network in the training 
phase, sx�  is calculated by ( ) ( )1 exps sf x x= −� � . In the BP algorithm, the error 
is propagated from an output layer to a successive hidden layer by updating the 
weights, where the error function is defined by 

( )
( )

2

1SSE
1

n o
s ss n l x x

l
= − +

−
=

−
∑ � �

                    (8) 

with the prediction value sx�  and the teaching signal o
sx�  observed for the pe-

riod ( ]1,n l nt t− + . 
Next we overview the BP algorithm. It updates the weight parameters so as to 

minimize SSE between the network output values ( )1, 2, ,sx s n l n l n= − + − +� �  
and the teaching signals o

sx�  where each connection weight is adjusted using the 
gradient descent algorithm according to the contribution to SSE in Equation (8). 
The momentum, α, and the learning rate, η, are controlled to adjust the weights 
and the convergence speed in the BP algorithm, respectively. Since these are the 
most important tuning parameters in the BP algorithm, we carefully examine 
these parameters in pre-experiments. In this paper we set α = 0.25 ~ 0.90 and η = 
0.001 ~ 0.500. Then, the connection weights are updated in the following: 

( ) ( )new , 1, 2, , , 1, , ,ij ij jijw w w h i n l j kα ηδ= + + = − =� �           (9) 

( ) ( )new , 1, 2, , , 1, , ,js js sjsw w w x j k s n l nα ηδ′ ′ ′= + + = = − +� � �        (10) 

where jhδ  and sxδ �  are the output gradient of j-th hidden neuron and the 
output gradient in the output layer, and are defined by 

( ) ( )( )1 ,j j jh f h f hδ δ= −                     (11) 

( )( )1 ,o
s s s s sx x x x xδ = − −� � � � �                     (12) 

respectively. Also, the updated bias weights for hidden and output neurons are 
respectively given by 

( ) 0 00 new ,j j jjw w w hα ηδ= + +                    (13) 

( ) 0 00 new s s ssw w w xα ηδ′ ′ ′= + + � .                   (14) 

The above procedure is repeated until the desired output is achieved. 

3.3. Prediction Phase 

Once the nl  weights are estimated with the training data experienced for the 
period ( ],n l nt t−  through the BP algorithm, we need to obtain the remaining 
( )k n l nl+ −  non-estimable weights for prediction. Unfortunately, since these 

cannot be trained with the information at time nt , we need to give these values 
by the uniform pseudo random variates in the range [ ]1,1− . By giving the ran-
dom connection weights, the output as the prediction of the cumulative number 
of software faults, ( )1, ,n n lx x+ +� �� , are calculated by replacing Equations (6) and 
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(7) by 

( ) ( ) ( )new new 0 new1 ,n
ijj ij jih x w w

=
= +∑ �                  (15) 

( )( ) ( ) ( )new new 0 new1 ,k
n s j js sjx f h w w+ =

′ ′= +∑�               (16) 

respectively, for 1,2, ,i n= � , 1, ,j k= �  and 1,2, ,s l= � . Note that the re-
sulting output is based on one sample by generating a set of uniform pseudo 
random variates. In order to obtain the prediction of the expected cumulative 
number of software faults, we generate m sets of random varieties and take the 
arithmetic mean of the m predictions of ( )1, ,n n lx x+ +� �� , where m = 1000 is con-
firmed to be enough in our preliminary experiments. In other words, the predic-
tion in the MIMO type of MLP is reduced to a combination of the BP learning 
and a Monte Carlo simulation on the connection weights. 

4. Numerical Experiments  
4.1. Data Sets  

We use two real project data sets cited in the reference [2]; DS1 and DS2, which 
consist of the software fault count (grouped) data. In these data sets, the length 
of software testing and the total number of detected software faults are given by 
(62, 133) and (41, 351), respectively. To find out the desired output via the BP 
algorithm, we need much computation cost to calculate the gradient descent, 
where the initial guess of weights, ijw , jsw′ , 0 jw  and 0sw′ , are given by the 
uniform random variates ranged in [ ]1, 1− + , the number of total iterations in 
the BP algorithm run is 1000 and the convergence criteria on the minimum er-
ror is 0.001 which is same as our previous paper [30]. In Figure 3 and Figure 4, 
we give two examples on how to determine the optimal transformation parame-
ter *λ . In our experiments, it is shown that the search range of λ  should be 
[ ]3, 2− + . 

4.2. Predictive Performance Criterion  

Suppose that the observation point is given by the n -th testing day, nt . In this 
case, ( )n l−  software fault counts data are used for training the MIMO type of 
MLP. The capability of the prediction model is measured by the average error 
(AE); 

1RE
AE ,

l
ss

l l
== ∑                         (17) 

where REs is called the relative error for the future time t n s= +  and is given 
by 

( )
( )RE 1,2, , .

o
n s n s

s o
n s

x x
s l

x
+ +

+

−
= =
� �

�
�

                 (18) 

So we regard the prediction model with smaller AE as a better prediction 
model. 
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Figure 3. Determination of the transformation parameter λ (DS1 with 50% observation 
point). 
 

 
Figure 4. Determination of the transformation parameter λ (DS2 with 50% observation 
point). 
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4.3. Results  

Tables 3-6 summarize the results on AE for the underlying data set DS1 at 50% 
~ 90% observation points of the whole data for the prediction length l = 5, 10, 15 
and 20 days, where *λ  denotes the optimal transformation parameter in the 
sense of minimum AE, and the bold number implies the best prediction model 
in the same category. For instance, Table 3 gives the prediction results on the 
cumulative number of software faults for 5 days prediction at respective obser-
vation points, when the number of hidden neurons changes from k = 10 to 50. 
In the MIMO type of MLP neural network, we compare the Box-Cox power 
transformation with the non-transformed case (Normal) and the best SRGM in 
Table 1. In the column of SRGM, we denote the best SRGMs in terms of predic-
tive performance (in the sense of minimum AE) and estimation performance (in 
the sense of minimum AIC) by P and E, respectively. 

It is seen that our MIMO-based approaches provide smaller AEs than the 
common SRGMs in almost all cases when the observation points are 50% and 
70%. In the 60% observation point, the best prediction model is the non-trans- 
formed MIMO (Normal) with k = 50. On the other hand, in the latter phase of 
software testing, i.e., 80% ~ 90% observation points, SRGMs, such as txvmax and 
txvmin, offer less AEs than the MIMO type of MLPs. Even in these cases, it 
should be noted the best SRGM with the minimum AIC is not always equivalent 
to the best SRGM with the minimum AE. This fact tells us that one cannot know 
exactly the best SRGM in advance in terms of predictive performance. Compar-
ing the data transform methods with the non-transformed one, we can find only 
one case where Normal provides the best prediction result in Table 3 for DS1 
and Table 8 for DS2. However, in the other early prediction phases, it is seen 
that the data transform can work well to give more accurate prediction results in 
the MIMO type of MLPs. 

Tables 7-10 present the prediction results on AE for DS2. Similar to DS1, the 
MIMO type of MLPs can predict the cumulative number of software faults more 
accurately in the early testing phase, say, 50% ~ 60% observation points, than 
SRGMs. Focusing on the number of hidden neurons in the MIMO type of MLPs, 
we expected first that the larger k may lead to the better predictive performance. 
However, it is not true from the results in Tables 4-6. In the MIMO-based ap-
proach, it is essential to determine feasible k and λ values, because the number of 
hidden neurons results the expensive computation cost with different prediction 
length l. In the original paper by Box and Cox [32] they suggest that “fix one, or 
possibly a small number, of λ’s and go ahead with the detailed estimation”. In 
their examples, they use what is usually called “snap to the grid” method to 
choose the transformation parameter. Unfortunately, no universal method to 
determine the optimal λ has not been reported yet in the literature. Hence, it is 
needed to give an appropriate λ even though it is not optimal. From Figure 3 
and Figure 4, it can be recognized that the adjustment of λ is quite sensitive to 
the predictive performance and has to be done through the try-and-error heuris-
tics. However, for an arbitrary λ, we can know that the multi-stages look ahead  
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Table 3. Comparison of average relative errors for five days prediction with DS1 (l = 5). 

50% observation (tn = 31) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 0.832 1.115 0.970 1.452 0.950 0.826 0.157 (−0.5) 0.224 

P: pareto 
(1.280) 

E:txvmax 
(2.286) 

20 0.985 1.763 0.989 1.306 0.313 0.384 0.115 (1.8) 0.137 

30 0.814 0.592 1.006 0.345 0.913 1.938 0.028 (0.7) 1.078 

40 1.617 1.384 1.491 3.835 0.408 0.787 0.294 (1.9) 0.136 

50 2.154 1.158 0.972 0.488 0.516 1.543 0.435 (1.3) 0.078 

60% observation (tn = 37) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 3.188 2.172 0.789 0.931 0.867 1.277 0.052 (0.2) 0.056 

P:lnorm 
(0.023) 

E:txvmax 
(0.764) 

20 2.203 2.203 1.419 1.632 0.929 0.823 0.116 (1.6) 0.038 

30 0.876 1.510 4.025 1.210 0.293 1.862 0.072 (1.1) 0.043 

40 2.151 0.473 1.331 0.881 0.978 1.523 0.126 (0.8) 0.029 

50 2.185 3.521 1.240 1.529 1.272 0.211 0.099 (−0.3) 0.018 

70% observation (tn = 43) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.234 0.677 0.821 1.540 3.125 1.548 0.245 (0.6) 0.268 

P:txvmax 
(0.017) 

E:txvmax 
(0.017) 

20 1.723 1.113 3.521 3.127 1.415 1.365 0.151 (0.3) 0.172 

30 2.262 3.296 1.833 1.928 1.835 1.211 1.105 (1.3) 0.083 

40 2.204 4.089 2.405 1.210 0.829 1.541 0.016 (0.8) 0.098 

50 1.707 1.331 0.232 0.914 0.637 0.971 0.122 (0.9) 0.056 

80% observation (tn = 50) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.669 1.245 0.864 0.912 1.183 0.872 0.031 (1.7) 0.017 

P:txvmin 
(0.007) 

E:lxvmin 
(0.022) 

20 2.626 0.924 1.436 1.293 0.791 0.379 0.044 (−0.4) 0.059 

30 1.676 1.472 0.265 2.053 0.529 0.080 0.019 (0.2) 0.027 

40 2.185 1.861 2.547 1.997 1.380 0.509 0.029 (0.9) 0.018 

50 2.785 0.925 3.237 0.590 1.455 2.551 0.119 (0.8) 0.127 

90% observation (tn = 56) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.652 1.695 0.478 0.717 0.985 1.243 0.145 (0.4) 0.291 

P:txvmax 
(0.020) 

E:lxvmin 
(0.030) 

20 1.658 0.424 0.581 0.985 0.068 1.717 0.068 (1.0) 0.043 

30 2.202 1.751 1.318 1.351 1.598 3.761 0.184 (0.6) 0.186 

40 1.625 1.243 0.558 0.869 1.662 1.120 0.023 (1.7) 0.034 

50 2.915 0.501 0.956 2.127 1.273 0.831 0.134 (1.3) 0.161 
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Table 4. Comparison of average relative errors for ten days prediction with DS1 (l = 10). 

50% observation (tn = 31) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 3.253 1.804 1.037 0.508 0.051 0.414 0.051 (1.0) 0.958 

P:lxvmin 
(1.120) 

E:txvmax 
(3.480) 

20 3.172 2.144 1.242 0.166 0.513 0.789 0.166 (0) 0.479 

30 1.123 0.767 0.862 1.241 0.708 0.961 0.341(0.9) 0.841 

40 2.078 0.818 0.762 0.831 1.129 0.639 0.069 (0.6) 0.057 

50 1.201 0.539 0.603 1.811 0.814 0.791 0.479 (1.3) 1.023 

60% observation (tn = 37) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.273 1.438 1.645 0.098 1.029 0.953 0.043 (0.7) 1.087 

P:tlogist 
(0.025) 

E:txvmax 
(1.287) 

20 1.985 1.383 0.946 1.261 1.698 1.048 0.946 (−1.0) 1.106 

30 2.012 2.924 0.594 1.128 0.537 1.715 0.537 (1.0) 1.746 

40 1.025 1.187 1.137 0.991 1.263 0.961 0.035 (1.6) 0.850 

50 1.876 1.236 0.785 0.864 1.019 1.149 0.623 (1.1) 0.513 

70% observation (tn = 43) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.193 0.689 2.647 1.043 1.088 0.088 0.088 (2.0) 1.088 

P:txvmax 
(0.077) 

E:txvmax 
(0.077) 

20 4.983 0.937 1.723 1.066 0.219 0.613 0.219 (1.0) 0.079 

30 1.133 4.089 3.345 1.549 1.790 3.519 0.265 (1.4) 0.871 

40 1.254 1.237 1.304 1.139 3.129 1.145 0.359 (0.9) 1.058 

50 3.173 1.096 1.129 0.387 2.187 2.153 0.106 (1.2) 1.099 

80% observation (tn = 50) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.160 0.183 1.058 1.235 1.443 2.198 0.183 (−2.0) 0.382 

P:lxvmax 
(0.018) 

E:lxvmin 
(0.056) 

20 3.121 0.897 0.636 1.074 0.058 0.582 0.058 (1.0) 3.039 

30 1.386 0.541 1.903 0.474 1.031 1.865 0.452 (1.5) 1.052 

40 3.189 1.259 1.126 0.635 0.962 1.813 0.198 (1.9) 0.907 

50 2.175 2.067 1.048 1.269 1.458 1.617 0.339 (1.2) 0.839 
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Table 5. Comparison of average relative errors for fifteen days prediction with DS1 (l = 15). 

50% observation (tn = 31) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.025 0.448 0.664 0.573 0.491 1.033 0.056 (−1.4) 0.348 

P:lxvmin 
(1.550) 

E:txvmax 
(4.981) 

20 4.259 1.713 0.531 1.391 1.723 1.632 0.339 (0.3) 1.728 

30 3.585 0.296 0.846 0.931 0.635 1.461 0.087 (1.2) 1.298 

40 1.313 1.331 1.234 1.381 1.208 1.220 0.641 (−1.1) 1.461 

50 2.932 1.062 1.432 0.775 1.041 2.140 0.331 (0.2) 1.073 

60% observation (tn = 37) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.405 1.451 0.041 1.249 1.329 1.049 0.041 (−1.0) 1.028 

P:tlogist 
(0.042) 

E:txvmax 
(0.049) 

20 1.844 2.480 1.682 1.105 0.279 0.347 0.279 (1.0) 1.047 

30 3.696 2.265 0.906 0.936 1.141 0.639 0.198 (0.7) 2.076 

40 1.904 1.289 1.113 2.076 1.985 1.481 0.792 (0.6) 1.037 

50 2.326 1.076 1.234 1.176 1.028 1.149 0.427 (0.5) 0.076 

70% observation (tn = 43) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.394 1.439 0.864 0.955 1.194 1.402 0.524 (0.6) 2.394 

P:txvmax 
(0.028) 

E:txvmax 
(0.028) 

20 2.175 1.226 2.367 1.061 0.187 0.255 0.187 (1.0) 0.087 

30 2.321 1.247 1.369 0.653 0.519 1.527 0.151 (−1.8) 0.519 

40 2.061 1.058 1.152 1.516 1.658 0.932 0.719 (0.8) 1.129 

50 0.987 1.256 1.321 0.293 1.183 0.681 0.137 (0.7) 0.072 

 
Table 6. Comparison of average relative errors for twenty days prediction with DS1 (l = 20). 

50% observation (tn = 31) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.218 1.105 0.692 1.962 0.677 1.450 0.018 (−0.6) 1.240 

P:lxvmin 
(1.088) 

E:txvmax 
(6.103) 

20 0.910 1.031 1.629 0.169 0.683 0.573 0.169 (0) 0.390 

30 0.599 1.611 1.309 0.825 0.483 2.062 0.421 (0.6) 0.634 

40 1.155 1.004 1.194 1.016 0.924 1.407 0.293 (0.2) 3.226 

50 0.712 1.389 0.631 0.980 1.906 0.952 0.591 (−1.1) 0.451 

60% observation (tn = 37) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.345 0.071 0.384 0.744 1.632 1.722 0.071 (−2.0) 0.524 

P:tlogist 
(0.033) 

E:txvmax 
(0.042) 

20 0.987 0.184 0.519 0.663 1.510 1.523 0.241 (1.3) 2.072 

30 1.277 1.078 0.240 0.864 0.331 0.819 0.034 (−0.7) 0.630 

40 1.080 1.812 1.199 1.573 1.183 0.720 0.641 (0.8) 2.041 

50 1.397 1.748 1.094 1.613 0.265 0.056 0.056 (2.0) 0.379 
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Table 7. Comparison of average relative errors for five days prediction with DS2 (l = 5). 

50% observation (tn = 21) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.920 1.289 2.398 0.876 0.955 0.902 0.055 (0.4) 0.073 

P:lxvmax 
(0.211) 

E: lxvmin 
(2.011) 

20 1.395 0.572 1.072 1.079 1.892 1.005 0.046 (1.3) 1.207 

30 1.390 1.841 1.572 1.229 0.902 1.981 0.555 (1.1) 1.390 

40 1.908 1.978 1.870 1.105 1.171 0.927 0.279 (1.7) 0.253 

50 2.387 2.167 1.870 1.012 1.198 0.538 0.180 (−0.9) 0.165 

60% observation (tn = 25) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.562 1.694 1.751 1.598 0.472 0.657 0.472 (1.0) 1.174 

P:tlogist 
(0.039) 

E:lxvmin 
(0.075) 

20 1.997 1.817 1.684 0.058 0.289 0.327 0.058 (0) 0.152 

30 2.106 2.463 1.617 0.474 0.657 0.829 0.657 (1.0) 0.173 

40 1.901 2.658 1.312 0.489 0.463 0.401 0.031 (1.9) 0.332 

50 2.678 1.348 2.470 2.559 0.921 0.966 0.374 (0.4) 1.015 

70% observation (tn = 29) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.895 0.745 0.926 1.506 1.006 0.828 0.476 (0.6) 1.159 

P:lxvmin 
(0.021) 

E:lxvmin 
(0.021) 

20 2.116 1.379 1.981 0.380 0.475 0.491 0.380 (0) 0.466 

30 2.153 2.829 2.147 1.927 1.246 1.061 0.899 (−0.7) 0.395 

40 0.976 1.537 2.340 0.853 1.554 1.556 0.206 (0.9) 1.055 

50 1.389 1.478 1.421 1.246 1.829 1.391 0.331 (0.7) 0.786 

80% observation (tn = 33) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.463 2.816 0.841 0.396 0.817 0.719 0.394 (0.5) 1.819 

P:lxvmin 
(0.026) 

E:lxvmin 
(0.026) 

20 1.713 0.673 1.817 1.452 0.541 0.312 0.312 (2.0) 0.988 

30 2.876 1.922 0.592 1.392 0.339 1.393 0.339 (1.0) 1.195 

40 1.993 1.037 1.325 0.471 0.723 0.835 0.471 (0) 1.023 

50 2.106 1.317 0.927 1.612 2.743 0.916 0.107 (−0.3) 0.885 

90% observation (tn = 56) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.874 4.027 1.029 0.984 1.489 0.647 0.876 (1.3) 1.152 

P:txvmax 
(0.002) 

E:lxvmin 
(0.039) 

20 1.312 1.198 1.217 1.716 0.916 0.186 0.149 (0.6) 1.182 

30 3.016 1.912 0.949 0.967 0.427 0.416 0.297 (1.5) 1.050 

40 2.956 2.847 1.813 0.229 0.647 0.017 0.017 (2.0) 1.133 

50 2.053 1.113 1.972 1.284 0.263 0.229 0.063 (1.8) 0.603 
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Table 8. Comparison of average relative errors for ten days prediction with DS2 (l = 10). 

50% observation (tn = 21) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 3.680 2.078 1.398 0.978 1.701 1.098 0.067 (1.3) 0.541 

P:txvmin 
(0.059) 

E:lxvmin 
(2.613) 

20 1.011 0.650 1.123 0.844 1.826 2.118 0.139 (−0.7) 0.216 

30 2.203 0.984 0.947 2.497 1.791 0.791 0.791 (2.0) 0.035 

40 2.742 1.880 2.118 0.757 1.526 2.572 0.114 (1.5) 0.058 

50 3.641 2.393 0.852 0.821 0.383 0.941 0.383 (1.0) 0.065 

60% observation (tn = 25) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 3.325 2.126 1.985 1.876 1.323 0.814 0.814 (2.0) 0.189 

P:llogist 
(0.102) 

E:lxvmin 
(0.134) 

20 2.053 2.971 0.878 0.755 0.943 0.928 0.755 (0) 0.359 

30 1.917 2.048 1.278 2.293 0.313 0.927 0.313 (1.0) 0.273 

40 1.993 1.901 2.861 0.983 1.386 1.147 0.983 (0) 0.704 

50 2.882 2.106 1.278 1.518 1.278 0.083 0.083 (2.0) 0.136 

70% observation (tn = 29) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.559 2.072 1.517 1.656 1.773 0.613 0.585 (1.8) 1.051 

P:tnorm 
(0.015) 
P:tnorm 
(0.015) 

20 1.528 0.991 2.658 2.158 0.289 1.089 0.289 (1.0) 0.367 

30 1.818 2.522 1.905 1.898 1.893 1.713 0.385 (0.8) 0.551 

40 2.615 1.528 2.703 0.845 2.819 1.028 0.291 (1.1) 0.341 

50 1.333 1.929 2.974 2.114 0.950 1.616 0.173 (0.6) 0.284 

 
Table 9. Comparison of average relative errors for fifteen days prediction with DS2 (l = 15). 

50% observation (tn = 21) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 2.702 1.949 1.870 1.69 2.659 2.974 0.219 (−0.1) 2.556 

P:tnorm 
(0.227) 

E:lxvmin 
(2.865) 

20 2.971 1.844 1.378 2.166 1.486 0.476 0.476 (2.0) 0.756 

30 1.912 1.416 1.999 2.848 0.116 1.213 0.116 (1.0) 1.569 

40 1.389 2.791 2.016 1.375 1.313 1.481 0.336 (1.7) 0.238 

50 1.121 1.017 2.085 1.316 1.126 1.391 0.215 (1.4) 0.533 

60% observation (tn = 25) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.017 2.143 0.913 0.852 0.159 1.109 0.159 (1) 3.162 

P:llogist 
(0.161) 

E:lxvmin 
(0.184) 

20 2.345 1.831 1.041 2.127 1.563 1.515 0.705 (1.6) 1.158 

30 1.568 2.819 1.825 2.326 1.117 1.261 0.211 (1.3) 2.190 

40 3.839 1.792 2.834 1.019 1.179 0.839 0.839 (2.0) 1.097 

50 2.413 2.087 1.124 1.236 1.946 1.619 0.039 (1.1) 0.385 
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Table 10. Comparison of average relative errors for twenty days prediction with DS2 (l = 20). 

50% observation (tn = 21) 

k 
MIMO SRGM  

Best Model −3.0 −2.0 −1.0 0 1.0 2.0 *λ  Normal 

10 1.792 1.991 1.498 1.403 0.473 0.513 0.473 (1.0) 1.016 

P:lxvmax 
(0.310) 

E:lxvmin 
(2.960) 

20 3.107 1.984 1.443 1.101 1.458 0.672 0.672 (2.0) 1.023 

30 2.044 2.715 1.007 1.938 1.406 1.236 0.745 (0.5) 1.302 

40 2.983 1.907 2.043 1.513 1.764 1.149 1.036 (−0.9) 1.251 

50 1.155 2.085 1.713 0.818 1.376 0.305 0.305 (2.0) 0.392 

 
prediction of software fault count is possible with the MIMO type of MLP and 
that the Box-Cox power transformation improves the predictive accuracy, espe-
cially, in the early prediction phase. 

5. Concluding Remarks 

In this paper we have investigated an applicability of the Box-Cox power trans-
formation to the neuro-based software fault prediction. The ANN employed in 
this paper is an MIMO type of MLP, and can handle the grouped data on soft-
ware fault counts as well as make the long-term prediction. To our best know-
ledge, this paper is the primary challenge to treat the long-term prediction of 
software faults with the grouped data in the ANN approach. Throughout a 
comprehensive comparison with the existing SRGMs, it has been shown that our 
MIMO type of MLP could work well to predict the cumulative number of soft-
ware faults in the early testing phase. In the future, we will apply the proposed 
neural network approach to the other software fault count data and conduct 
more comprehensive data analysis to validate our method with data transforma-
tion. Especially, a challenging issue is to develop the prediction interval of the 
cumulative number of software faults. Even if SRGMs are assumed, it is almost 
impossible to get the exact predictive intervals of the cumulative number of 
software faults without applying any approximation method. We will extend our 
prediction scheme based on the MIMO type of MLP to the interval prediction 
problem. We will also consider how to select the optimal transformation para-
meter in the Box-Cox transformation. 
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