
Journal of Software Engineering and Applications, 2016, 9, 112-127 
Published Online April 2016 in SciRes. http://www.scirp.org/journal/jsea 
http://dx.doi.org/10.4236/jsea.2016.94010     

How to cite this paper: Mou Kui, K., Ben Ali, K. and Suryn, W. (2016) The Analysis and Proposed Modifications to ISO/IEC 
25030—Software Engineering—Software Quality Requirements and Evaluation—Quality Requirements. Journal of Software 
Engineering and Applications, 9, 112-127. http://dx.doi.org/10.4236/jsea.2016.94010  

 
 

The Analysis and Proposed Modifications to 
ISO/IEC 25030—Software Engineering— 
Software Quality Requirements and 
Evaluation—Quality Requirements 
Karen Mou Kui, Khaled Ben Ali, Witold Suryn 
École de Technologie Supérieure, Université du Québec, Montréal, Canada 

 
 
Received 23 February 2016; accepted 19 April 2016; published 22 April 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The quality of the software product is a crucial factor that contributes to its success. Therefore, it 
is important to specify the right software quality requirements that will establish the basis for 
desired quality of the final system/software product. There are several known methodologies/ 
processes that support the specification of the system/software functional requirements starting 
from the user needs to finally obtain the system requirements that the developers can implement 
through their development process. System/software quality requirements are interdependent 
with functional requirements, which means that the system/software quality requirements are 
meant to be specified in parallel with the latter. The ISO/IEC 25000 [1] SQuaRE series of standards 
include the standard ISO/IEC 25030—Software engineering—Software Quality Requirements and 
Evaluation—Quality requirements [2], which has as main goal to help specify software quality 
requirements. As to date, this standard does not offer clear and concise steps that a software 
quality engineer could follow in order to specify them. This article presents modifications recom- 
mended for ISO/IEC 25030 standard, with, among the others, a new requirements definition pro- 
cess that allows for specifying the system/software quality requirements taking into account the 
existing published system and software quality model ISO/IEC 25010 [3] as well as all the stake- 
holders of the project. 

 
Keywords 
System/Software Quality, System/Software Quality Requirements, Software Quality Engineer, 
Specification Process, ISO/IEC 25030, ISO/IEC 25000 SQuaRE 

 

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.94010
http://dx.doi.org/10.4236/jsea.2016.94010
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


K. Mou Kui et al. 
 

 
113 

1. Introduction 
Usually the popularity of a system or software is characterized by the set of functionalities it offers and its 
quality attributes such as, for example, performance, level of security or usability. In order to achieve this goal, 
in each step of the life cycle of a system or a software product the quality should be considered and actively 
implemented. To help IT industry in this effort the ISO/IEC Joint Technical Committee 1 (JTC1) Subcommittee 
7 (SC7) has developed the series of quality-dedicated standards known as ISO/IEC 25000 SQuaRE [1], with 
ISO/IEC 25030 [2]—Software engineering—Software product Quality Requirements and Evaluation (SquaRE)— 
Quality requirements in a prominent place. 

However, as ISO/IEC 25030, which should describe the process helping to specify the system/software 
quality requirements, in its actual form is not exhaustive enough to fulfill its basic objective of applicability in 
real projects, it would benefit from some modifications. 

In this paper the authors analyze the actual content of the standard, propose modifications and identify several 
possible improvements, which, when applied, would render the standard more useful to the IT industry.  

The rest of the paper is organized as follows: Section 2 describes the methodology of the presented research. 
Section 3 discusses the proposed modifications to the new version of the standard and particularly the new 
process to specify the software quality requirements. Section 4 presents the conclusion and outlines the possible 
continuation of this research. Finally, Section 5 presents the table of contents of the new standard.  

2. Methodology 
In its actual apprach to quality, the industry recognizes its importance in developing software products, thus, the 
quality must be present throughout the life cycle of a software product. That is the reason for the development of 
SQuaRE standards-System and Software Quality Requirements and Evaluation (SQuaRE).  

The standards ISO/IEC 25010—System and software quality models [3] and ISO/IEC 25020—Measurement 
reference model and guide [4] are included in this series. ISO/IEC 25010 presents the software quality models 
containing the characteristics and sub-characteristics for software quality in use and software product quality. It 
provides the description of these models: 

1) A quality in use model composed of five characteristics (some of which are further subdivided into 
subcharacteristics) that relate to the outcome of interaction when a product is used in a particular context of use. 
This system model is applicable to the complete human-computer system, including both computer systems in 
use and software products in use. 

2) A product quality model composed of eight characteristics (which are further subdivided into subchar- 
acteristics) that relate to static properties of software and dynamic properties of the computer system. The model 
is applicable to both computer systems and software products. 

The standard ISO/IEC 25030 uses ISO/IEC 25010 to define the software quality requirements.  
The standard ISO/IEC 25020 provides a reference model for the measures and a guide to use them with the 

characteristics defined in the ISO/IEC 25010 quality model. Indeed, it presents introductory explanation and a 
reference model that is common to quality measure elements, measures of software product quality and quality 
in use. It also provides guidance to users for selecting or developing, and applying measures and it contains 
informative annexes addressing the following topics: criteria for selecting software quality measures and quality 
measure elements, demonstrating predictive validity and assessing measurement reliability, and an example 
format for documenting software quality measures.  

The standard ISO/IEC 25030 uses the standard ISO/IEC 25020 to define which mesures should be adopted 
for each characteristic and subcharacteristic identified in the standard ISO/IEC 25010 in otder to specify the 
software quality requirements. 

The main objective of this research project was to analyze the ISO/IEC 25030 standard and propose the 
modifications to make it more explicit by providing clear, easy to follow steps helping to define the system or 
software quality requirements. The additional objective was to ensure that the new version of the standard can 
be understood by the different stakeholders of a software development process and that it fits properly within the 
ISO 25000 SQuaRE series of standards. 

The standard ISO/IEC 25030 is the only ISO standard dedicated to specifying the system/software quality 
requirements, however, in its actual version the standard does not fulfill its main objective, as there is no process 
or method available to the readers allowing them to effectively identify and define quality requirements in real 



K. Mou Kui et al. 
 

 
114 

projects. 
The methodology used in this research is built of the following steps: 
1) First round of analysis based only on the standard ISO 25030: 
a) Identification of the elements to be preserved, reformulated, added or removed. 
b) Provide for each of the elements found a justification and an explanation of the change to be made. 
2) Second round of analysis taking into account interrelations with other standards of the 25000 series: 
a) Analysis the other standards and identification the points of convergence with ISO 25030 
b) Analysis of the application and applicability of these standards 
c) Refine the results of the first round of ISO 25030 analysis. 
3) Development of an ISO 25030-dedicated and precise process applying other relevant ISO 25000 series 

standards that a software engineer can use in order to specify the software quality requirements of a product. 
4) Review and propose a new structure of ISO/IEC 25030 standard. 
5) Propose a new version of the standard ISO/IEC 25030 document. 
At the same time, the modified version of the standard should still fit into ISO 25000 SQuaRE series being 

also elaborated enough to be applicable in different software projects. Finally, the process of specifying system/ 
software quality requirements should meet the needs of all involved stakeholders. 

3. Proposed Modifications 
This section presents the analysis of the standard and the resulting proposed modifications, where each modif- 
ication is matched with the corresponding part in the current standard. 

It is also important to clarify that this article discusses only the content of the modifications to relevant 
sections of the ISO 25030 standard, not their linguistic form (the language of ISO standards is specific and does 
not make a part of the presented research). 

3.1. Structure of the Standard 
The actual structure of the standard lacks a subclause that describes basic concepts used in quality requirements 
definition knowledge area and the clause dedicated to the process for identifying and defining quality requir- 
ements. 

The most notable changes in the structure of the standard would be: 
 The addition of several subclauses in Clause 5 “Fundamental concepts for quality requirements”. As the 

result this clause should provide general but complete set of concepts and/or references applicable in system/ 
software quality requirements definition and quality measurement knowledge area. It should enable the 
readers unfamiliar with the subject of software quality to better understand the relationship between system/ 
software quality and the identification and definition of quality requirements. 

 The addition of a separate clause presenting the process of specifying quality requirements. 
See Section 5 for the proposed structure of the modified version of the standard. 

3.2. Modifications of Clause 5 Fundamental Concepts for Quality Requirements 
The following sections contain the additions or modifications of the content of the clause with only some effort 
of keeping the specificity of ISO language and terms. If the proposed recommendations are accepted by ISO/ 
IEC JTC1 SC7, their language will be revised by the ISO editors before implementation. 

3.2.1. New Subclause in Clause 5—Software Quality Engineer 
It is recommended that the standard define the role of software quality engineer and the expertise he/she should 
have in order to correctly conduct the specification of software quality requirements. The proposed new subcl- 
ause “Software quality engineer” describes the role of the software quality engineer and its (role’s) importance 
in the specification of software quality requirements.  

Proposed new text 
The full process of creating a system or a software product requires the intervention of several different 

specialists, like business analysts, architects, developers or testers. The process of engineering the quality into 
this product requires a singular role, a software quality engineer. The role of the software quality engineer is 



K. Mou Kui et al. 
 

 
115 

crucial to achieving the level of quality of the final product specified in the contract with the customer.  
Considering that the software quality engineer should be effective throughout the whole product development 

cycle, he/she should have the expertise allowing for participation in all relevant activities of the cycle (like 
analysis, design, development and testing). 

In order to make this task less complex, it may be useful to separate the required expertise into two areas: 
specifying system/software quality requirements and the implementation of these requirements. 

The first area would require a specialist who should be responsible for identifying and defining the customer’s 
needs and translating them into precise and doable system/software quality requirements. The responsibility of 
such a specialist would also cover negotiating quality-related parts of contracts and the analysis and design of 
system/software quality requirements. 

The second area would cover: 
 translating system/software quality requirements into engineering “to-dos”, an equivalent of system/ 

software requirements specification and communicating them to the development team, 
 cooperating with developers in order to facilitate the application of required quality-related engineering 

activities, and  
 cooperating with testers in verifying (measuring and evaluating) the actual level of achieved quality against 

the earlier defined requirements. 
Considering the fact that the specialist responsible for this area should be able to collaborate with the 

developers and the testers, it would be preferable that he/she be sufficiently familiar with development and test 
techniques and technologies. 

3.2.2. Modifications to Subclause 5.2—Stakeholders and Stakeholder Requirements 
The proposed new subclause “Categories of stakeholders” in Subclause 5.2 “Stakeholders and stakeholder 
requirements” explains the importance of the categorization of stakeholders in the specification of quality 
requirements. Such a clause would help the quality engineer identify more easily the key persons of the project 
and get them involved in the process of specifying quality requirements. 

Proposed new text 
Considering the stakeholders of a project, it may be useful to categorize them to help the quality engineer 

identify more easily the key persons of the project, their influences on it or their specific interests in it. 
One possible categorization would be to define two big categories of stakeholders: customer and supplier. 
The first category (customer) can be decomposed into three sub-categories as defined in Clause 3.6 of ISO 

25010. 
The second category represents the entire development team. The quality engineer should work closely with 

its major stakeholder subcategories in each of the stages of the product development process (like analyst, 
architect, developer and tester). 

The reason for such additional categorization comes from the fact that even within the development team the 
internal subcategories of stakeholders may have different objectives and views on the developed product. 

3.2.3. Modifications to Subclause 5.4—Software Quality Model 
The standard shall not only explicitly state the importance of using the models defined in the standards ISO/IEC 
25010 and ISO/IEC 25020 [4] in the process of system/specifying quality requirements, but, more importantly, 
it should demonstrate how these models can be used as part of the process. 

Proposed new text 
The quality of a system or software is the result of the quality of its elements and their interaction. This 

International Standard focus on the quality of both the software and the system. System/software quality is the 
capability of the product to satisfy stated and implied needs when used under specified conditions. 

The system/software product quality model provided in ISO/IEC 25010 defines the characteristics and the 
sub-characteristics, which “cover all quality aspects of interest for most system/software products and as such 
can be used as a checklist for ensuring a complete coverage of quality”. (ISO/IEC 25010). 

The quality model defines three different views of quality: 
 System/software quality in use. 
 External/dynamic system/software quality. 
 Internal/static system/software quality. 



K. Mou Kui et al. 
 

 
116 

The quality in use view is related to the application of the system/software in its operational environment for 
carrying out specific tasks by specific users. External/dynamic quality provides a black box view of the system/ 
software and addresses properties related to its execution on computer hardware and applied operating system. 
Internal/static quality provides a white box view of system/software and addresses its properties that typically 
are available during the development. 

Note: See ISO/IEC 25010 [3] for more information about the quality models. 
The quality model serves as a framework to ensure that all aspects of quality are considered from the internal/ 

static, external/dynamic, and quality in use points of view. 
The quality characteristics and sub-characteristics defined in the ISO 25010 quality model should be used as 

the basic tool to specify system/software quality. Once the quality engineer has specified and validated with the 
customer all the quality requirements, he/she may produce the personalized quality model of the product. 

Note: Personalized quality model contains only those quality characteristics and sub-characteristics that apply 
to a given system/software product for its intended context of use. 

3.2.4. Modifications to Subclause 5.6—Software Quality Measurement Model 
The small modification to subclause 5.6 has as an objective to indicate to the user the basic source of measu- 
rement-related information within ISO 25000 series. 

Proposed new text 
The standard ISO/IEC 25020 represents the general guide of the measurement models associated to the 

quality models defined in the standard ISO/IEC 25010. 
Note: See ISO/IEC 25020 for more information about the guide of the measurement models.  

3.2.5. Modifications to Subclause 5.9—Quality Requirements Life Cycle Model 
The proposed modifications to Subclause 5.9 Quality requirements life cycle model, have as an objective to 
explain in which phase of the life cycle of system/software development the specification of quality requir- 
ements takes place and describes the different types of quality requirements that are relevant to each phase. 

Proposed new text 
Quality in use requirements are typically derived from stakeholder requirements such as 1) business requir- 

ements (company policy, competitors, etc.); 2) functional requirements; and 3) application domain specific 
requirements. 

Quality in use requirements are normally used for system/software validation (is the software fit for its 
intended purpose?). Typically quality in use requirements are obtained in the first phase of analysis (requir- 
ements gathering and analysis) of the life cycle of the system/software product. The specification process 
presented in clause “N” provides the steps to follow in order to obtain the system/software quality requirements 
during this phase. 

Note: The process defined in clause “N” helps obtain a majority of quality in use requirements, some of the 
external requirements and sometimes (rarely) internal requirements.  

Note 2: As the recommended changes to the original text of ISO 25030 may influence its structure, “N” 
indicates the number of the new clause without imposing its physical position within this structure. 

External/dynamic system/software quality requirements are typically derived from a number of sources 
including 1) stakeholder requirements; 2) legal requirements; 3) standards and guidelines for the relevant 
application; 4) quality in use requirements; 5) functional requirements; 6) application domain specific require- 
ments; and 7) security requirements, which may be derived from risk analysis. External/dynamic system/ 
software quality requirements are used for software validation and verification (is the software built according to 
specifications?). External/dynamic system/software quality requirements should be completely specified in the 
design phase, where the architecture of the system is obtained. The collaboration with the architect allows the 
quality engineer to check if the external/dynamic requirements obtained to support quality in userequirements 
are feasible and complete. In practice, quality in use requirements do not translate semi-automatically to 
external/dynamic quality requirements through the shared model (like it is in case of external and internal 
quality) but rather through the analysis of technical, technological or budgetary constraints. Additionally, the 
architecture of the system obtained in this phase may demonstrate that some external/dynamic requirements are 
incomplete and should be reviewed with the customer. Thus, at the end of this phase, the quality engineer should 
obtain a comprehensive list of external/dynamic system/software quality requirements that are feasible and 



K. Mou Kui et al. 
 

 
117 

complete. 
Internal/static system/software quality requirements are typically derived from a number of sources including 

1) external/dynamic system/software quality requirements; 2) company policy; 3) development policy and 
limitations; 4) best practice guidelines and 5) rarely from quality in use requirements. Internal/static system/ 
software quality requirements are normally used for quality monitoring and control during development. These 
requirements are more easily obtained from external/dynamic quality requirements because they share the same 
quality of models (product quality model). However, they may still remain incomplete and it is only at the 
beginning of the implementation phase that the software quality engineer in collaboration with the developer can 
verify and complete the list of internal/static requirements that are feasible. 

3.3. New Process to Specify Software Quality Requirements 
This section presents the dedicated process of specifying quality requirements intended to be followed by the 
software quality engineer. Following the steps (see Figure 1) of this process, the quality engineer will be able to 
specify a complete set of quality requirements beginning with the quality needs of the stakeholders. 

The process to specify software quality requirements includes 3 phases: 
1) Phase 1—Define the project context. 
During this phase, the software quality engineer should identify the characteristics and constraints related to 

the project. The domain of the project will have a considerable influence on its characteristics. For example, the  
 

 
Figure 1. Process of specifying software quality requirements. 



K. Mou Kui et al. 
 

 
118 

security will represent a main aspect of the project for life-critical systems. In addition, the software engineer 
shall identify the constraints of the project as the time or the budget allocated to it. Finally, he should identify all 
the stakeholders involved in the project.  

2) Phase 2—Specify software quality requirements for each stakeholder. 
Once the general context of the project is identified, the software engineer shall iterate with each identified 

stakeholder in order to specify his software quality requirements. As a result of this phase, he should be able to 
specify an exhaustive list of quality requirements related to each stakeholder. 

3) Phase 3—Integrate the complete list of software quality requirements. 
During this phase, the software engineer should resolve the conflicts that may exist among the different 

stakeholders’ quality requirements. After that, he should set the priority of the resulting list of quality requir- 
ements. Finally, this list should be validated with the stakeholders of the project. As a final result, the software 
quality engineer should produce a complete set of software quality requirements and a personalized quality 
model. 

Note: It is possible that the software engineer goes back to the previous phase in order to resolve some 
conflicts between quality requirements. 

In the process described above and discussed more in detail further in the article, the software quality 
engineer should use the models and tools provided by the standards ISO/IEC 25010 and ISO/IEC 25020 in order 
to execute its different steps of this process and specify the software quality requirements. For each step, the 
input and the output are clearly specified and the characteristics of each step of this process are specified in more 
details. 

Note: This process is proposed to be used to specify the quality in use, external and internal software quality 
requirements. As for the data quality requirements, the software quality engineer should check the standards 
ISO/IEC 25012 [5] and ISO/IEC 25024 [6]. 

Phase 1—Define the project context (see Figure 2) 
Step 1.1 List the general assumptions of the project 
Input: None. 
Output: General assumptions. 
The first step of this phase is to consider the following assumptions in the specific context of the project: 
 The customer is a specialist in his area of business. 
 The customer may not be familiar with the concepts of software quality. 
 The software quality engineer is specialized in the specification of software quality requirements and may 

not be expert in the area of business of the customer. 
 Any other necessary assumption from the perspective of software quality that is relevant to the project. 

The software quality engineer should consider all the above factors before starting the process and should 
adapt to them in order to adequately specify the right software quality requirements. The process of specifying 
software quality requirements is based on the determination of the quality needs that support the business needs 
of the different stakeholders identified. The better the software quality engineer elicit the necessary assumptions 

 

 
Figure 2. Process to define the project context 



K. Mou Kui et al. 
 

 
119 

of the project the better he can collaborate with the customer and define the quality needs of the different 
stakeholders. 

Step 1.2 Study the domain of the project 
Input: General assumptions. 
Output: Characteristics of the project domain. 
This step is essentially used to obtain a better understanding of the project domain and the general context in 

which the software product will have to be deployed. It allows the software quality engineer to gain more 
expertise in the project domain and to better understand the customer’s business needs. In addition, this step is 
essential to determine the feasibility of the various aspects of the project as it gives a clear picture of the 
resources (financial, capital and technology infrastructure) and skills (staff and knowledge) necessary to achieve 
the software quality required by the customer. 

The execution of this step will allow the engineer to better understand the different aspects of the area in 
which the project will occur and to facilitate the communication with the client and the different stakeholders, 
which is essential to specify the software quality requirements. 

In order to get a proper comprehension of the domain, the engineer should use the international standards that 
exist in that specific domain. 

Step 1.3 Specify the constraints of the project 
Input: Characteristics of the project domain. 
Output: Constraints. 
During this step, the software quality engineer should use his understanding of the project domain in order to 

specify the constraints of the project. This step should involve all the relevant stakeholders of the project. 
This step is used to define three main types of constraints: 
 Budget constraints: budget constraints will depend essentially on the financial resources allocated for the 

purpose of the quality of the software product. 
 Technical constraints: the technical constraints are initially stated by the development team. Moreover, in the 

case where the customer has to perform the software maintenance after its deployment, it is important to 
involve his technical team in this step. In addition, the technical infrastructure of the customer’s environment 
will necessarily impose some technical limits to the development team. 

 Organizational constraints: these constraints are defined primarily by discussing with the client. He provides 
the information on the structure of his company and the various interactions that exist within the company. 

Finally, the software quality engineer may identify other types of constraints that are relevant to a specific 
project with the help of the customer or the development team. The complete list of constraints is decisive to 
evaluate the feasibility of software quality requirements specified by the engineer. The engineer should use the 
data that is available from previous projects so that he does not miss a crucial point at this stage. 

Step 1.4 List all the stakeholders 
Input: Characteristics of the project domain, constraints. 
Output: List of stakeholders. 
The final step of the first phase of the process will be useful to establish the list of the stakeholders of the 

project. Once the software quality engineer has a better understanding of the project and its constraints, it is very 
important to specify all stakeholders from both sides: the customer and the supplier. In fact, if the engineer 
leaves any relevant stakeholder unidentified, it may negatively impact the quality of the final software product, 
which in turn may eventually not meet all the quality needs of the customer. The engineer should conduct 
interviews with the different stakeholders that he identifies to get a better idea of their involvement in the project 
and to ensure that he does not miss a category of stakeholders. 

Phase 2—Specify software quality requirements of each stakeholder (see Figure 3) 
The purpose of this phase is to specify the software quality requirements of each stakeholder identified in the 

previous phase. The first steps in this phase will extract the quality needs of each stakeholder. Subsequently, 
these needs will be used in the process of specifying software quality requirements and the measures. Finally, all 
the requirements of each stakeholder will be analyzed to resolve conflicts, to perform a risk analysis and to 
validate them with each stakeholder. 

Therefore, the steps of this phase (2.1 to 2.7) shall be performed individually for each stakeholder determined 
in the previous phase of the process. 



K. Mou Kui et al. 
 

 
120 

 
Figure 3. Process to specify software quality requirements for each stakeholder. 

 
Step 2.1 Determine the context of use of the software product 
Input: List of stakeholders, Characteristics of the project domain. 
Output: Context of use. 
This first step should be executed in collaboration with the stakeholder. To properly execute this step, the 

software quality engineer should determine: 
 The goal that the user wants to achieve through the use of this software. 
 The tasks that the user will perform in order to achieve his goal. 
 The environment of use: technical, physical and organizational. 

The context of use of the stakeholder can help the software quality engineer to determine his quality needs 
later in the process. In order to define the context of use, the software quality engineer may use different 
techniques that allow him to obtain this information, for example: 
 survey; 
 observation; 
 interview; 
 any other required tools. 

It is possible to combine several techniques in order to obtain more information and have a stronger basis for 



K. Mou Kui et al. 
 

 
121 

specifying software quality requirements. 
Finally, the software quality engineer may use standard ISO/IEC 25063 [7] to document the context of use of 

each stakeholder to ensure the traceability and to adopt a common industrial format. 
Step 2.2 Extract quality needs 
Input: Context of use. 
Output: Quality needs. 
The software quality engineer should use the information obtained from the context of use for each stakeh- 

older in order to identify his quality needs. The stakeholder’s context of use should provide a clear idea of his 
software quality needs and also limit the scope of these needs. Therefore, in collaboration with the stakeholder, 
the engineer should list all his quality needs and validate them with the stakeholder to ensure that they represent 
the real needs.  

The engineer shall document all the software quality needs in a format that allows him to easily trace them to 
the different stakeholders. 

Step 2.3 Associate each quality need to the business need it supports 
Input: Quality needs. 
Output: Quality needs associated with their respective business needs. 
This step is not necessarily decisive for the conduct of the rest of the process but it is fundamental in order to 

justify the software quality requirements that will be identified. A direct relationship between each quality need 
and its business need allows the software quality engineer to justify its relative importance. Once this step is 
completed, the software quality engineer should be able to initiate the next step, which will allow him to specify 
the software quality requirements for each stakeholder using the earlier defined software quality needs. 

Step 2.4 Specify and decompose software quality requirements 
Input: Quality needs associated with their respective business needs, Context of use. 
Output: Quality in use, external and internal software quality requirements. 
This part of the process is in itself a sub-process that will allow the software quality engineer to specify 

software quality requirements based on software quality needs of the stakeholder, starting with the quality in use 
requirements. In addition, the engineer should specify the measures for each identified software quality requir- 
ement (Figure 4). 

Note: This process is executed for each quality need of the stakeholder 
Step 2.4.1 Define quality in use characteristics  
Input: Quality need, Context of use, Quality in use model ISO/IEC 25010. 
 

 
Figure 4. Process to specify and decompose software quality requirements. 



K. Mou Kui et al. 
 

 
122 

Output: Quality in use characteristics. 
During this step, the software quality engineer should consider the identified software quality need and the 

context of use of the stakeholder. In this step the engineer should use the quality in use model defined in the 
standard ISO/IEC 25010 to identify the characteristics that can meet the quality need of the stakeholder. 

These quality characteristics represent the basis to specify the measures that will be used. The standard ISO/ 
IEC 25010 provides some recommendations and examples of the use of the quality model. 

Step 2.4.2 Specify quality in use measures using ISO/IEC 25022 [8] 
Input: Quality in use characteristics. 
Output: Quality in use requirements and the measures. 
To perform this step, the software quality engineer should consider all the quality characteristics that he 

identified in the previous step. Each characteristic is built upon measure(s) defined in the standard ISO/IEC 
25022 and the engineer should review all the characteristics and assign the measures that correspond to them. 

As indicated in the standard ISO/IEC 25040 [9], the software quality engineer may specify the criteria for 
validating the software quality requirement if he has in his possession the necessary information to do so. 

Step 2.4.3 Determine the feasibility of the quality in use requirements  
Input: Quality in use requirement and the measures. 
Output: Quality in use requirement doable. 
This step allows for checking whether the quality in use requirement is feasible or not. The feasibility should 

be determined in collaboration with the technical team of the provider because the software quality engineer 
may not have all the necessary knowledge to make such a decision. The quality engineer should consider the 
advice of the development team in order to make his decision on the feasibility of the software quality requir- 
ement. Every feasible requirement should be used in the next step. 

Step 2.4.4 Define external/dynamic quality characteristics  
Input: Quality need, Context of use, Product quality model ISO/IEC 25010, feasible Quality in use requir- 

ements. 
Output: External quality characteristics. 
During this step, the software quality engineer should consider the software quality needs, the context of use 

of the stakeholder and the quality in use requirements he specified in the previous step. The engineer should use 
the product quality model defined in the standard ISO/IEC 25010 to identify the external (or dynamic) charact- 
eristics that meet the quality needs of the stakeholder. In addition, the engineer should verify that these 
characteristics allow achieving the quality in use characteristic specified earlier. 

These external quality characteristics are the basis to specify the measures that will be used for quality 
verification purposes. The standard ISO/IEC 25010 provides some recommendations and examples of the use of 
the quality model. The engineer should be able to specify some of the external quality characteristics at this 
phase. The rest of the characteristics could be identified during the design of the software product. 

Step 2.4.5 Specify external/dynamic quality measures using ISO/IEC 25023  
Input: External quality characteristics 
Output: External quality requirement and the measures  
To perform this step, the software quality engineer should consider all the external quality characteristics that 

he identified in the previous step. Each characteristic corresponds to set of measures defined in the standard 
ISO/IEC 25023 [10]. The quality engineer should review all the characteristics and assign the measures that 
correspond to them. 

As indicated in the standard ISO/IEC 25040, the software quality engineer may specify the criteria for 
validating the software quality requirement if he has in his possession the necessary information to do so. 

Step 2.4.6 Determine the feasibility of the external/dynamic quality requirements  
Input: External quality requirement  
Output: External quality requirement feasible 
This step allows the quality engineer to check whether the external quality requirement is feasible or not. The 

feasibility should be determined in collaboration with the technical team of the provider because the software 
quality engineer may not have all the necessary knowledge to make such a decision. The quality engineer should 
consider the advice of the development team in order to make his decision on the feasibility of the software 
quality requirement. Every feasible requirement should be used in the next step. 

Step 2.4.7 Define internal/static quality characteristics  



K. Mou Kui et al. 
 

 
123 

Input: Quality model 25010, External quality requirement associated with the measures 
Output: Internal quality requirement 
During this step, the software quality engineer should consider the external quality requirement he specified 

in the previous step. The quality engineer should use the product quality model defined in the standard ISO/IEC 
25010 to identify the internal (or static) characteristics that allow achieving the external quality characteristics 
specified earlier.  

These internal quality characteristics are the basis to specify the measures that will be used. The software 
quality engineer should consider all the internal quality characteristics of the model. The standard ISO/IEC 
25010 provides some recommendations and examples of the use of the quality model. 

The engineer should be able to specify a few of the internal quality characteristics in this step. He should be 
able to specify them completely during the phase of the construction of the software product.  

Step 2.4.8 Specify internal/static quality measures using ISO/IEC 25023  
Input: Internal quality characteristics  
Output: Internal quality requirement and the measures 
In order to perform this step, the software quality engineer should consider all the internal/static quality 

characteristics that he identified in the previous step. Each characteristic corresponds to a set of measures 
defined in the standard ISO/IEC 25023. The engineer should review all the characteristics and assign the 
measures that correspond to them. 

As indicated in the standard ISO/IEC 25040, the software quality engineer may specify the criteria for 
validating the software quality requirement if he has in his possession the necessary information to do so. 

Step 2.4.9 Determine the feasibility of the internal quality requirement  
Input: Internal quality requirement and the measures 
Output: Internal quality requirement doable 
This step allows the quality engineer to check whether the internal quality requirement is feasible or not. The 

feasibility should be determined in collaboration with the technical team of the provider because the software 
quality engineer may not have all the necessary knowledge to make such a decision. The quality engineer should 
consider the advice of the development team in order to make his decision on the feasibility of the software 
quality requirement. 

Step 2.5 Requirements conflicts resolution 
Input: Quality in use, external and internal software quality requirements 
Output: Software quality requirements with no conflicts 
Once the software quality engineer has finished specifying the software quality requirements of a given 

stakeholder, he should resolve the conflicts that may exist among these different requirements. For example, 
there may be a requirement that specifies some degree of performance that is in conflict with a requirement of 
reliability. 

In such cases the engineer should work closely with the stakeholder to find the resolution of the conflict. The 
engineer should also consider the conflicts that may exist among the requirements at the technical level. In those 
cases, to find the resolution of the conflict the engineer should collaborate with the development team. 

Once this step is completed, the software quality engineer should produce a list of software quality requir- 
ements without conflicts for a given stakeholder. This step should be repeated for every identified stakeholder. 

Step 2.6 Risk analysis of the software quality requirements 
Input: Software quality requirements with no conflicts 
Output: A risk analysis of every software quality requirement 
For this step, the software quality engineer should perform a risk analysis of each software quality requir- 

ement. This task requires close co-operation with the stakeholder in order to identify business risks that are 
specific to each requirement of software quality. The objective is to determine the possible consequences if a 
given quality requirement is ignored or, what will be the cost of missing quality. 

In addition, the engineer should collaborate with the supplier to specify the technical risks that are specific to 
all previously identified software quality requirements. 

This risk analysis will be essential to assign the priorities to the requirements later in the process. 
Note: It is possible to return to the previous step 2.5 to resolve some conflicts between software quality 

requirements. 
Step 2.7 Verification and validation of software quality requirements with the stakeholder 



K. Mou Kui et al. 
 

 
124 

Input: Software quality requirements with no conflicts, a risk analysis of every software quality requirement 
Output: Quality requirements verified and validated with the stakeholder 
This is the final step of this phase that provides a list of software quality requirements verified and validated 

by the stakeholder. At the end of this process, the software quality engineer should produce an accepted list of 
software quality requirements that meet the identified needs of the stakeholder (Figure 5). 

Note: It is possible to return to the previous step (2.6) to review the risk analysis of some requirements. It is 
also possible to go back to step 2.4 to review a given software quality requirement in particular. 

Phase 3—Integrate the complete list of software quality requirements 
This phase is the last of the proposed new process and is performed once the software quality engineer has 

finished specifying all the software quality requirements of all stakeholders. This phase should help: 
 globally resolve the conflicts among all the software quality requirements; 
 globally prioritize the full set of identified software quality requirements; 
 globally verify and validate the complete list of software quality requirements with all the stakeholders; 
 produce the personalized software quality model of the project. 

Step 3.1 Conflict resolution of all software quality requirements 
Input: The complete set of software quality requirements 
Output: Software quality requirements with no conflicts 
During this step, the software quality engineer should consider all the software quality requirements of all the 

stakeholders he identified during the process. In order to complete this step, the engineer should work closely 
with the customer and the development team. To solve the possible conflicts the engineer may need the help 
from the customer who ultimately can decide what are the most important requirements for him, which may 
eliminate a significant number of conflicts. Besides that, other conflicts may affect the technical feasibility of 
the software quality requirements, what may require the collaboration with the software supplier team in order to 
find the right solutions to these conflicts. 

Step 3.2 Set the priority of each software quality requirement 
Input: Software quality requirements with no conflicts 
Output: Software quality requirements with their respective priorities 
In this step the software quality engineer should assign a priority to each software quality requirement that he 

specified. These priorities will be crucial for the development team in course of the project, to, for instance, 
adjust the implementation plan of the various requirements or correctly allocate the necessary resources to 
achieve their goals. 

The software quality engineer should work with the customer and the development team to prioritize software 
quality requirements what would be helpful to reduce and control the risks that could affect the quality of the 
final software product.  

 

 
Figure 5. Process to integrate the complete list of software quality requirements. 



K. Mou Kui et al. 
 

 
125 

Note: It is possible to return to the previous step (3.1) to resolve some conflicts if the software quality 
engineer thinks that this is needed. 

Step 3.3 Verification and validation of software quality requirements 
Input: Software quality requirements with their respective priorities 
Output: Final set of software quality requirements + Personalized quality model 
This is the final step of the process. It allows the software quality engineer to verify and validate the final set 

of software quality requirements specified in the process. At the end of this process, the software quality 
engineer should produce a list of software quality requirements that meet all identified quality needs of the 
different stakeholders he has identified. He should also be able to validate these requirements with all stake- 
holders and with the customer in particular. This validation should review all of the requirements also con- 
sidering the priority that has been assigned to each requirement.  

Note: Refer to the section 6.2 on the life cycle that explains the evolution of software quality requirements. 
The software quality engineer may use the list of software quality requirements validated with the customer to 

produce the project-personalized quality model of the project. This model contains only characteristics, sub-  
characteristics and measures applicable in the given project and allows the engineer to quickly verify the charac- 
teristics that should be present in the final product of the project. This model may evolve during the project as 
the result of the evolution of software quality requirements. 

Note: It is possible to return to the previous step (3.2) to review the priorities of the software quality require- 
ments. It is also possible to return to the Phase 2 to review some software quality requirements. 

4. Conclusion and the Future Work 
In this paper, the authors analyzed the actual version of the standard ISO/IEC 25030 in order to propose 
modifications to the new version (actually under revision in ISO/IEC JTC1 SC7) of the standard that should 
make it more applicable in the context of the IT industry. These modifications, if accepted by ISO/IEC JTC1 
SC7, could allow for restructuring of the standard so it becomes understandable by the majority of the possible 
stakeholders involved in the development cycle of a system/software product. 

This revision aims at enhancing quality requirements division of SQuaRE series aligned with the other 
divisions, and providing a more practical guide for definition and use of quality requirements. Major proposed 
modifications are: 
 Extension of the view from software to system,  
 Enhancement and deployment of quality requirements, and  
 Clarification of quality requirements definition steps: 
 Stating them exhaustively by using the quality models as a checklist, 
 Specifying them with the quality measures with criteria for evaluation. 

The main proposed addition to the new version of the standard is the dedicated process for specifying the 
system/software quality requirements and the details describing the steps of each phase of this process. 

For future research, the reader could analyze the process for specifying software quality requirements as 
proposed by the authors. In addition, it would be interesting to consider using the standard ISO/IEC 25012 that 
describes a model for data quality. Indeed, the quality of data used in a system/software is crucial to its operation. 
Besides that, the standard ISO/IEC 25024 provides a list of measures that can be used with the data quality 
model. 

Finally, once the process proposed by the authors is analyzed and improved it should be applied in different 
projects to prove its reliability and that it is useful to specify the right software quality requirements correctly. 

5. Proposed Structure of the Modified Version of ISO/IEC25030 
The proposed changes and modifications to the table of content are underlined: 

Foreword 
Introduction 
1 Scope 
2 Conformance 
3 Normative references 
4 Terms and definitions 



K. Mou Kui et al. 
 

 
126 

5 Fundamental concepts for quality requirements 
5.1 Software quality engineer 
5.2 Software and system 
5.3 Stakeholders and stakeholder requirements 
5.3.1 Categories of stakeholders 
5.3.2 Stakeholder requirements 
5.4 Stakeholder requirements and system requirements 
5.5 Software quality model 
5.6 Software properties 
5.7 Software quality measurement model 
5.8 Software quality requirement 
5.9 System requirements categorization 
5.10 Quality requirements life cycle model 
6 Process of specifying software quality requirements 
6.1 Defining the project context 
6.1.1 List the general assumptions of the project 
6.1.2 Study the domain of the project 
6.1.3 Specify the constraints of the project 
6.1.4 List all the stakeholders 
6.2 Specifying quality requirements of each stakeholder 
6.2.1 Determine the context of use of the software product 
6.2.2 Extract quality needs 
6.2.3 Associate each quality need to the business need it supports 
6.2.4 Specify and decompose software quality requirements 
6.2.5 Conflict resolution for requirements 
6.2.6 Risk analysis of the software quality requirements 
6.2.7 Verification and validation of software quality requirements with the stakeholder 
6.3 Complete specification of software quality requirements 
6.3.1 Conflict resolution of all software quality requirements 
6.3.2 Set the priority of each software quality requirement 
6.3.3 Verification and validation of software quality requirements 
7 Requirements for quality requirements 
7.1 General requirements and assumptions 
7.2 Stakeholder requirements 
7.2.1 System boundaries 
7.2.2 Stakeholder quality requirements 
7.2.3 Validation of stakeholder quality requirements 
7.3 Software requirements 
7.3.1 Software boundaries 
7.3.2 Software quality requirements 
7.3.3 Verification of software quality requirements 
ANNEX A: Relationship to ISO/IEC 15288 (System lifecycle process) 
ANNEX B: Relationship to ISO/IEC/IEEE 29148 (Requirements engineering process) 
ANNEX C: Recommended process for quality requirements 

References 
[1] ISO/IEC 25000:2005, Software Engineering Software product Quality Requirements and Evaluation (SQuaRE). Guide 

to SQuaRE. 
[2] ISO/IEC 25030:2005, Software Engineering Software Quality Requirements and Evaluation (SQuaRE). Quality 

Requirements.  
[3] ISO/IEC 25010 (New), Software Engineering: Software product Quality Requirements and Evaluation (SQuaRE) 

Quality Model. 
[4] ISO/IEC 25020 (New) Software Engineering: Software Product Quality Requirements and Evaluation (SQuaRE) 



K. Mou Kui et al. 
 

 
127 

Measurement Reference Model and Guide. 
[5] ISO/IEC 25012 Software Engineering: Software Product Quality Requirements and Evaluation (SQuaRE)—Data 

quality model. 
[6] ISO/IEC 25024 (New) Software Engineering: Software product Quality Requirements and Evaluation (SQuaRE) 

Measurement of quality in use. 
[7] ISO/IEC 25063 Systems and Software Engineering: Systems and Software Product Quality Requirements and 

Evaluation (SQuaRE) Common Industry Format (CIF) for usability: Context of use description. 
[8] ISO/IEC 25022 (New) Software Engineering: Software Product Quality Requirements and Evaluation (SQuaRE) 

Measurement of Internal Quality. 
[9] ISO/IEC 25040 Systems and Software Engineering: Systems and Software Product Quality Requirements and 

Evaluation (SQuaRE) Evaluation Process. 
[10] ISO/IEC 25023 (New) Software Engineering: Software Product Quality Requirements and Evaluation (SQuaRE) 

Measurement of External Quality. 


	The Analysis and Proposed Modifications to ISO/IEC 25030—Software Engineering— Software Quality Requirements and Evaluation—Quality Requirements
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	3. Proposed Modifications
	3.1. Structure of the Standard
	3.2. Modifications of Clause 5 Fundamental Concepts for Quality Requirements
	3.2.1. New Subclause in Clause 5—Software Quality Engineer
	3.2.2. Modifications to Subclause 5.2—Stakeholders and Stakeholder Requirements
	3.2.3. Modifications to Subclause 5.4—Software Quality Model
	3.2.4. Modifications to Subclause 5.6—Software Quality Measurement Model
	3.2.5. Modifications to Subclause 5.9—Quality Requirements Life Cycle Model

	3.3. New Process to Specify Software Quality Requirements

	4. Conclusion and the Future Work
	5. Proposed Structure of the Modified Version of ISO/IEC25030
	References

