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Abstract 
The larger the size of the data, structured or unstructured, the harder to understand and make use 
of it. One of the fundamentals to machine learning is feature selection. Feature selection, by re- 
ducing the number of irrelevant/redundant features, dramatically reduces the run time of a 
learning algorithm and leads to a more general concept. In this paper, realization of feature selec- 
tion through a neural network based algorithm, with the aid of a topology optimizer genetic algo- 
rithm, is investigated. We have utilized NeuroEvolution of Augmenting Topologies (NEAT) to se- 
lect a subset of features with the most relevant connection to the target concept. Discovery and 
improvement of solutions are two main goals of machine learning, however, the accuracy of these 
varies depends on dimensions of problem space. Although feature selection methods can help to 
improve this accuracy, complexity of problem can also affect their performance. Artificialneural 
networks are proven effective in feature elimination, but as a consequence of fixed topology of 
most neural networks, it loses accuracy when the number of local minimas is considerable in the 
problem. To minimize this drawback, topology of neural network should be flexible and it should 
be able to avoid local minimas especially when a feature is removed. In this work, the power of 
feature selection through NEAT method is demonstrated. When compared to the evolution of 
networks with fixed structure, NEAT discovers significantly more sophisticated strategies. The 
results show NEAT can provide better accuracy compared to conventional Multi-Layer Perceptron 
and leads to improved feature selection. 
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1. Introduction 
Feature selection (also known as subset selection) is a process commonly used in machine learning, wherein a 
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subset of the features available from the data is selected for application of a learning algorithm. The best subset 
contains the least number of dimensions that most contribute to accuracy; the remaining and unimportant di- 
mensions are disregarded. This is an important stage of pre-processing and is one of the two ways of avoiding 
the curse of dimensionality (the other one is feature extraction). From one aspect of view, feature selection me- 
thod is categorized as complete, heuristic, and random methods (Figure 1). The close to optimal space search 
and the ease of integration with other methods, have made heuristic methods desirable. From a different point of 
view, feature selection is categorized as node pruning and statistical pattern recognition (SPR) (Figure 2). If 
these two categorizations are considered together, combination of Artificial Neural Network (ANN) and back- 
ward feature selection could be considered as a powerful solution. However, generally ANN has a major disad- 
vantage which is stopping at the local minima instead of global minimum. Especially when backward feature 
selection is used, more local minima is added when removing features which leads to less accuracy. To solve 
this problem and avoid local minima ANN topology can be improved using complexification [1]. 

Complexification in evolutionary computation (EC) refers to expanding the dimensionality of the search 
space while preserving the values of the majority of dimensions. In other words, complexification elaborates on 
the existing strategy by adding new structure without changing the existing representation. Thus, the strategy 
does not only become different, but the number of possible responses to situations can generate increases. 
 

 
Figure 1. Summary of feature selection methods [19].                                                        

 

 
Figure 2. A taxonomy of feature selection algorithms [20].                          
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In EC domain of NeuroEvolution (i.e. evolving neural networks), complexification means adding nodes and 
connections to already-functioning neural networks and this is the main idea behind NEAT [2]. NEAT begins by 
evolving networks without any hidden nodes. Over many generations, new hidden nodes and connections are 
added, complexifying the space of potential solutions. In this way, more complex strategies elaborate on simpler 
strategies, focusing search on solutions that are likely to maintain existing capabilities. 

Expanding the length of the size of the genome has been found effective in previous works [3] [4]. NEAT 
advances this idea by making it possible to search a wide range of increasingly complex network topologies si- 
multaneously. This process is based on three technical components. First, it keeps track of which genes match 
up with which others among differently sized genomes throughout evolution. Second part is speciation of the 
population so that solutions of differing complexity can exist independently. The last part is starting the evolu- 
tion with a uniform population of small networks. These components work together in complexify solutions as 
part of the evolutionary process. 

In this paper, the effort was made to evaluate the implementation of NEAT for feature selection applications. 
The arrangement of the rest of the paper is as follows: 

Section two is devoted to the required background, evolutionary neurons and derivation of complexificatio- 
nare discussed as the infrastructures of the NEAT network. Section three discusses the NEAT method and sec- 
tion four presents the feature selection methods used in this paper and the results. Finally, the last section con- 
cludes the paper and talks about the future work. 

2. Background 
In order to get familiar with the concepts of this paper, it is essential to start with a short overview on derivations 
of complexification and continue with NEAT topology and functionality. 

Derivations of Complexification 
Mutation in nature results in optimization of the existing structures and occasionally addition of the genes to the 
new genome which results in function complexification and optimization. In distinct kinds of mutation called 
gene duplication, one or more parental genes are copied into an offspring’s genome at least once. As a result, the 
offspring has duplicated genes pointing to the same proteins. The offspring then has redundant genes expressing 
the same proteins. Gene duplication has been responsible for key innovations in overall body morphology over 
the course of natural evolution [5] [6]. Duplication creates more points at which mutations can occur. Gene dup- 
lication is a possible explanation of how natural evolution indeed expanded the size of genomes throughout 
evolution, and provides inspiration for adding new genes to artificial genomes as well. 

Koza [7] invented a method based on gene duplication in 1995. In his algorithm, the entire function in the 
genetic program can be duplicated due to a single mutation followed by alternation through further mutations. 
For an expanding evolutionary neural network, this process will be full-fledged by adding new neuron and con- 
nections to the network. In order to implement this idea in artificial evolutionary systems, we are faced with two 
major challenges. First, when evolving in evolutionary neural network, different size and shape networks are 
faced; secondly, even the topologies might be different causing lost of information when doing crossover. For 
instance, depending on when a new structure is added, the same gene may exist at different positions, or con- 
versely, different genes may exist at the same position. Thus, artificial crossover may disrupt evolved topologies 
through misalignment. Second, it is hard to find the innovative solution due to the variable-length genomes. Op- 
timizing many genes takes longer than optimizing only a few, meaning that more complex networks may be 
eliminated from the population before they have a sufficient opportunity to be optimized. 

In case of variable-length genomes, there is a natural mechanism for aligning genes with the counterpart dur- 
ing crossover which was addressed by E. coli [8] [9]. In this mechanism, which is called synapsis, a special pro- 
tein called RecA takes a single strand of DNA and aligns it with another strand at genes that express the same 
traits, called homologous genes. Speciation governs innovations in nature. Entries with significantly similar 
gnomes mate since they belong to the same species. If any organism could mate with any other, organisms with 
initially larger, less-fit genomes, would be forced to compete for mates with their simpler, more fit counterparts. 
As a result, the larger, more innovative genomes would fail to produce offspring and disappear from the popula- 
tion. 

In contrast, in a speciated population, organisms with larger genomes compete for mates among their own 
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species instead of with the population at large. That way, organisms that may initially have lower fitness than 
the general population still have a chance to reproduce, giving novel concepts a chance to realize their potential 
without being prematurely eliminated. Because of speciation benefits, a variety of speciation methods have been 
employed in EC [10] [11]. 

It turns out complexification is also possible in evolutionary computation if abstractions of synapsis and 
speciation are made part of the genetic algorithm. The NEAT method is an implementation of this idea: The ge- 
nome is complexified by adding new genes which in turn encode new structure in the phenotype, as in biological 
evolution. Complexification is especially powerful in open-ended domains where the goal is to continually gen- 
erate more sophisticated strategies. 

3. NeuroEvolution of Augmenting Topologies (NEAT) 
In this section, effort was made to address the working scenario of the NEAT. It depicts general description of 
the genetic encoding and the fundamental of NEAT. 

The combination of the usual search for appropriate network weights with complexification of the network 
structure is the two major concepts on which NEAT is based. First of all NEAT method gives us knowledge 
about kind of genetic representation which allows disparate topologies to cross over in a significant way. His- 
torical marking to line up genes with the same origin is used. Also, a way to protect the topological innovation, 
that needs a few generations to optimize, is considered so that the innovation does not vanish from the popula- 
tion prematurely. In this work, each innovation was separated into different species. Also, NEAT provide us with a 
way to minimize the topologies throughout evolution in order to find the most efficient solution. In this paper, 
this goal was achieved by starting from a minimal structure and adding nodes and connections incrementally. 

Genetic Encoding 
Genetic encoding used for NEAT is designed in a way to allow corresponding genes to be easily combined in a 
case when two genes crossover during mating. Genomes are linear representations of network connectivity and 
include the information of the two node genes being connected. Nodegenes, themselves, consist of the list of 
inputs, hidden nodes and possibly connected outputs. Each connection gene represents the in-node, the out-node, 
the weight of the connection, enable width (even if the connection gene does not exist) and innovation number 
which will be discussed later. Mutation in NEAT enables us to change both connection weights and network 
structures. Connection weights mutate (in any system) with any connection (even perturbed) at each generation. 

Structural mutations can be grouped in two as illustrated in Figure 3. Fundamentally each mutation grows the 
genome size by adding genes. In add connection mutation method, a new connection gene is added to connect 
two previously unconnected nodes with a random weight. In add node mutation, the old connection is split and 
the new node replaces the old connection. So the old connection will be disabled and instead the two new con- 
nections will be added to the genome. The weight of the new connection which is connected to the new node is 
initially one and the new connection leading out receives the same weight as the old connection. This method 
minimizes the initial effects of the mutation. The new nonlinearity in the connection changes the function 
slightly, but new nodes can be immediately integrated into the network, as opposed to adding extraneous struc- 
ture that would have to be evolved into the network later. As a conclusion, the network has some time to be op- 
timized through its new structure [12]. 

By applying mutation the genomes in NEAT will grow larger, resulting in genomes of varying size with dif- 
ferent connections at the same positions. Allowing genomes to grow unbounded will result in the most complex 
of the competing convention problem including numerous different topologies and weight combinations. The 
necessity of using NEAT to overcome this problem is going to be explained later on. 

4. NEAT for Feature Selection 
In this section, the implementation of the NEAT algorithm for feature selection is described and its performance 
is evaluated against Multi-Layer Perceptron (MLP) networks. 

In the case of artificial neural networks (ANN), direct estimation methods are preferred because of the com- 
putational complexity of training an ANN. Inside this category we can perform another classification based on 
the analysis of the training set [13]. There are many different methods to define feature selection on a trained  
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Figure 3. The two types of structural mutation in NEAT.                                                      

 
neural network. Some of them are specifically based on the analysis of a trained feed forward network and the 
others are general methods which have the ability of doing feature selection in all kinds of trained networks. 

For example, according to the definition of relevance of an input unit, iS , in a feed forward neural network 
input 𝐼𝐼𝑖𝑖  is considered more important if its relevance iS  is larger. Also relevance ijs  of a weight Wij con- 
nected between the input units i and the hidden unit j is defined. The relation between iS  and ijs  is shown in 
Equation (1), where Nh is the number of hidden units. 

1
Nh

i ijjS s
=

= ∑                                    (1) 

The criteria for defining weight relevance are varied. Some of them are based on direct weight magnitude. As 
an example, the criterion proposed by Belue [14] is reflected in Equation (2). 

( )2
ij ijs w=                                     (2) 

Other criteria of weight relevance, introduced by Tekto [15], is based on an estimation of the change in the 
MSE (Mean Square Error), when setting the weigh to 0. Another method proposed by Utans [16] focuses on the 
MSE, and calculates its increment when substituting an input for its mean value. One input is considered more 
relevant if the increment of MSE is higher. 

According to M. F. Redondo and C. H. Espinosa [17] the best method for feature selection is using a trained 
network proposed by Utans [16]. As Utans using MSE and this value is not feasible for NEAT, in this paper we 
propose another feature selection method based on Utans. Assume we have p instances and each instance has n 
features 1 2, , , and nx x x  and notation for features of jth instance is { },1 ,2 ,, , ,j j j nx x x . Our method (ACC- 
UTANS) contains following steps: 

1) Train NEAT with all features 1 2, , , and nx x x  
2) Calculate mean value of feature ( )kk M  using Formula (3): 

,1
p

k l klM x
=

= ∑                                    (3) 

3) For 1 to k n= , in all samples, replace value of kth feature with kM  and calculate confusion matrix (Ta- 
ble 1) for each feature separately. In each step calculate accuracy (Acc) after replacing feature k with kM  us- 
ing below formula: 
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TP TNAcc
TP TN FP FN

+
=

+ + +
                              (4) 

4) A feature is considered more relevant if the accuracy after replacement is lower. 
5) Remove feature with the lowest accuracy and repeat the above steps until accuracy changes significantly. 

5. Results 
In order to empirically evaluate NEAT for feature selection as implemented by our approximate algorithm, we 
ran a number of experiments on both artificial and real-world data. These datasets include: SPEC Heart, Breast 
cancer, Pima Indians Diabetes, Soybean (large), and LED all from the UCI repository of machine learning data- 
bases [18]. They either contain many features and good candidates for feature selection or they are well unders- 
tood in terms of feature relevance. For each dataset we train NEAT network with population sizes of {100, 150, 
200, 250} and number of input nodes of 2 as initial values. The probability of addinga node in mutation is set to 
{0.01, 0.02, 0.03, 0.04, 0.05} for five different runs, and the probability of adding connection is set to 0.05. The 
network is compared against a 2-layer perceptron neural network with 25 and 50 neurons in each layer for two 
different runs. The classification is applied to five different datasets, SPEC Heart, Breast cancer, Pima Indians 
Diabetes, Soybean (large), and LED all from the UCI repository of machine learning databases [18]. These da- 
tasets are detailed in Table 2. They have been selected because they are well understood in terms of feature re- 
levance. To improve accuracy of training in case of datasets with less number of instances, 10-fold cross-vali- 
dation is applied. 

The first dataset is SPEC Heart describes diagnosing of cardiac Single Proton Emission Computed Tomogra- 
phy (SPECT) images. Each of the patients is classified into two categories: normal and abnormal. The database 
of 267 SPECT image sets (patients) was processed to extract features that summarize the original SPECT im- 
ages. As a result, 22 continuous feature patterns were created for each patient then these patterns were processed 
to obtain 16 feature patterns. According to Table 3, using NEAT and UTANS eight features could be reduced 
(K shows number of removed features) without losing accuracy significantly. Although MLP with 50 neurons 
has better performance for this dataset with all the features included, but after removing features, NEAT works 
better on this dataset. 

The second dataset is related to breast cancer with ten features and the training set size of 699. This case is 
much similar to the first case where MLP-50 has slightly better performance before feature removal, but after 
removing only two features NEAT has significantly better performance. This illustrates NEAT supremacy in 
better adjusting after removing irrelevant features from the dataset. 

The third dataset utilized in our evaluation is Pima with 789 data, eight features, and two classes. In this case 
NEAT not only has better performance to get trained but also after removing two less relevant features, NEAT 
still is a better model to train on Pime dataset. 

Soybean (large) is the fourth dataset used in our evaluation, and with 35 features, this is more complex than 
previous three datasets. As can be seen in Table 3, there is significant improvement in accuracy of training  
 
Table 1. Confusion matrix.                                                                                

 Positive Prediction Negative Prediction 

Positive Class True Positive (TP) True Negative (FN) 

Negative Class False Positive (FP) False Negative (FN) 

 
Table 2. Datasets used and their properties. “CV” indicates 10-fold cross-validation.                                  

Dataset # Classes # Features Training Set Size Testing Set Size 

SPEC Heart 2 22 267 CV 

Breast Cancer 2 10 699 CV 

Pima 2 8 768 CV 

Soybean-Large 2 35 683 CV 

LED 10 24 500 3000 
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Table 3. Comparison of selecting features using NEAT and UTANS against MLP where MLP-25 is MLP with 25 neurons in 
each layer, MLP-50 is MLP with 50 neurons in each layer and K is number of removed features.                        

Training  
Method 

Elimination 
Method 

Dataset 

SPEC Heart Breast cancer Pima Soybean (Large) LED 

NEAT ACC-UTANS 

K ACC K ACC K ACC K ACC K ACC 

0 84.16 0 95.18 0 69.50 0 91.2 0 65.10 

2 84.48 
1 96.12 1 68.24 

2 87.16 
2 64.23 

4 86.13 4 91.31 

6 80.67 
2 93.46 2 66.21 

6 89.41 
4 60.85 

8 77.21 8 86.12 

MLP-25 UTANS 

K ACC K ACC K ACC K ACC K ACC 

0 76.14 0 93.45 0 63.84 0 87.51 0 59.54 

2 73.63 
1 93.63 1 60.17 

2 83.31 
2 55.25 

4 71.96 4 81.42 

6 67.74 
2 87.13 2 58.43 

6 79.74 
4 56.12 

8 63.23 8 80.52 

MLP-25 TEKTO 

K ACC K ACC K ACC K ACC K ACC 

0 76.14 0 93.45 0 63.84 0 87.51 0 59.54 

2 73.63 
1 93.63 1 60.17 

2 83.31 
2 57.86 

4 71.96 4 81.42 

6 65.36 
2 87.13 2 58.43 

6 79.74 
4 55.59 

8 63.23 8 80.52 

MLP-25 BELUE 

K ACC K ACC K ACC K ACC K ACC 

0 76.14 0 93.45 0 63.84 0 87.51 0 59.54 

2 73.63 
1 91.63 1 59.37 

2 83.31 
2 57.86 

4 71.96 4 81.42 

6 67.74 
2 87.13 2 55.34 

6 76.77 
4 55.59 

8 63.23 8 73.21 

MLP-50 UTANS 

K ACC K ACC K ACC K ACC K ACC 

0 85.12 0 96.89 0 68.94 0 86.36 0 61.84 

2 82.34 
1 92.13 1 64.13 

2 88.41 
2 59.27 

4 84.64 4 84.83 

6 81.2 
2 89.45 2 61.21 

6 80.25 
4 57.34 

8 76.46 8 79.45 

MLP-50 TEKTO 

K ACC K ACC K ACC K ACC K ACC 
0 85.12 0 96.89 0 68.94 0 86.36 0 61.84 
2 82.34 

1 92.13 1 64.13 
2 88.41 

2 59.36 
4 81.54 4 84.83 
6 79.72 

2 89.45 2 61.21 
6 80.25 

4 57.51 
8 76.46 8 79.45 

MLP-50 BELUE 

K ACC K ACC K ACC K ACC K ACC 
0 85.12 0 96.89 0 68.94 0 86.36 0 61.84 
2 82.34 

1 92.13 1 62.23 
2 88.41 

2 59.36 
4 84.64 4 84.83 
6 81.20 

2 89.45 2 57.20 
6 77.36 

4 57.51 
8 76.46 8 76.49 
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datasets after removing irrelevant features in NEAT compared to the other methods. This outcome supports our 
hypotheses in superiority of our method in accurately removing irrelevant features. 

Finally, the last dataset, LED, is an artificially made dataset with randomly inserted noise. Because of the 
random noise, training for this data set is more complicated compared to the other data sets as this noise may 
lead to increased number of local minimums. 

As it is illustrated in Table 3, before feature removal, NEAT trains vastly better than MLP. It can be shown 
that in case of having many local minimums, NEAT is capable of generating of more accurate results. Further- 
more, after removing irrelevant features, NEAT still poses better performance compared to other methods. This 
is very important because it shows how accurately NEAT can remove irrelevant features. Also based on the re- 
sults, after removing two features, the decrease of accuracy is legible which represents the power of NEAT-base 
model in perfectly diagnosing noisy features. 

Table 4 illustrates the average accuracy for each method and dataset. It can be seen in almost all the data sets 
that NEAT using UTANS has the best performance. Although in SPEC Heart and Breast Cancer datasets MLP- 
50 has better performance prior to feature removal, but after removing irrelevant features, NEAT performs better 
than the other methods. 

For Pima dataset, the accuracy of NEAT is only slightly higher than the other methods. The reason is that for 
this specific data set, all the methods listed in the table have good performances. However, in case of Soybean 
(large) and LED data sets, the result of NEAT is significantly better than the other methods. These two datasets 
have two main differences compared to the other datasets. Soybean (large) has more features than the other da- 
tasets, and consecutively, training and selecting irrelevant features for this dataset is more demanding. In case of 
LED data set, the high level of the randomness increases the difficulty level for feature reduction. In both cases, 
existence of local minimums leads to more challenge for MLP to train and extract irrelevant features. In contrast 
and according to the results, NEAT using UTANS significantly increases accuracy of selecting irrelevant fea- 
tures. 

6. Conclusions 
In this paper, a new model for optimal feature selection based on NEAT and UTANS feature elimination has 
been presented and evaluated. The main drawback of backward feature selection methods based on ANN is that 
the local minima affect their accuracy negatively. Moreover by removing a feature using backward feature se- 
lection more local minima may be added to solution space. This problem can be more significant in datasets 
with more features such as Soybean (large) or in datasets with some parameters of randomness, such as LED. 
However, in small datasets this difference may not be as significant. 

From these five dataset all except LED are real-world data. LED is artificially generated data with random 
noise insertion. As illustrated in Table 3 the accuracy of the output, using NEAT and UTANS for SPEC Heart, 
Breast Cancer, Soybean (large), and LED was improved. Most importantly, however, is the fact that in many 
datasets our feature selection algorithm can make reduction in the feature space and consequently improve clas- 
sification performance. This is true especially for SPEC Heart and LED, where MLP does not improve the per- 
formance in any scenario. 
 
Table 4. Comparison of average accuracy between NEAT.                                                       

Training 
Method 

Elimination  
Method 

Dataset 

SPEC Heart Breast Cancer Pima Soybean (Large) LED 

NEAT UTANS 82.53 93.92 62.65 89.04 63.40 

MLP-25 UTANS 70.54 91.4 60.81 82.5 56.97 

MLP-25 TEKTO 70.06 91.4 60.81 82.5 57.66 

MLP-25 BELUE 70.54 90.73 59.51 80.44 57.66 

MLP-50 UTANS 81.95 92.82 64.76 83.86 59.48 

MLP-50 TEKTO 81.03 92.82 64.76 83.86 59.57 

MLP-50 BELUE 81.95 92.82 62.79 82.69 59.57 
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There are many open areas ahead of this work. The implemented feature selection method through the NEAT 
is based on backward feature selection. Pervious works show forward feature selection can be as effective as 
backward and therefore worth investigating. Also both methods can be utilized at the same time to improve ac- 
curacy. Finally, this method may be compared against some other more recent techniques such as Random For- 
est and Adaboost in large scale datasets. 
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