
Journal of Software Engineering and Applications, 2014, 7, 299-310
Published Online April 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.74029

How to cite this paper: Shafiq, S. and Minhas, N.M. (2014) Integrating Formal Methods in XP—A Conceptual Solution. Jour-
nal of Software Engineering and Applications, 7, 299-310. http://dx.doi.org/10.4236/jsea.2014.74029

Integrating Formal Methods in XP—A
Conceptual Solution
Shagufta Shafiq, Nasir Mehmood Minhas
UIIT-PMAS Arid Agriculture University, Rawalpindi, Pakistan
Email: shaguftashafiq786@yahoo.com, nasirminhas@uaar.edu.pk

Received 9 February 2014; revised 8 March 2014; accepted 15 March 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Formal methods can be used at any stage of product development process to improve the software
quality and efficiency using mathematical models for analysis and verification. From last decade,
researchers and practitioners are trying to establish successful transfer of practices of formal
methods into industrial process development. In the last couple of years, numerous analysis ap-
proaches and formal methods have been applied in different settings to improve software quality.
In today’s highly competitive software development industry, companies are striving to deliver
fast with low cost and improve quality solutions and agile methodologies have proved their effi-
ciency in acquiring these. Here, we will present an integration of formal methods, specifications
and verification practices in the most renowned process development methodology of agile i.e.
extreme programming with a conceptual solution. That leads towards the development of a com-
plete formalized XP process in future. This will help the practitioners to understand the effective-
ness of formal methods using in agile methods that can be helpful in utilizing the benefits of for-
mal methods in industry.

Keywords
Formal Methods, Specification, Verification, Agile, Extreme Programming

1. Introduction
Formal methods have proved as a powerful technique to ensure the correctness of software. The growth in their
use has been slow but steady and FMs are typically applied in safety critical systems. Use of formal methods
requires both expertise and efforts, but this is rewarded if they are applied wisely. It must be seen as good pru-
dently news that Microsoft products increasingly use formal methods in key parts of their software development,
particularly checking the interoperability of third-party software with Windows. We believe formal methods are
here to stay and will gain further traction in the future [1].

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.74029
http://dx.doi.org/10.4236/jsea.2014.74029
http://www.scirp.org/
mailto:shaguftashafiq786@yahoo.com
mailto:nasirminhas@uaar.edu.pk
http://creativecommons.org/licenses/by/4.0/

S. Shafiq, N. M. Minhas

300

Formal methods are used for developing software/hardware systems by employing mathematical analysis and
verification techniques and often supported by the tools [2]. Mathematical model’s steadiness enables develop-
ers to analyse and verify these models in any phase of the development process i.e., requirements engineering,
specification, design and architecture, implementation, testing and maintenance [2].

Since their inception and use in the domain of real-time, critical systems, now these methods are finding their
way to other widens area of industrial applications especially developing high quality software products [2].

Traditional software development process can be categorised into three phases: 1) requirement gathering.
Sometime, specifications are also incorporating in requirement to get more precise and accurate requirements; 2)
phase of design, modelling and implementation; 3) the late phase involves verification and validation process
activities.

It can be suggest that formal methods can be effectively used in traditional software development process to
get accurate system specifications using the formal specification methods like ASM, B, Z and VDM even these
can be effectively used for representation and management of complex system specifications. Formal methods
can also be used in software system design by defining formal models to refine the data, abstract function to
represent system functionality [2] and to implement. Formal methods can be used for automated code generation
and verification from formal models [2].

Formal methods are always perceived as highly mathematical based processes and can only be used by
mathematicians and specialist software experts. This inclination leads towards the limited usage in industry-
based software development processes. To change this misconception, a much wider industrial research has to
be performed to get the true benefits of formal methods in industry [3].

In today’s fast growing software industries, software industries make every effort to produce fast delivery,
with better quality and low cost software solutions [2]. With Lightweight iterative approach with the focus on
communication between client and developing team, family of agile methods has turned out as solution to
achieve all these goals. Agile methods have a wide range of approaches from development process methods like
extreme programming to complete project management process like scrum [4]. These methods have been effec-
tively used in the software industry to develop systems on time and within budget with improved software qual-
ity and customer satisfaction [3].

A main reason of not using agile approaches for the development of safety critical systems is the lack of more
formal evaluation techniques in agile methods where as safety critical systems require more rigorous develop-
ment and evaluation techniques to ensure quality products [3].

As agile approaches less focus on documentation over processes with informal techniques which are often
insufficient in determining the quality of safety critical systems [3], agile methods are still not effectively used
to create systems which require more formal development and testing techniques for development [3].

It has been observed in literature that combination of agile and formal methods can bring best features of both
the worlds [5] which can lead towards a better software development solution. In [6], authors present an evalua-
tion of agile manifesto and agile development principles to show that how formal and agile approaches can be
integrated and identify the challenges and issues in doing so. In [3], authors suggest that agile software devel-
opment can used light weight formal analysis techniques effectively to bring potential difference in creating
system, with formally verified techniques, on time and within budget.

Motivation
It has been observed through literature that application of formal techniques in early phases of software devel-
opment improves the quality of software artefacts and as a result ensure precise and error free requirement de-
tails to the later phases of the development process. As a result the overall cost of a software project is signifi-
cantly lower because of the minimized error rate. After that formal specifications transformed into concrete
models to verify its consistency with the specification that lead towards the implementation.

Till date formal methods couldn’t be effectively used in industry based product engineering but it has poten-
tial of widespread effectiveness for application development in different domains, whereas agile approaches lack
precise techniques for planning and evaluation. A combination of formal methods and agile development proc-
esses can significantly encourage the use of formal techniques in industry base software development solutions
[3].

Here in this article, in Section 2 we first describe the use of formal specification and verification techniques

S. Shafiq, N. M. Minhas

301

with frequently used formal specification languages. We then present an overview of extreme programming in
Section 3. Section 4 contains the related research work which shows the integration of formal methods with tra-
ditional software development and agile methodologies to support our main concept and the reason of choosing
agile process method for our proposed approach. Section V describes our proposed approach.

2. Formal Methods in Practice
Formal methods can be generally categorized into two basic techniques and practices i.e. formal specifications
and verification [7].

Formal Specifications can be described as the technique that uses a set of notations derived from formal
logic to explicitly specify the requirements that the system is to achieve with the design to accomplish those re-
quirements and also the context of the stated requirements with assumptions and constraints to specify system
functions and desired behaviour explicitly [7].

In design specifications, a set of hierarchical specifications with a high-level abstract representation of the
system to detailed implementation specifications are designed, Figure 1 shows that hierarchy of specification
levels [7].

Formal Verification is the use of verification methods from formal logic to examine the specifications for
required consistency and completeness to ensure that the design will satisfy the requirements, assumptions and
constraints that system required [7].

There are several techniques available for formal specifications with automated tool support. These automated
tools can perform rigorous verification that can be a tedious step in formal methods [7].

There are many different types of formal methods techniques used in different settings; following are the most
commonly used examples of formal specifications, i.e. VDM, B and Z [3].

2.1. VDM
VDM stands for “The Vienna Development Method” and consider as one of the oldest formal methods. VDM is a
collection of practices for the formal specification and computational development [8]. It consists of a specification
language called VDM-SL. Specifications in VDM-SL based on the mathematical models develop through simple
data types like sets, lists and mappings, and the operations, causes the state change in the model [8].

2.2. B-Methods
B-method is another formal specification method consists of abstract notations and uses set theory for system
modelling, and mathematical proof for consistency verification between the different refinement phases [7].

2.3. Z
Another most commonly used formal specification language for critical system development, using mathemati-
cal notations and schemas to provide exact descriptions of a system. System is described in a number of small Z
modules called schemas which can cross refer each other as well as per system required. Each module is ex-
pected to have some descriptive informal language text to help users to understand it.

The selection of formal specification language made on the basis of developer’s past experience with the se-
lected method or the suitability of any model with respect to the system under develop and its application do-
main [3].

Figure 1. Hierarchy of formal
specifications [7].

S. Shafiq, N. M. Minhas

302

3. Extreme Programming an Agile Approach
An agile development methodology extreme programming can be define as light weight iterative approach for
small and medium size development teams having incomplete or continuously changing requirements. XP
works in small iterations with simple practices which focus on close collaboration, simple design to produce
high quality products with continuous testing.

Extreme programming created by K. Beck in 1990’s, is a set of twelve key practices [9] applied with four
core values including communication, simplicity, courage and feedback.

Extreme programming [9] provides a complete solution for product development process and widely accepted
for development of industry based and as well as object oriented software systems [10]. With the principles of
agile methodology XP proves as novel approach in the family of agile methods that significantly increase prod-
uctivity that produce high quality error free code [10]-[12]. Figure 2 shows the complete XP development
process in traditional settings.

Extreme programming is a Test driven approach. In TDD each user story converted to a test and at the time of
release code developed during iteration will be verified though these pre develop tests. This regression testing
technique provides a better test coverage at every phase of software development which involves writing of unit
tests for each individual task in the system domain [11].

4. Agile Approaches towards Formal Methods
Many efforts have been made to integrate the rapidly growing agile practices, having wide industrial acceptance
for producing quality products, with the formal methods having limited industrial acceptance but with strong
background, distinctive features and benefits. Table 1 shows the categorization of formal and agile methods.

Richard Kemmerer has made first attempt to investigate the integration approach for conventional develop-
ment process using formal methods [15]. Kemmerer’s work was related to the addition of formal techniques into
the different stages of conventional waterfall model, our work is a step towards the integration of formal speci-
fication and verification within the agile software development process i.e. extreme programming.

Another study [16] proposed an integration approach for agile formal development approach with the name of
XFun, proposed integration of formal notation using X-machine within the unified process.

In [17] author suggests an agile approach, combines the agile practice of tests driven development with formal
approach design by contract within XP [17].

There is another study [18] that proposes the integration of formal method techniques into the traditional V-
model for refinement of critical aspects of system [18]. The V-model representing the structure of activities pro-
viding guideline for software engineers to follow during the process development, while our study focuses on
suggesting a complete solution as software development methodology which can be used by the system devel-
opers effectively.

In another study [19] authors have made an effort to develop a light weight approach using formal methods
with the industry development standards, SOFL [19]. They have used a more graphical notation instead of pure
mathematical syntax to define the high level architecture of the system. Later on author refine his proposed ap-
proach by developing agile based SOFL method [20].

Figure 2. Extreme programming development process. [11]

S. Shafiq, N. M. Minhas

303

Table 1. Agile and formal methods.

Characterizations of Formal and Agile Methods

Agile Methods Formal Methods

Validation Verification

Pleasantness Correctness

Refactoring Refinement

Concrete Abstract

Particular General

Tests Roofs

Design evolve with code upfront design

Cowboy coding Analysis paralysis

Team Programmer

Beck [9] [10] Dijkstra [13] [14]

In [21], authors proposed an extreme Formal Modeling (XFM) (agile formal methodology) to design the

specifications from an informal description into a more formal language uses extreme programming approach.
Recently [3] presented an integration approach of formal specification and agile. Suggest a theoretical agile

approach using scrum methodology and integrating formal specifications for safety-critical systems. In the pro-
posed method formal specifications are applied within iteration phase and having a developing team that con-
sists of both conventional as well as formal modelling engineers [3].

Most industrially accepted agile methods i.e. extreme programming [9] and scrum [22] have been used as
emergent trends in dealing with core challenges and issues in software development process [23] such as: in-
crease time, with low quality and increase cost at delivery time. [24]. although, it has been observed that agile
software development practices are also effectively applied in different development settings for safety critical
systems as well [25] [26]. In [26] author argued that Plan driven approaches are better suited for these types of
systems. Whereas further studies suggested that the integration of agile approaches with the company’s existing
plan driven software development activities can be more effective and beneficial for producing safety critical
systems [26]-[28]. Another study [29] suggests that integration of agile and CMMI can produce significant dif-
ference in developing quality softwares systems.

5. Formal Methods in XP: A Conceptual Solution
Formal methods are set of practices for specification and verification but are not constrained with any specific
software development methodology. Mostly published reports focusing on improving the formal techniques for
different domain and application development and lacks a complete methodology that can be followed for de-
veloping object oriented systems more effectively. Here in this account of literature we are suggesting a con-
ceptual solution for software development industry with the integration of formal techniques into the extreme
programming development methodology. Through this, companies will be able to get benefited aspects of both
the integrated domains to develop high quality software systems.

Figure 3 shows our proposed approach for development process of XP with the integration of formal methods.
Here we have suggesting a conceptual solution.

5.1. User Stories
User stories in XP serves as the basis for defining the functions of the system needs to perform, and to facilitate
requirements managements described in an informal manner. In safety circle system use of formal specification
techniques consider as the primary intention so the generated requirements can be error free hence using user
stories in xp available in informal way needs to be describing through the formal specification techniques to
make them more accurate and precise. And serve as the input for the release planning including system meta-
phor.

S. Shafiq, N. M. Minhas

304

Figure 3. Proposed approach.

5.2. Requirement Specification
Formal specification is the description of a program’s properties defined in alogic oriented mathematical lan-
guage. Formal specification is not directly executable but capable of representing higher level of abstraction
than a conventional programming language of the system. Here the focus of the formal specification tasks is
generating abstract models from user stories and extracting requirements specification for development as well
as for validation before the implementation in forthcoming development phases. Figure 4 explains the process
of proposed approach for requirement specification.

5.3. Release Planning
In our proposed approach, requirements will be extracted from the described formal specification in the earlier
phase and then the requirement prioritization will be done through the spike. Once the requirement specification
are generated, will be forwarded to release planning phase in which on the basis of each requirement program-
mers estimate their resources and efforts as per customer needs. At the end of the release planning phase a re-
lease plan will be developed for the forth coming iteration. Figure 5 shows the inputs and outputs for the release
planning phase.

5.4. Iteration
During release plan, iteration plan has been forwarded for each iteration phase of 2-4 weeks as per plan. This
phase followed through the developing system’s functionality incrementally with increasing complexity of the
system model. Refactoring and pair programming are the core activities of development iteration in XP process
representing described in Figure 6.

During iteration daily stand up meetings and close customer collaboration serve as a source to measure de-
velopment progress are essential in XP. In addition pair programming and continuous integration supports fre-
quent and automated integration of tests and ensure knowledge sharing for system consistency between the for-
mal specification and the final implementation.

Figure 7 shows the development process with the integration of formal verification phase. In XP, TDD de-
velopers are required to write automated unit tests before the code is implemented this can be done by develop-
ing formal specifications defines at the earlier stage. And formal verification can be performed easily from the
requirement specifications using automated code driven tests. This can be cost and time effective activity.

5.5. Continuous Integration
Another very effective practice for producing high quality software in extreme programming is continuous inte-
gration in which teams keep the system fully integrated after every coded functionality with passed acceptance
test. Once the code has been verified from the formal verification techniques, new unit coded functionality inte-

S. Shafiq, N. M. Minhas

305

Figure 4. Formal specification in proposed approach.

Figure 5. Planning game.

Figure 6. Iteration.

Figure 7. Formal verification.

grated into the system to increase the system quality and efficiency that reduces the system integration issues as
well.

6. Evaluation of Proposed Solution
To get practical support for our proposed methodology we have conducted a control experiment. To conduct the

S. Shafiq, N. M. Minhas

306

experiment we selected two groups of undergrad students having good understanding of XP with enough pro-
gramming skills. Each group was comprised of five members; group-II has added knowledge of VDM and Z
specifications as well. We have given a project titled police reporting system to both the groups, Group-I used
the traditional XP, while Group-II followed proposed methodology for the system development. Groups were
under continuous monitoring to get results with respect to time of system development phase, error rate and
product quality. System details are eliminated here just for the sack of prise content and focusing only on the
results.

Figure 8 represent the duration in days with the SDLC phases, because XP is iterative methodology and fo-
cuses more on development and implementation in contrast formal XP takes more time in planning and design-
ing. Here we have presented cumulative time in days for each phase and implementation phase include devel-
opment, testing and integration. Use of formal XP took initially longer time but reduces overall development
time as compare to traditional XP that lead towards the higher productivity as result shows in Figure 9.

Following Figure 10 present the number of unit functionalities developed in each iteration.
Product quality evaluated on the basis of number of passed acceptance tests after each iteration in Figure 11

shows each iteration results.
Error rate evaluated during each unit development phase Figure 12.

7. Discussion and Conclusions
The work presented here is with the objective of devising a complete development method for the application of
formal specification and verification within an agile system development approach i.e. extreme programming.

Figure 8. Cumulative number of days for each SDLC phase.

Figure 9. Project duration in days.

S. Shafiq, N. M. Minhas

307

Figure 10. Number of unit functionalities developed during each iteration.

Figure 11. Number of passed acceptance tests after each iteration.

Figure 12. Error rate during development process.

Many literary and industrial based evidences show the effectiveness of XP in the traditional software devel-

opment and the literary studies also report some evidences of the successful integration of XP practices in dif-
ferent domains for the system specification and verification, but it lacks a complete development process. In our
proposed approach, we have suggested a complete process development for the extreme programming with the
formal specification, formal verification techniques and the limited level validation process which supports our
notion that formal XP can lead to a higher quality product with reduced error rate and improved time efficiency.
Table 2 represents the literature support for the proposed work.

Application of formal methods is believed as it improves system reliability at the cost of lower productivity
whereas XP focuses on more productivity, So, in principle, using process development activities of FM and XP
can improve its efficiency like pair programming, daily code development and integration, the simple design or
metaphor and iterative development process. On the other hand, one criticism to XP is that it lacks formal or
even semi-formal practices. So here in this paper we have tried to devise a XP process utilizing the formal me-
thod techniques and the result shows that the appropriate combination results in a more efficient and higher
quality development method because each can be able to minimize others’ issues.

Informal specification can have ambiguity and irrelevant details and self-contradictory and incomplete ab-

S. Shafiq, N. M. Minhas

308

Table 2. Present the use of XP practices with FM to improve software quality.

Conceptual Model’s Validation Support

STUDY ID TITLE YEAR SUPPORTING CENCEPT

STD-1 [30] Formal Agility. How much of each? 2003 Studied XP practices from the prism of FM to show that how some
XP practices can admit the integration of Formal Methods.

STD-2 [31] Using a formal method to model
software design in XP projects 2005 Successfully introduces X-Machine in XP for

a succinct and accurate software system

STD-3 [32] Applying XP Ideas Formally:
The Story Card and Extreme X-Machines 2003

Present an approach of using XP story cards and
transform those into formal specifications through

X-Machine to produce high quality software products.

STD-4 [3] Scrum Goes Formal: Agile Methods
for Safety-Critical Systems 2012 Suggest that XP practices can successfully

support the formal method and techniques

STD-5 [33] Agile Specification Driven Development 2004
Present an approach of using TDD practice

for specification driven development that leads
towards quality software development.

STD-6 [34] On the Use of XP in the Development of
Safety-Oriented Hypermedia Systems 2003 Uses XP practices in the development of safety-oriented

hypermedia systems with formal methods for exhaustive testing

STD-7 [35] Formal Methods and Extreme Programming? 2003 Evaluated how formal methods overcome the
lack of upfront specification and design practices in XP

STD-8 [36] 20 Years of Teaching and 7 Years of
Research: Research When You Teach 2008

results from multiple experiments found that there was
a measurable quality premium in using XP and uses

extreme x-machines for producing high quality products

STD-9 [5] Formal versus agile: Survival of the fittest? 2009 Suggest that XP practices can get benefit from formal methods

STD-10 [37] Formal Extreme
(and Extremely Formal) Programming 2003

Analyse how Formal Methods (FM) can interact
with agile process XP, and suggest that XP

practices can improved using FM. can

stractions which cannot be handled easily in traditional XP. By defining the requirement specification through
the process of formal specification, these issues can be effectively minimized.

The role of manager in XP is to synchronize and manages the work of all team members, with the application
of the formal specification and verification. It is required that all managers, trackers and coaches have the im-
plementation knowledge of formal models and their synchronization in the software development process. To
make this possible, developer’s focus should be on the improvement of the formal specification technique which
is easier to be read and understood by the people who don’t have the strong mathematical background like the
graphical notations used in SOFL or the more familiar C-like syntax for VDM.

The process of formal verification in our proposed approach can be successfully used in minimizing the ma-
nual unit tests and regression testing process in traditional XP and reduces the programmer’s efforts of conti-
nuous testing with efficient time utilization. As suggested in the solution, formal requirement specifications at
first step can be easily transformed into automated code driven test generation which leads towards the error free
code generation of requirements. There are also many tools available for the system verification developed
through formal specifications.

The method suggested in this paper can provide effective guidelines for companies looking for an effective
development methodology for formal methods and applying formal specification and/or verification techniques
for software development.

8. Limitations and Future Work
Here we have presented a theoretical model with a very limited evaluation process. But for the industrial appli-
cations, it should be verified from the industry. In future, we will try to develop complete specification process
that includes how the user stories will be transformed into requirement specifications. In addition to the evalua-
tion of the proposed conceptual solution, several things are needed in order to ensure higher acceptance of for-
mal methods with industry and industrial practices.

S. Shafiq, N. M. Minhas

309

References
[1] Boca, P., Bowen, J.P. and Siddiqi, J.I. (2010) Formal Methods: State of the Art and New Directions. Springer-Verlag

London Limited, Berlin. http://dx.doi.org/10.1007/978-1-84882-736-3
[2] Woodcock, J., Larsen, P.G., Bicarregui, J. and Fitzgerald, J. (2009) Formal Methods: Practice and Experience. ACM

Computing Surveys, 41, 1-36. http://dx.doi.org/10.1145/1592434.1592436
[3] Wolff, S. (2012) Scrum Goes Formal: Agile Methods for Safety-Critical System. 2012 Formal Methods in Software

Engineering: Rigorous and Agile Approaches (FormSERA), Zurich, 2 June 2012, 23-29.
http://dx.doi.org/10.1109/MC.2009.284

[4] Schwaber, K. (2004) Agile Project Management with Scrum. Prentice Hall, Upper Saddle River.
[5] Black, S., Boca, P.P., Bowen, J.P., Gorman, J. and Hinchey, M. (2009) Formal versus Agile: Survival of the Fittest?

IEEE Computer, 42, 37-45.
[6] Larsen, P.G., Fitzgerald, J. and Wolff, S. (2010) Are Formal Methods Ready for Agility? A Reality Check. 2nd Inter-

national Workshop on Formal Methods and Agile Methods, Pisa, 17 September 2010, 13 Pages.
[7] Johnson, S.C. and Butler, R.W. (2001) Formal Methods. CRC Press LLC, Boca Raton.
[8] Grunerand, S. and Rumpe, B. (2010) GI-Edition. Lecture Notes in Informatics. 2nd International Workshop on Formal

Methods and Agile Methods, Vol. 179, 13-25.
[9] Beck, K. (1999) Extreme Programming Explained. Addison-Wesley, Boston.
[10] Beck, K. (2003) Test-Driven Development. Addison-Wesley, Boston.
[11] (2013) Extreme Programming: A Gentle Introduction. http://www.extremeprogramming.org/.
[12] Wood, W.A. and Kleb, W.L. (2003 Exploring XP for Scientific Research. IEEE Software, 20, 30-36.
[13] Dijkstra, E.W. (1972) Notes on Structured Programming, Structured Programming. In: Dahl, O.-J., Hoare, C.A.R. and

Dijkstra, E.W., Eds., Structured Programming, Academic Press, London, 1-82.
[14] Dijkstra, E.W. (1968) A Constructive Approach to the Problem of Program Correctness. BIT Numerical Mathematics,

8, 174-186. http://dx.doi.org/10.1007/BF01933419
[15] Kemmerer, R.A. (1990) Integrating Formal Methods into the Development Process. IEEE Software, 7, 37-50.

http://dx.doi.org/10.1109/52.57891
[16] Eleftherakis, G. and Cowling, A.J. (2003) An Agile Formal Development Methodology. Proceedings of 1st South-East

European Workshop on Formal Methods, SEEFM’03, Thessaloniki, 20 November 2003, 36-47.
[17] Ostroff, J.S., Makalsky, D. and Paige, R.F. (2004) Agile Specification-Driven Development. Lecture Notes in Com-

puter Science, 3092, 104-112.
[18] Broy, M. and Slotosch, O. (1998) Enriching the Software Development Process by Formal Methods. Lecture Notes in

Computer Science, 1641, 44-61.
[19] Liu, S. and Sun, Y. (1995) Structured Methodology + Object-Oriented Methodology + Formal Methods: Methodology

of SOFL. Proceedings of First IEEE International Conference on Engineering of Complex Computer Systems, Ft.
Landerdale, 6-10 November 1995, 137-144.

[20] Liu, S. (2009) An Approach to Applying SOFL for Agile Process and Its Application in Developing a Test Support
Tool. Innovations in Systems and Software Engineering, 6, 137-143. http://dx.doi.org/10.1007/s11334-009-0114-3

[21] Suhaib, S.M., Mathaikutty, D.A., Shukla, S.K. and Berner, D. (2005) XFM: An Incremental Methodology for Developing
Formal Models. ACM Transactions on Design Automation of Electronic Systems, 10, 589-609.
http://dx.doi.org/10.1145/1109118.1109120

[22] Schwaber, K. and Beedle, M. (2002) Agile Software Development with Scrum. Prentice-Hall, Upper Saddle River.
[23] Karlström, D. (2002) Introducing Extreme Programming—An Experience Report. Proceedings 3rd International Confe-

rence on Extreme Programming and Agile Processes in Software Engineering, Alghero.
[24] Holström, H., Fixgerald, B., Agerfalk, P.J. and Conchuir, E.O. (2006) Agile Practices Reduce Distance in Global Soft-

ware Development. Information and Systems Management, 23, 7-18.
http://dx.doi.org/10.1201/1078.10580530/46108.23.3.20060601/93703.2

[25] ISO TC 22 SC3 WG16 Functional Safety, Convenor Ch. Jung. Introduction in ISO WD26262 (EUROFORM-Seminar,
April 2007).

[26] Drobka, J., Noftzd, D. and Raghu, R. (2004) Piloting XP on Four Mission Critical Projects. IEEE Software, 21, 70-75.
http://dx.doi.org/10.1109/MS.2004.47

[27] Wils, A., Baelen, S., Holvoet, T. and De Vlamincs, K. (2006) Agility in the Avionics Software World. 7th Internation-

http://dx.doi.org/10.1007/978-1-84882-736-3
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1109/MC.2009.284
http://www.extremeprogramming.org/
http://dx.doi.org/10.1007/BF01933419
http://dx.doi.org/10.1109/52.57891
http://dx.doi.org/10.1007/s11334-009-0114-3
http://dx.doi.org/10.1145/1109118.1109120
http://dx.doi.org/10.1201/1078.10580530/46108.23.3.20060601/93703.2
http://dx.doi.org/10.1109/MS.2004.47

S. Shafiq, N. M. Minhas

310

al Conference, XP 2006, Oulu, 17-22 June 2006, 123-132.
[28] Boehm, B. and Turner, R. (2003) Balancing Agility and Discipline. Addison Wesley, Boston.
[29] Pikkarainen, M. and Mäntyniemi, A. (2006) An Approach for Using CMMI in Agile Software Development Assess-

ments: Experiences of Three Case Studies. 6th International SPICE Conference, Luxembourg, 4-5 May 2006, 1-11.
[30] Herranz, Á. and Moreno-Navarro, J.J. (2003) Formal Agility, How Much of Each? Taller de Metodologías Ágiles en el

Desar-Rollo del Software, VIII Jornadas de Ingeniería del Software Bases de Datos (JISBD 2003), Grupo ISSI, 47-51.
[31] Thomson, C. and Holcombe, M. (2005) Using a Formal Method to Model Software Design in XP Projects. Annals of

Mathematics, Computing and Tele-Informatics, 1, 44-53.
[32] Thomson, C. and Holcombe, W. (2003) Applying XP Ideas Formally: The Story Card and Extreme X-Machines. 1st

South-East European Workshop on Formal Methods, Thessaloniki, 21-23 November 2003, 57-71.
[33] Ostroff, J.S., Makalsky, D. and Paige, R.F. (2004) Agile Specification-Driven Development. Lecture Notes in Com-

puter Science, 3092, 104-112.
[34] Canos, J., Jaen, J., Carsi, J. and Penades, M. (2003) On the Use of XP in the Development of Safety-Oriented Hyper-

media Systems. Proceedings of XP 2003, Genova, 25-29 May 2003, 201-203.
[35] Baumeister, H. (2002) Formal Methods and Extreme Programming. Proceedings of Workshop on Evolutionary Formal

Software Development, in Conjunction with FME, Copenhagen, 189-193, 1-2.
[36] Holcombe, M. and Thomson, C. (2007) 20 Years of Teaching and 7 Years of Research: Research When You Teach.

Proceedings of the 3rd South-East European Workshop on Formal Methods, Thessaloniki, 30 November-1 December
2007, 1-13.

[37] Herranz, A. and Moreno-Navarro, J.J. (2003) Formal Extreme (and Extremely Formal) Programming. In: Marchesi, M.
and Succi, G., Eds., 4th International Conference on Extreme Programming and Agile Processes in Software Engineering,
XP 2003, LNCS, No. 2675, Genova, 88-96.

	Integrating Formal Methods in XP—A Conceptual Solution
	Abstract
	Keywords
	1. Introduction
	Motivation

	2. Formal Methods in Practice
	2.1. VDM
	2.2. B-Methods
	2.3. Z

	3. Extreme Programming an Agile Approach
	4. Agile Approaches towards Formal Methods
	5. Formal Methods in XP: A Conceptual Solution
	5.1. User Stories
	5.2. Requirement Specification
	5.3. Release Planning
	5.4. Iteration
	5.5. Continuous Integration

	6. Evaluation of Proposed Solution
	7. Discussion and Conclusions
	8. Limitations and Future Work
	References

