
Journal of Software Engineering and Applications, 2014, 7, 104-117
Published Online February 2014 (http://www.scirp.org/journal/jsea)
http://dx.doi.org/10.4236/jsea.2014.72012

OPEN ACCESS JSEA

Software Composition Using Behavioral Models of Design
Patterns

Sargon Hasso1, Carl Robert Carlson2

1Technical Product Development, Wolters Kluwer Law and Business, Chicago, USA; 2Information Technology and Management,
Illinois Institute of Technology, Wheaton, USA.
Email: sargon.hasso@wolterskluwer.com

Received January 1st, 2014; revised January 30th, 2014; accepted February 7th, 2014

Copyright © 2014 Sargon Hasso, Carl Robert Carlson. This is an open access article distributed under the Creative Commons Attri-
bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of
the intellectual property Sargon Hasso, Carl Robert Carlson. All Copyright © 2014 are guarded by law and by SCIRP as a guardian.

ABSTRACT
Given a set of requirements structured as design problems, we can apply design patterns to solve each problem
individually. Much of the published literature on design patterns addresses this problem—pattern association;
however, there is no systematic and practical way that shows how to integrate those individual solutions together.
We propose a compositional model based on design patterns by abstracting their behavioral model using role
modeling constructs. This approach describes how to transform a design pattern into a role model that can be
used to assemble a software application. The role model captures the behavioral relationship between participant
components in the design pattern. Our approach offers a complete practical design and implementation strate-
gies, adapted from DCI (Data, Context, and Interaction) architecture. We demonstrate our technique by pre-
senting a simple case study complete with design and implementation code. We also present a simple to follow
process that provides guidelines of what to do and how to do it.

KEYWORDS
Software Composition; Design Patterns; Integration; Role Model; Architecture; DCI Architecture; System
Responsibilities; Traits

1. Introduction
In our prior research [1], we laid out the foundational
theory for constructing system architecture by composing
components using design patterns [2] as solutions to in-
tegration problems. The use of patterns as integration
mechanism is different from using them, as originally
conceived, as solutions to design problems. Integration
based on design patterns, as we will show later, is be-
havioral in nature, i.e. based on collaboration, and is se-
mantically richer than the traditional structural-based ap-
proach using generalization, aggregation, and association.
The literature abounds with techniques to help designers
practice and apply design patterns in building applica-
tions; however, very little attention is paid to how to as-
semble applications in a systematic way from pattern-
based components.

In examining how the Lexi editor case study was as-

sembled in Gamma et al. [2] book, or how the hierarchi-
cal file system (HFS) case study was assembled in Vlis-
sides [3] book, it is not very obvious how the final appli-
cation is assembled from components without explaining
the assembly, or composition, process explicitly. From
our teaching experience to students who are assigned
design projects to build applications using design pat-
terns, similar to Lexi and HFS, we found out that they
struggle with integrating components together. This prob-
lem motivated us to research this problem and come up
with an approach to integrate components using design
patterns themselves as an abstraction mechanism and
transforming those abstractions into realization during
implementation. To emphasize, we are introducing de-
sign patterns as abstract modeling elements to solve con-
crete software composition problems.

Here is how this paper is organized. In Section 2, we
briefly survey the current design patterns-based tech-

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.72012
mailto:sargon.hasso@wolterskluwer.com

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

105

niques for software composition. In Section 3, we lay out
the conceptual background needed to use our approach.
In Section 4, we describe just enough concepts from DCI
architecture we need for our implementation strategy. To
provide support in following our proposed approach, we
present in Section 5 a simple to follow process that pro-
vides guidelines of what to do and how to do it. A simple
case study is introduced in Section 6 demonstrating our
approach during design and implementation. A brief
discussion is given in Section 7, then our conclusion and
future work are discussed in Section 8. To make the con-
cepts concrete, we also provide a complete source code
listing of the case study in Appendix.

2. Related Work
Decomposing an application into design problems and
finding solutions based on design patterns creates an in-
tegration problem designers must deal with. This is also
true even though design solutions are not patterns-based.
Bass et al. [4] talk about one of the desired system qual-
ity attributes a software architecture should have, namely
integrability which they define as: “the ease with which
separately developed components, including those de-
veloped by third parties, can be made to work together to
fulfill the software’s requirements”. Currently, there are
no systematic approaches to integrate patterns-based
components. Case studies found in Gamma et al. [2], and
Vlissides [3] use ad hoc approaches to do integration.
Moreover, the integration tends to be untraceable, unme-
thodical, order-dependent, and non-repeatable. It does rely
heavily on the experience of designers to come up with
integration strategies.

An approach by Yacoub et al. [5] uses design patterns
for composition and those patterns are referred to as con-
structional design patterns. Basically these are design pat-
terns plus an interface specification. Gluing patterns to-
gether is accomplished by two types of interfaces: classes
and operations. In other words, two patterns can be inte-
grated using either a shared object or an operation. The
selection of either interfaces is arbitrary. The chosen ob-
ject or operation comes from existing model elements in
design patterns. The biggest disadvantage of this approach
is the fact that you must, somehow, identify parts, either
objects or operations, of the two patterns to be used as
interfaces. If one pattern-based component requires an
operation that a participating object from another pat-
tern-based component does not have, this approach may
not work.

Riehle [6] describes an approach for composing design
patterns-based components using the roles concept. This
approach still relies on roles’ relationship similar to class’
relationship. This is an unnecessary constraint during
analysis phase. Furthermore, his composition technique

constrains pattern integration to produce composite de-
signs that are patterns themselves which limits the wide
applicability of this approach.

Our approach offers a complete design and implemen-
tation strategies with a set of techniques that most soft-
ware engineers are familiar with. Contrast this approach
with the formal approaches we surveyed in the literature
that are difficult to comprehend and implement unless
proper software tools are available. For example, the me-
thod in [7] starts with the explicit design pattern model
structure as a basis for composing patterns by specifying
their structural and behavioral properties using two types
of logics: first-order logic [8] and temporal logic of ac-
tions [9], respectively. The resulting specifications are
incomprehensible to most practitioners unfamiliar with
formal methods of specifying designs.

3. Theory: Conceptual Foundation
Design patterns are commonly used as techniques that
offer solutions to commonly recurring problems when
building software components or applications [2]. How-
ever, we have come up with a compositional model based
on design patterns by abstracting their behavioral model
using role modeling constructs. What we mean by com-
positional model is similar to what we do when we as-
semble a software component from, say, two objects
through typical software composition techniques like gen-
eralization, aggregation, and association. Shared object is
another technique used for this purpose [2]. However, the
compositional model exhibited by these techniques is
structural. Naturally, this structure results when system
functionality is decomposed into modules arranged into
any number of possible arrangements. Our compositional
model, on the other hand, is behavioral in nature because
it is based on the collaboration model derived from de-
sign patterns that has specific semantics based on the
design pattern we use. In order to describe this collabora-
tion model, as we will illustrate shortly, we have to spec-
ify the design patterns as role models. Each design pat-
tern we choose will have a different role model. How do
we obtain these role models? For each design pattern, we
examine its participants’ collaboration behavior, and
factor out their responsibilities. A responsibility is col-
lection of behaviors, or functions, or tasks, or services.
We then specify the resulting role model much like a
collaboration model in UML [10] where it states that
“roles in collaborations will often be typed as interfaces
and will then prescribe properties that the participating
instances must exhibit, but will not determine what class
will implement those behavioral properties”. The result-
ing collaboration model will play the same function as a
use case function in the DCI architecture [11] whose
techniques we want to use to implement, in code, the

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

106

integration process. It is very important to realize that in
addition to using design patterns to solve a design prob-
lem, we are also proposing using design patterns to solve
an integration problem. The fact that a design pattern has
a collaboration context with participants with prescribed
behavior is what we are abstracting.

In role modeling, each distinct system activity or a
behavior, a use case for example, is considered and mod-
eled individually. We generally examine the roles of two
or more interacting entities during behavior analysis. The
same entities may assume different roles in yet other in-
teraction scenarios describing a different aspect of sys-
tem behavior. In general, one system functionality may
span several objects belonging to different classes (this is
the same as saying that several objects, in their different
roles, are collaborating to execute a function). Another
system functionality may span the same or additional
objects. However, this time the same objects may take on
a different role. To describe a complete behavior of one
specific object, the different roles are composed or syn-
thesized. This resultant synthesized behavior is assem-
bled and implemented as a class. It is highly likely that
this role modeling is happening implicitly in the software
designer’s mind but the thought process can be made
explicit and there are several approaches in the literature
dealing with this problem.

Role diagrams that depict the role model is appropriate
at this level of analysis because they involve the collabo-
ration of two or more objects. This also provides the con-
text to model the structure of object interaction [12]. This
idea does not seem to be different from the way design
patterns are defined: “... design pattern identifies the par-
ticipating classes and instances, their roles and collabora-
tions, and their distribution of responsibilities ...” [2].

Role modeling in this discussion, therefore, is used in
two different ways: first, as a way to expose different

interfaces by the same object, depending how it interacts
with other objects, and second, as a way to describe col-
laboration between two or more objects during an enact-
ment of, say, one system functionality or one use case
scenario. The former is what traits [13] were used for,
something we are not interested in here; while the latter
is what we will be utilizing to model system behavior
that is factorable. We will utilize the concept of a role as
a partial description of an object’s specifications during
collaboration with other objects. Henceforth, when dis-
cussing design pattern components (participants), we will
refer to them as illustrated in Figure 1(b). Essentially,
this means the design pattern, in this case the Decorator
[2] (p. 175), see Figure 1(a), has two components
represented by two roles: Decorator and Component. It’s
these two roles that really get mapped or injected into
objects when doing design integration using design pat-
terns. As the diagram in Figure 1(b) shows, we use the
UML’s [10] collaboration as a dashed ellipse icon which
represents the design pattern we are using as an integra-
tor. In the collaborations model, we capture how a col-
lection of communicating objects collectively accompli-
shes a specific task. We achieve composition by the vir-
tue of how participants in the chosen design pattern com-
municate. The parts in each collaboration composite stru-
cture represent the roles that we factored out from each
design pattern as an abstraction that ultimately need to be
bound to objects from the integrated components as il-
lustrated conceptually in Figure 2. The interface realiza-
tions in the diagram are necessary for statically typed
languages.

Figure 3 illustrates, in a more concrete way, how cer-
tain behavior is factored out and packaged as a role mo-
del, see Figure 3(a). Then, as depicted in Figure 3(b), if
we were given two components and we wish to integrate
them in a manner similar to the behavior encapsulated by

(a) Decorator Class Model (b) Decorator Role Model

Figure 1. Illustration of the abstraction process from class model to collaboration or role model.

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

107

Figure 2. The role mapping process to arbitrary class instances.

the role model, we can pick out two objects, in this case
C and G, and map roles IA and IB onto them, respec-
tively. Since, the role model constitutes one specific col-
laboration to accomplish a certain task that involves two
objects, the new objects that assume those roles will col-
laborate in similar manner. Therefore, by the virtue of
this collaboration, we were able to combine (integrate)
Component1 and Component2. This will be become
more evident as we go through a detailed example in
Section 6. As a stylistic convention, we prefix a role
name with a letter “I” to denote an “interface” in code.

4. Practice: DCI Architecture
We briefly discuss the DCI architecture and show how
we adapted it to implement our compositional model.
The DCI architecture was introduced by Reenskaug [11]
and further elaborated on extensively by Coplien et al.
[14].

In DCI, we start with the use case model as a driving
force to implement an application. The architecture of an
application comprises the Data part, this describes the
makeup of the system, and the Interaction part, this de-
scribes system’s functionality. What connects the two
dynamically is a third element called Context. Each of
these three parts has physical manifestation as compo-
nents during implementation. For example, there are ob-
jects to represent the applications’ domain objects; ob-
jects to represent system behavior or interactions be-
tween domain objects; and objects to represent use cases.
The architecture is clean in that it makes a clear distinc-
tion between design activities corresponding to each of

the artifacts, namely the Data, Context, and Interaction. It
also makes traceability between what the user wants and
where it is implemented in the code clear through the use
case context construct in the architecture.

The domain objects behavioral specification is highly
cohesive by making each object knows everything about
its state and how to maintain it. Coplien et al. [14] refer
to these domain objects as dumb objects that know noth-
ing about other objects in the system. The interaction
between domain objects, on the other hand, is a system
functionality captured as system behavior and assigned to
yet another type of objects conveniently named as inter-
action objects. The DCI treats these objects as first class
citizens. While the identification of domain object re-
sponsibilities, i.e. object behavior, is a technique known
from early days of object oriented analysis and design,
check for example Wirfs-Brock et al. [15] and Coad et al.
[16] who refer to this task as “Do it Myself” strategy, the
interaction between objects having its own object desig-
nation is a novel concept the DCI re-introduced and
made it a visible modeling element in system architec-
ture.

In DCI architecture, systems provides hints to system
responsibilities with respect to use cases. In a typical use
case scenario, system entities interact with each other
through defined roles. These roles, ultimately, will be
mapped onto domain objects instantiated at runtime. The
DCI elaborates on this process-but all we care about at
design time is identification of those object roles and
what kind of behavior is expected of them. Therefore,
object interactions are use case enactments at runtime.

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

108

(a) Behavior Abstraction and its Corresponding Role Model

(b) Role Model as a Reusable Construct and its Component Integration as a side effect

Figure 3. Role model abstraction and integration through mapping.

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

109

System functionality, i.e. functionality that does not be-
long to any one specific object type at design time, is
injected onto roles at runtime and when any object plays
that role, i.e. it has acquired a new behavior. This is ac-
complished using a programming construct called Traits
first introduced by Schärli et al. [13] and is defined as “a
group of methods, i.e. behavior, that serves as a building
block for classes and is a primitive unit of code reuse.”

5. A Software Composition Process Using
Design Patterns

After covering theory and practical implementation strat-
egy, we present the following process by which we use
design patterns in their role specification as new means
to integrate components. The key concepts and core ideas
we borrowed from DCI architecture and adapted them
for our process are: role specifications, behavior injection
through “traits mechanism”, i.e. extending the function-
ality of any object, and introducing a collaboration con-
text similar to use case context.

1) Design each component with all the required
functionality. We realize that interdependencies
on services from other components are required;
therefore, we assume that it may be necessary to
introduce an architectural layer that provides the
necessary abstraction level.

2) Determine the requirements needed for two com-
ponents to interact. This step specifies the col-
laboration between the components.

3) Select one design pattern that may satisfy this
requirement.

4) Identify design patterns’ participant roles.
5) Code up the roles as methodless interfaces; how-

ever, some roles may contain other roles as prop-
erties.

6) Identify the responsibility of each role and code it
up as a Trait.

7) Select an object from each component that we
need to map each role onto.

8) Map the design pattern participants’ roles to these
objects. The implementation is language de-
pendent, but for statically typed languages Inter-
face-like implementation is common.

9) Create a context class for the collaboration to
take place identified in Step 2.

6. Case Study: A Library System
We will illustrate our approach, and follow our process
along the way, using a case study that we intentionally
made it simple to focus on key concepts presented in this
paper. We state few requirements, design a solution, and
provide a complete implementation in Appendix. We
numbered the code listing for easy reference. This system
supports these requirements:

1) A local library has library services, resource col-
lections, and administration offices.

2) A local library system uses services of a remote
lending branch.

3) Library services are either simple services (books
reservation, DVDs reservation, CDs reservation,
and search services) or composite services.

4) Resource reservations are made by any user.
5) Users can search for resources.
6) Loanable resources, e.g. books, DVDs, and CDs,

are either available or checked out.
The application is decomposed into three distinct com-

ponents depicted by component diagrams in Figures
4(a)-(c) corresponding to our three structural require-
ments 1, 6, and 3 listed above, respectively. The intent is
to integrate these three components using our proposed
approach based on design patterns. The integration re-
quirement comes from requirement 4 and 5 (Step 1).

Figure 5 illustrates how we intend to integrate the
three components using the Proxy [2] (p. 207) and State
[2] (p. 305) design patterns. We use the Proxy design
pattern as an integrator because the Library Services re-
lies on remote services from a lending branch. Needless to
say, this is a contrived example to demonstrate the tech-
nique. By similar reasoning, we opted to use the State
pattern as an integrator between the Lending Branch
Books Reservation Services and Loanable Resources, i.e.
books, components (Steps 2 and 3). In Figure 5, we show
two collaboration models corresponding to Proxy and
State patterns that we will use as integrators in our case
study. We will show how to code up these structures us-
ing C# language. We only describe integrating two com-
ponents using the Proxy pattern; however, the process is
exactly similar to integrating the other components using
the State pattern (Step 4). In the code, lines 11-17, these
roles are implemented as methodless interfaces (Step 5):

public interface ISubject {}
public interface IProxy {}

In the code, lines 22 and 44, two objects, Services

from the Library component and LendingBranchServices
from the Lending Branch Services component, will im-
plement IProxy and ISubject interfaces, i.e. roles, respec-
tively (Steps 7 and 8):

public class Services: IProxy {}
public class LendingBranchServices: ISubject {}

Of course, there is nothing to implement since these

are methodless interfaces. Based on the DCI architecture
strategy, they serve as identifiers for objects that will
take those roles. The Proxy design pattern, basically, is a
stand-in for another object. The target Search() or Check-
Out() methods will be called by a Request method that

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

110

(a) Library System Component (b) Loanable Resource Status Component

(c) Lending Branch Services Component

Figure 4. Model structure of the three individual components of the library system sample application.

we will be injecting into IProxy type object by the Trait
[13] concept. In C# language, it is done through exten-
sion method [17]. Extension methods enable you to “add”
methods to existing types without creating a new derived
type, recompiling, or otherwise modifying the original
type. Extension methods are a special kind of static
method, but they are called as if they were instance
methods on the extended type. This is what we did in the
RequestTrait class (Step 6) line 103 in the code.

public static class RequestTrait {}

public static bool Request (this IProxy
proxy, ISubject subject,

Request Type request) {}
...}

In fact this class contains the behavior associated with

IProxy role that gets injected into any object taking this
role, e.g. objects of class Services. In C# a Request()
method extends, i.e. adds more methods, any arbitrary
object with new behavior as long as it is of type IProxy
in our case. This is done through the first argument of
Request(this IProxy proxy,...) method.

The last piece of the puzzle to make all this work is the
integration. We create a context that corresponds to the
“collaboration” that acts as integrator. This is similar to

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

111

Figure 5. Library system consisting of three components integrated using design patterns.

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

112

how the DCI architecture creates a “context” class for
each use case. The RequestResourceContext class is the
place for this to happen (Step 9) line 153 in the code.

public class RequestResourceContext {}

As you can see, the “integration” which is based on the

“collaboration” model is a construct that is quite trace-
able in the code. The integration happens when we in-
stantiate an object of type “RequestResourceContext”,
line 195, after setting up its required parts (through its
constructor) and calling its “Doit” method in the Main
method of the LibrarySystemCaseStudy class, line 196.
Now, you see why we call this type of integration be-
havioral since it is based on a method call at runtime.
Using the State pattern adds a slight complication be-
cause the IContext requires IState property, lines 13-16.
However, this property is of the type getter and setter
whose code is easily generated by most modern interac-
tive development environments. In the code, we demon-
strate how a loanable resource, i.e. a book, started in
Available state, line 194, checked out, line 196, and be-
came available again, line 197. In the code, lines 198-199,
we also demonstrate how the Search() method that was
injected through IProxy role, is invoked through the in-
tegration mechanism between Services and Lending-
BranchServices objects.

Figure 6 is a high-level view of the components as-
sembly showing the design patterns as the integration
interfaces representing the wiring of the three compo-
nents.

We left out some of the detailed explanation of the ra-
tional behind using Traits and Methodless roles and some
of the limitations of the statically typed languages, like
C#, that force us to do certain things one way as opposed
to dynamically typed languages where there is more
flexibility of injecting a role at runtime rather than at
compile time. Chapter 9 of Coplien et al. [14] has all this
explained. The complete workable code, albeit skeletal, is
listed in Appendix.

7. Discussion
On encountering our approach for the first time, one may
get the impression it is no different from Gamma’s or
Vlissides’ approaches. There is, however, a subtle dif
ference in that our approach provides explicit steps to

integrate software components. The technique can be ap-
plied repeatedly to any integration problem. First and-
foremost the approach presented in this research is of
practical importance. The theory serves only to validate
the concrete implementation and provides generalization
to a variety of implementation strategies. The key con-
cepts to take away are these. First, design patterns’ key
principal properties are used as abstraction modeling
constructs through collaboration. These, then become
traceable artifacts through “context” classes in the code.
Second, the proposed approach allows for partial and
evolutionary design. Recall, that the collaboration model
captures all the integration requirements by the virtue of
the role model it encapsulates. Third, role to object map-
ping is really a binding mechanism that could be utilized
effectively by this duality principle: either domain ob-
jects discovery or object roles allocation can be deferred.
In other words, you can begin design with domain ob-
jects if you have settled on all of them, or you can begin
design with roles required behavior and then map or bind
them to objects at a later time. The latter gives you the
most flexibility. Last, we provide a process anyone can
learn and follow methodically.

Could we have used a different pattern to integrate?
Absolutely, and which one we choose depends on re-
quirements. Let’s say that the Search() method of Ser-
vices class and the Search() method of the Lending-
BranchServices class had incompatible interfaces. In that
case, we could use the Adapter pattern [2] (p. 139) whose
participants have the roles of IAdpater and IAdaptee. The
behavior of the Adapter role, i.e. adapting a generic Re-
quest to a Specific Request, would have been the trait
class.

Is any design pattern suitable as an integrator? It de-
pends on how well you structure your composition prob-
lem in such a way that matches the design problem a
specific design pattern intends to solve. In addition to
reuse, design patterns promote flexible designs; by the
same argument one can use design patterns to create
flexible architectural compositions. This is one of the
characteristics of maintainability which is a desired de-
sign quality attribute.

The design and the implementation approach we pre-
sented creates a new design paradigm that appears com-
plex at first but once learned, it becomes another power-
ful tool added to architect’s and designer’s skill set. The

Figure 6. An abstract view of library system components assembly.

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

113

compositional model requires creating abstractions out of
behavioral collaboration models of design patterns. Al-
though this type of integration has richer semantics, it is
not as straight forward as using the traditional techniques
like aggregation or generalization. It forces you to think
and design in the abstract something not many feel com-
fortable with. Furthermore, since the implementation
strategy follows, more or less, the DCI architecture foot-
steps, it also suffers from some of the added overhead
introduced by that architecture, as discussed in Coplien et
al. [14] (pp. 294-297).

8. Conclusion and Future Work
We have introduced a conceptual framework and an im-
plementation model for software composition using de-
sign patterns. We have also created a process that should
guide practitioners and first time learners, learning how
to use design patterns, in assembling individual compo-
nents. That is our contribution. The compositional model
can also be used for non-pattern-based components. The
approach is scalable without adding complexity and should
work with any design pattern once its collaboration
model is identified. The rational used to select a design
pattern to solve design problems should also work for
selecting a design pattern to solve integration problems.

For future research, there is an opportunity to automate
some of the implementation tasks with proper code gen-
erators, e.g. metaprogramming techniques available in
some development frameworks like .NET [18]. Code in-
jection through Reflection could easily be accomplished
at compile time. Also, since the approach allows defer-
ing the integration until a later stage in the development
cycle, it gives an opportunity for architects or designers
to identify a variation point, i.e. integration strategy, with
variants [19].

Finally, to evaluate this proposed compositional model
against other ad-hoc approaches, we intend to conduct a
design experiment that is formal, rigorous, and controlled
based on techniques from experiments in software engi-
neering [20]. This effort is part of future work.

Acknowledgements
The open access support for this work was supported by
the Illinois Institute of Technology.

REFERENCES
[1] S. Hasso, “A Uniform Approach to Software Patterns

Classification and Software Composition,” Ph.D. Thesis,
IIlinois Institute of Technology, 2007.

[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “De-
sign Patterns,” Addison Wesley, Reading, 1995.

[3] J. Vlissides, “Pattern Hatching: Design Patterns Applied

of Software Patterns,” Addison Wesley, Reading, 1998.
[4] L. Bass, P. Clements and R. Kazman, “Software Archi-

tecture in Practice of SEI Series in Software Engineeer-
ing,” 2nd Edition, Addison-Wesley Professional, Boston,
2003.

[5] S. M. Yacoub and H. H. Ammar, “Pattern-Oriented Ana-
lysis and Design (POAD): A Structural Composition Ap-
proach to Glue Design Patterns,” 34th International Con-
ference on Technology of Object-Oriented Languages
and Systems, Santa Barbara, 30 July-04 August 2000, pp.
273-282.

[6] D. Riehle, “Describing and Composing Patterns Using
Role Diagrams,” Proceedings of the 1996 Ubilab Con-
ference, Zurich, 1996.

[7] T. Taibi, “Formalizing Design Patterns Composition,”
The IEE-Proceeding Software, Vol. 153, No. 3, 2006, pp.
127-136. http://dx.doi.org/10.1049/ip-sen:20050072

[8] H. B. Enderton, “A Mathematical Introduction to Logic,”
Academic Press, 2nd Edition, 2000.

[9] L. Lamport, “The Temporal Logic of Actions,” ACM
Transactions on Programming Languages and Systems
(TOPLAS), Vol. 16, No. 3, 1994, pp. 872-923.
http://dx.doi.org/10.1145/177492.177726

[10] OMG, “OMG Unified Modeling Language (OMG UML),
Superstructure,” 2.4.1 Edition, Object Management Group,
2011.

[11] T. Reenskaug and J. O. Coplien, “The DCI Architecture:
A New Vision of Object-Oriented Programming,” 2009.
http://www.artima.com/articles/dci_visionP.html

[12] T. Reenskaug, “Working with Objects: The OOram Soft-
ware Engineering Method,” Manning Publications, 1996.

[13] N. Schärli, S. Ducasse, O. Nierstrasz and A. P. Black,
“Traits: Composable Units of Behaviour,” Proceedings of
European Conference on Object-Oriented Programming
(ECOOP’03), Vol. 2743, pp. 248-274.

[14] J. Coplien and G. Bjørnvig, “Lean Architecture: For Ag-
ile Software Development,” 1st Edition, Wiley, West
Sussex, 2010.

[15] R. Wirfs-Brock and A. McKean, “Object Design: Roles,
Responsibilities, and Collaborations,” Addison-Wesley,
Boston, 2003.

[16] P. Coad, D. North and M. Mayfield, “Object Models:
Strategies, Patterns, and Applications,” Yourdon Press,
Upper Saddle River, 1997.

[17] Microsoft Corp, “C# Programming Guide: Extension
Methods,” 2012.
http://msdn.microsoft.com/en-us/library/vstudio/bb38397
7.aspx

[18] K. Hazzard and J. Bock, “Metaprogramming in .NET,”
Manning Publications Co., Shelter Island, 2013.

[19] K. Phol, G. Böckle and F. van der Linden, “Software Pro-
duct Line Engineering: Foundations, Principles, and Te-
chniques,” Springer, Heidelberg, 2010.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell and A. Wesslén, “Experimentation in Software En-
gineering: An Introduction of the Kluwer International
Series in Software Enginerring,” Kluwer Academic Pub-

http://dx.doi.org/10.1049/ip-sen:20050072
http://dx.doi.org/10.1145/177492.177726
http://www.artima.com/articles/dci_visionP.html
http://msdn.microsoft.com/en-us/library/vstudio/bb383977.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb383977.aspx

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

114

lishers, Boston, 2000.
http://dx.doi.org/10.1007/978-1-4615-4625-2

[21] S. Hasso, “Design Patterns as Connectors Source Code on

GitHub,” 2014.
https://github.com/shasso/LibrarySystemJSEA2014

http://dx.doi.org/10.1007/978-1-4615-4625-2
https://github.com/shasso/LibrarySystemJSEA2014

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

115

Appendix
This is a complete skeletal code listing in C# language.
Please refer to Section 6 for discussion and Figure 5 for
the class model of the three components we are composing
to make up the final application. The complete Visual
Studio solution can be downloaded from GitHub [21].

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36
37

38
39
40
41
42

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Roles
{
 // role declaration: a place holder with methods
(behavior)
 // declared to populate any object, i.e. any object
 // willing to take this role
 public interface ISubject { }
 public interface IProxy { }
 public interface IContext
 {
 IState State { get; set; }
 }
 public interface IState { }
}
namespace LibrarySystem
{
 using Roles;
 public class Services : IProxy
 {
 public Services() { }
 }
 public class Administration { }
 public class ResourceCollections { }
 public class Resort
 {
 // properties
 public Services Services { get; set; }
 public Administration Administration
{ get; set;}
 public ResourceCollections ResourceCol-
lections { get; set; }
 }
 public enum RequestType
 {
 BooksReservation, DVDReservation,
CDReservation,
 EntertainmentPkgReservation, Search
 }
}
namespace LendingBranchServices
{
 using Roles;

43
44
45
46
47

48

49
50

51
52
53

54
55
56

57
58
59
60

61
62
63
64

65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
74
88

 using LibrarySystem;
 public class LendingBranchServices : ISubject
 {
 public LendingBranchServices() { }
 public virtual bool CheckOut() { return
true; }
 public virtual bool search(string callNum)
{ return true; }
 }
 public class SimpleServices : LendingBranch-
Services
 {
 Search _search;
 public SimpleServices() { _search = new
Search(); }
 public override bool search(string callNum)
 {
 Console.WriteLine("SimpleServices
search operation");
 return true;
 }
 }
 public class BooksReservation : SimpleServices,
IContext
 {
 public override bool CheckOut()
 {
 Con-
sole.WriteLine("LoanableResource reservation op-
eration");
 return true;
 }
 public IState State { get; set; }
 }
 public class Search
 {
 public Search() { }
 public bool search(string callNumber)
 {
 Console.WriteLine("Search opera-
tion");
 return (true);
 }
 }
}
namespace LoanableResource
{
 using Roles;
 public class LoanableResource : IState
 {
 public string CallNumber { get; set; }
 public long DueDate { get; set; }
 }
 public class CheckedOut : LoanableResource

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

116

89

90
91
92
93

94
95
96
97
98
99

100
101
102

103
104
105

106
107
108
109
110

111
112
113

114
115
116
117

118

119
120
121
122

123
124
125
126
127
128
129

130

 {
 public CheckedOut() { Con-
sole.WriteLine("CheckedOut"); }
 }
 public class Available : LoanableResource
 {
 public Available() { Con-
sole.WriteLine("Available"); }
 }
}
namespace CaseStudy
{
 using Roles;
 using LibrarySystem;
 using LendingBranchServices;
 using LoanableResource;
 //methods/behavior is injected into whoever

assumes IProxy role
 public static class RequestTrait
 {
 public static bool Request(this IProxy
proxy, ISubject subject, RequestType request)
 {
 bool rc = false;
 IContext ctxt = subject as IContext;
 IState book = ctxt.State;
 HandleBookReservationContext
brContext = new HandleBookReservationCon-
text(ctxt, book);
 switch (request)
 {
 case Request-
Type.BooksReservation:
 rc = brContext.Doit();
 break;
 case RequestType.Search:
 LendingBranchServices ra =
subject as LendingBranchServices;
 string callNum = (book as
LoanableResource).CallNumber;
 rc = ra.search(callNum);
 break;
 default:
 Console.WriteLine("{0}:
unrecognized request", request);
 rc = false;
 break;
 }
 return (rc);
 }
 }
 // Behavior Handle() is injected into State ob-
jects
 public static class HandleTrait

131
132

133
134
135
136
137

138
139
140

141

142
143
144

145

146
147
148
149
150
151
152
153
154
155
156
157
158

159
160

161
162
163
164
165
166
167
168
169

170
171
172
173

 {
 public static bool Handle(this IState state,
IContext ctxt)
 {
 bool rc = false;
 Type tt = ctxt.State.GetType();
 string typeName = tt.ToString();
 LoanableResource book = ctxt.State
as LoanableResource;
 switch (typeName)
 {
 case "LoanableRe-
source.Available":
 ctxt.State = new Checke-
dOut() { CallNumber = book.CallNumber, DueDate
= book.DueDate };
 rc = true;
 break;
 case "LoanableRe-
source.CheckedOut":
 ctxt.State = new Available()
{ CallNumber = book.CallNumber, DueDate =
book.DueDate };
 break;
 default: break;
 }
 return (rc);
 }
 }
 // LoanableResource reservation ‘use case’
 public class RequestResourceContext
 {
 // properties
 public IProxy Proxy { get; private set; }
 public ISubject Subject { get; private set; }
 public RequestType ReqType { get; private
set; }

 public RequestResourceContext(ISubject
subject, IProxy proxy,
 RequestType resource)
 {
 Proxy = proxy;
 Subject = subject;
 ReqType = resource;
 }
 public bool Doit()
 {
 bool rc = Proxy.Request(Subject,
ReqType);
 return (rc);
 }
 }
 public class HandleBookReservationContext

Software Composition Using Behavioral Models of Design Patterns

OPEN ACCESS JSEA

117

174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

193
194

195

196
197
198

199
200

201
202
203
204

 {
 public IState State { get; private set; }
 public IContext Context { get; private set; }
 public HandleBookReservationCon-
text(IContext ctxt, IState state)
 {
 State = state;
 Context = ctxt;
 }
 public bool Doit()
 {
 bool rc = State.Handle(Context);
 return (rc);
 }
 }
 class LibrarySystemCaseStudy
 {
 static void Main(string[] args)
 {
 // demonstrate Subject pattern integra-
tion
 Services services = new Services();
 SimpleServices ra = new BooksRe-
servation() { State = new Available() { CallNumber
= "123", DueDate = 12202013 } };
 RequestResourceContext integration =
new RequestResourceCon-
text(ra,services,RequestType.BooksReservation);
 bool rc = integration.Doit();
 rc = integration.Doit();
 integration = new RequestResource-
Context(ra, services, RequestType.Search);
 rc = integration.Doit();
 Console.WriteLine("press any key to
exit...");
 Console.ReadKey();
 }
 }
}

