
Journal of Software Engineering and Applications, 2013, 6, 489-499
http://dx.doi.org/10.4236/jsea.2013.69059 Published Online September 2013 (http://www.scirp.org/journal/jsea)

489

Improving Parallelism in Software Development Process

Thang N. Nguyen

Department of Information Systems, California State University-Long Beach, Long Beach, USA.
Email: thang.nguyen@csulb.edu

Received July 14th, 2013; revised August 15th, 2013; accepted August 23rd, 2013

Copyright © 2013 Thang N. Nguyen. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Software development process basically consists of phases, planned and executed in series: 1) feasibility study; 2) re-
quirements; 3) design and 4) implementation, prior to production and maintenance. At the end of each phase, there may
be an official management decision (go/not go) depending upon cost, time or other reasons. Within each phase or
across-phases, parallelism or concurrency can be achieved if modularity and/or independence of functionality exist(s).
We propose a different approach to software development process that allows an improved parallel planning and execu-
tion of development effort beyond modularity and functionality independence. The goal is to shorten development time
while possibly cutting cost and maintaining the same intended quality of performance. An example development is
sketched.

Keywords: Software Development; Parallelism; Concurrency; Software Models

1. Introduction

When Gregor Mendel discovered the principle of inheri-
tance, basis of genetics, he would not have thought we
used it as one of the concepts (in italic) in object-orient-
tation, namely abstraction, encapsulation, inheritance,
and polymorphism. When Charles Peirce composed the
theory of signs, he wouldn’t have thought that we used
his concept of icons in window displays. When Christo-
pher Alexander, an architect and author of the Nature of
Order, he would not have imagined that later he would
become the frequent invited speaker at many conferences
on object-oriented paradigm, especially on design patterns.

Applying George Kelly’s personal construct theory
with dipole concept in psychoanalysis to diagnose pa-
tients to other domains such as exploiting the dipole
concept of “in parallel” versus “in series” in software
development is more challenging. We do recognize, like
Kelly, that most things surrounding us exist as two ends
of a dipole: day versus night, good versus bad, and the
like. We use, for example, the terms centralization versus
decentralization (or convergence versus divergence,) as
two opposing ends of a scale, much like a dipole in the
sense of George Kelly, in between are possibly various
degrees of centralization (or decentralization). They are
used in practice in many disciplines, e.g. management
strategies, databases, etc. In other cases, parallelism is
possible because things “in parallel” occur when they are
in different spaces or different locations whereas they are

in series if they occur in the same space or dimension
such as time. For example, in computer science, if multi-
ple processors exist then parallel processing as opposed
to serial is possible. In software engineering, we consider
object-oriented versus procedural as the two flavors of
programming paradigms. We can say object-oriented fo-
cuses on the object (e.g. icon, class) in the object-verb
construct, and procedural on the verb in the verb-object
construct, as opposite concepts.

However, in software development, the two “in paral-
lel” (versus) and “in series” exist conceptually but are
not truly opposite. In fact, we actually use a weaker term,
concurrency to describe the concurrent executions, e.g.
executions by one processor (CPU) and its I/O devices. It
would be enticing to investigate the possibility of push-
ing the concept of concurrency towards in parallel oppo-
site to in series in the domain of software development
and management. We propose in this paper a model to
further the parallel development of software beyond the
concurrency.

Figure 1 shows four schemes. Scheme A is the tradi-
tional development in series as found in the water fall
model per DoD 2167A. Simply speaking there are four
phases in water fall development model: feasibility study,
requirements (R), design (D) (high-, low-level), and im-
plementation (I) to be followed by production and main-
tenance (last two phases not shown). Scheme B portraits
some development tasks that inherently can be executed

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process 490

Feas . Requirements Design Implementation

Feas . Requirements

Design

Implementation

A: Completely in series
(Traditional)

B: Some parallelism
(concurrency)
(With modularity or
Independence
of functionality)

Feas . Requirements

Design

Implementation

C: Improved parallelism:
(Proposed)

Feas . Requirements

Design

Implementation

D: Perfect parallelism,
completely opposite to A
(Not yet possible, probably
impossible)

Figure 1. Development process.

in parallel. The common term used in this situation is
concurrency. Scheme D is the perfect parallelism which
is practically impossible to perform given the nature of
the phases: some requirements have to be completed be-
fore design can be initiated, some part of design has to be
completed before any implementation can be initiated.

We propose Scheme C as one step further beyond
Scheme B and towards Scheme D. The difference be-
tween Scheme B and ours is indicated in Figure 1 by the
dotted red line. Conceptually, in Scheme B, Require-
ments phase ends before the completion of Design, and
Design finishes before the completion of Implementation
phase. In our proposed scheme C, we look for ways to
start the Design a little earlier, the Implementation a
little earlier while keeling the end time of the three
phases the same for synchronization, correlation and
collaboration of tasks to minimize rework.

While the early start is easier to comprehend, the same
end time in Scheme C to finish all phases at the same
time needs further explanation. The idea is that if the
Requirements phase is terminated before the others can
start as in Scheme B, then any changes (new, update, de-
lete) to requirements (unrealistic, erroneous, missing, etc.)
have to go through the change management cycle. Simi-
larly, if design flaws are discovered during Implementa-
tion phase, then design changes have to be submitted to
the change management system, separate from the cur-
rent development cycle. Thus, if we extend requirements
and design end times to the same completion time as
Implementation, the changes in Requirements and De-
sign can be officially made during the development cycle.
Furthermore, since all phases are subject to the same
completion time, then the synchronization can be ob-
served between requirements capabilities, design features,
program constructs or test scripts. Also, correlation and
collaboration can be exercised during the same devel-
opment cycle.

The early start and the end time sameness proposed
above for all phases may appear too obvious, minuscule
or insignificant, however if the activities (tasks) within

the extended phases are discovered and exercised then
they can potentially foster sizable gains collectively in
the overall development due to three following factors: 1)
reduced time ((early start implies early completion); 2)
reduced costs(achievable from rework avoidance/mini-
mization); and 3) maintained intended quality (error re-
duction, from synchronization, collaboration and correla-
tion to be performed during the same time frame across
the different R, D and I spaces).

In Section 2, a quick look on selected achievements in
development concurrency/parallelism over the years is
reviewed. In Section 3, we will elaborate the what and
the how to seek and perform early start and end time
sameness in development activities which would foster
synchronization, correlation and collaboration to obtain
reduction in cost and time while achieving intended per-
formance as claimed. Section 4 demonstrates an imple-
mentation example as proof of concepts and Section 5
offers our concluding remarks.

2. Brief Literature Review on Parallelism in
Software Development

We intend to be brief on literature review. For more de-
tails, we refer to the cited references.

2.1. Traditional and Agile Models

Some half a century ago, the software/system develop-
ment water fall model (DoD 2167A) was devised for
large and complex projects. It basically consists of phases
executed in series collectively called SDLC (software/
system development life cycle): Feasibility study, Require-
ments, Design, Implementation, Production and Main-
tenance. This process observes the separation of con-
cerns and independence of tasks. At the end of each
phase a report is produced and a sign-off at some level of
authority is required [1].

Other modified processes and improved models which
followed, each addressed a particular objective. The spi-
ral model is for risk reduction and management. If re-
quirements are fuzzy, evolutionary prototyping is used
with a prototype built for incremental insights into the
solution. If delivery is uncertain, the evolutionary deliv-
ery model is planned for multiple deliveries of function-
alities. Some parallelism in general or concurrency in
particular have been proposed and practiced [1].

Most models including Agile still observe the phased
approach of the water fall model, therefore typically in
series (Scheme Bin Figure 1). Regardless of the model
used, the elements (time, cost and performance) are the
main objectives of any SDLC process [2]. To reduce
time, developers try to find ways to shorten it by observ-
ing the existence of modularity and/or independence of
functionality in the collection of capabilities investigated
or features to be developed. They break down the capa-

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process 491

bilities/features into more or less independent modules,
and perform the development of these modules concur-
rently (Scheme B).

In Agile development technology, various Agile mod-
els generally include the human factor in a clever way in
contrast to traditional models to exploit parallelism. Models
such as Rapid Application Development, XP, SCRUM,
Crystal, and some well-known practices such as JAD,
DSDM, UPs, and others have addressed parallelism in
the development tasks at various degrees. In [3], Senad
Cimic discussed a possible parallel development in XP,
but actually limited it to software configuration manage-
ment to accommodate changes. There have been other
ways to exercise parallelism in software configuration
management [4]. In design phase, discovery of parallel
tasks can be identified in UML diagram (agile, object-
oriented) or DFD (traditional-procedural, structured) such
that some level of parallelism can be addressed [5].

2.2. Identifying Concepts Leading to
Improving Parallelism in Software
Development

Parallelism has been widely exercised in hardware and in
software configuration management as we have men-
tioned and referenced in the previous subsection. What
we saw in the previous schemes are specific and smaller
domains for exploring potential parallelism in R, D or I,
and quality assurance as in Agile models. At closer look,
we can identify the three concepts of synchronization,
collaboration and correlation within each of the R, D
and I spaces but not much among or between them. We
extend them further with the consideration that humans
do most things in parallel within the in series context.

An example is visual perception. While the optical sig-
nals of perceived object in the visual field of the two eyes
combined is processed in series from the retina, to the
LGN (lateral geniculate nucleus), to the PVC (primary
visual cortex), they actually go through two separate
pathways. For our modeling, we list the following prin-
ciples governing the visual perception, derived from the
work of many researchers including the work of Eric
Kandel and David Hubel. They could be used as guiding
principles for our proposed work. Some of these princi-
ples may overlap. They are listed below, but discussed
more in [6].

1) Principle of vertical integration (summary) primar-
ily involving excitatory projection neurons (abstraction,
convergence);

2) Principle horizontal integration promoting fine-
ness(details) primarily involving inhibitory interneurons,

3) Principle of parallelism of visual pathways;
4) Principle of complementarity on image formulation;
5) Principle of focus (attention) on part of visual memory;
6) Principle of association with different visual memo-

ries, and;
7) Principle of recall (recognition) of perceived visual

memories.
We will apply selectively these principles in the for-

mulation of the model described in the next section.

3. Model R: The W’s and The H’s towards
Model Formulation for Improving
Parallelism

In this paper, we break the Implementation (I) phase into
Construction (C, or programming) and V&V (testing).
Figure 2(a) shows the four phases or major tasks: R, D,
C and V&V, each occupies a surface of the solid pyramid
representing the entire development work. Flattening the
pyramid and reconnecting the vertices a little differently,
the representation becomes the collection of four quad-
rants in the diagram as problem, solution, construction
and V&V spaces in a rhombic shape (Figure 2(b)).

Each surface represents its own domain and has its
own hierarchy by decomposition (requirements) or by
composition (design). Similar hierarchies can be con-
structed for programming (construction) and testing
(V&V). The vertices denote the Statement of Work (SOW)
or business objectives (OBJs) of the software to be de-
veloped. This is followed by strategy document. Each
domain has its own development strategy for the devel-
opment of capabilities (Requirements), features (Design),
translated in to the strategy development for correspond-
ing program modules (construction) and test script mod-
ules (V&V).

Showing R, D, C and V&V in this way, we are look-
ing at the space dimension, rather than time dimension.
The four major tasks share the same interior (i.e. content),
where all details are examined at the same time, at the
same level of abstraction. An example follows. In Re-
quirements, we commonly start with developing a Re-
quirements Definition strategy (how to collect and define
the collection of applicable requirements). In the water-
fall model, this strategy needs be complete as part of the
Requirement Definition document to be signed off by
authority before the Design can be started. In our pro-
posed model, we attempt to start developing the Design
strategy while Requirement Definition Strategy is under
way. This illustrates the idea of early start. The four hi-
erarchical structures in the rhombic shape also allow us
to look at the multiple spaces at the same time for syn-
chronization of development effort from start to end in
one framework. This is the idea of end time sameness.

Within the same scope or at the same level of abstrac-
tion, we will try to initiate the analysis (requirements) or
synthesis (design), program constructs (programming) or
test constructs (V&V). It is true that the sequence R, D,
C and V&V in that order still exists. But we explore the
possibility for early start of each domain (D, C and V&V)
once the domain R is reasonably defined. Details on what

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process

Copyright © 2013 SciRes. JSEA

492

(a) (b)

Figure 2. Model R sketch. (a) Perspective view; (b) Modified top view (flattened and reconnected).

3.2. The How and how will be presented next.

Within each space, a hierarchical view of each major
development is detailed. The four quadrants offer a par-
allel view of development activities and show status of
all four spaces, hence together a combined view on ver-
tical and horizontal integration. It also offers a view for
synchronization, collaboration and synchronization of
activities and status within each quadrant and across
them. Previously known techniques and resulting dia-
grams such as UML (objet-oriented), e.g. activity-dia-
grams, swimlane-diagram, or DFD diagram (traditionally
procedural or structured) can be developed in support of
the development of the four hierarchies. Developers can
look across all spaces, drill-down for details or roll-up
for more abstracted entities. The activities can be traced,
combined, synchronized or correlated for detection of
gaps or mismatches, missing or duplicate items, etc.

3.1. The What

Refer to Figure 3 (which details Figure 2(b)). The
quadrants, each corresponds to a major task (or domain)
of the development: R, D, C and V&V. They are consid-
ered as four different spaces:

1) Top-left quadrant: problem space is where capabili-
ties are decomposed by rectangle blocks described in
terms of required capabilities, sub-capabilities, etc.

2) Top-right quadrant: solution space in terms of cor-
responding design strategy, and designed features/sub-
features based on capabilities described as requirements;

3) Bottom-right quadrant: construction space where
programming strategy is devised and program modules
for features occurs;

4) Bottom-left quadrant: verification and validation
(V&V) space where test strategy and all types of tests and
levels of tests takes place, and; The seven principles described in human visual proc-

ess described earlier can be selectively applied. Further-
more these principles are not limited to only internal hu-
man physiology. Human behavior in general exercises
several of these principles. An example is that in reading
(writing) a text or interpreting (composing) a song, al-
though one word or one note is expressed at a time from
the start to the end, the actual interpretation involves the
synchronization, correlation and collaboration among
them by the eyes (seeing), the ears (hearing), the facial

uscles for perceptions or the limbs movement and for

5) The oval shape in the center of the model crossing
all quadrants depicts the documentation activity of all
other activities.

This set of four quadrants and the documentation
oval in the diagram from the top view are detailed by a
collection of lower layered-linkable relationships (right
in Figure 3) between the tasks at one level to the next
levels of details on requirements capabilities from use
cases, design features, programming classes, and test
cases. m

Improving Parallelism in Software Development Process 493

level development (e.g. features)

Lower level development
e.g. sub‐features

decomposition

composition

Figure 3. Model R.

coordinated actions in the attempt to achieving a good
text or an excellent song interpretation.

The oval piece in the middle of Model R is for the ap-
plication documentation of all work, a crucial portion of
the software development, starting with Business objec-
tives (OBJs) or Scope of Work (SOW). They can be
linked to other detailed documents from this top-level.
The linked documents can be another diagram or docu-
ment/artifact supporting the OBJs and/or SOW.

The first set of documents is the Strategy and Plans
reports for Requirements, Design, Construction and V&V.
For developers and managers, these follow and detail the
SOW/OBJs. They link to lower-level details described in
the Capabilities and Features reports. All documents and
artifacts are editable and exist as versions much like
those in configuration management. The cross-view ex-
amination of details in the same version level helps the
developers get more insights into gaps, mismatches, in-
consistencies as well as conflicting strategies or details
among them.

Each of the boxes below the Strategies box in each
space is a link to the next lower level of details of de-
scription and documentation/artifacts, until the lowest
level of details diagram is reached. At the last level, the

individual requirement cannot be decomposable anymore.
They are expressed as “shall” statements. At any level of
details, specific requirement capability, design idea on
corresponding feature, construction (in real codes or
pseudo-code), and testing scheme can be decomposed or
composed accordingly. The whole collection can be
thought of as a total, integrated, correlated and synchro-
nized network of work/artifacts among the four quadrants
by rolling up, drilling down and working sideway.

The deliverables (document, artifacts and actual codes)
are embedded in the three major reports as shown in
(Figure 4). These are derived and adapted from the Strat-
egy-Capability-Value approach to information strategy
and management by Applegate et al. [7]. Each new ver-
sion is the next iteration of the previous one.

3.2.1. Strategies and Plans Report
This report contains information as does the common Fea-
sibility report in previous models. The outline of this report
is shown. It basically includes project definition, project
scope, strategy development, overall capabilities, project
plans (estimation, schedule), planned deliverables as well
as other management plans: risk, quality, change, configu-
ration, etc. This list of items shown is not exhaustive.

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process 494

What How

R D C V&VFeasibility

Strategies and Plans report

Reports (documentation and specifications)

Strategies and Plans Outline (Report 1)

1. Project scope
2. Project description
3. Strategy development

a. Requirement strategy
b. Design strategy
c. Construction strategy
d. V&V strategy

4. Application capabilities and features
5. Deliverables (in planned increments)

a. Deliverable 1
b. Deliverable 2
c. …
d. Deliverable M

6. Project plans
a. Version1
b. Version2
c. …
d. Version N

7. Management
a. Risk
b. Quality
c. Change
d. Configuration

8. Discussions
a. Version 1
b. Version 2
c. …
d. Version N

Capabilities and Features (Report 2: specifications)

1. Application capabilities (R)
a. Requirements hierarchy
b. Capability 1
c. ….

2. Application features (D)
a. Design hierarchy
b. Feature 1
c. …..

3. Application modules ©
a. Programming hierarchy
b. Module 1
c. ….

4. Application V&V
a. V&V hierarchy
b. Script 1
c. ….

Values (Report 3)
1. Application values
2. Features values
3. Security
4. Availability
5. Reliability
6. Maintainability
7. …
8. Discussions

This includes feasibility study This includes the specs and codes

Figure 4. Reports and deliverables (specifications and codes).

3.2.2. Capabilities and Features Report
Capabilities are those we have identified by analysis
during requirements. Features are those corresponding to
the planned capabilities during design. These capabilities
and features are described at different levels of details in
this report. Program modules in real codes or pseudo
codes and test cases/specifications are included. At com-
pletion, the final copy constitutes the specifications. It
grows at the same speed as the development itself.

3.2.3. Values Report
This report evaluates values of the software and the qual-
ity of application. It includes availability issues, reliabil-
ity issues, performance issues, maintainability issues,
serviceability issues, and other issues as dictated by the
development. It keeps the project in scope. It promotes
consistencies among reporting items. It does so by ex-
amining their values of capabilities, features, program
modules and/or test cases.

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process 495

3.3. Some Inherent Characteristics

Since all four main tasks (R, D, C and V&V) are con-
ducted at the same time, we always have codes or at least
some pseudo-codes. Prototyping is therefore inherent.
Incremental deliverables are also an inherent part of the
process. The increments can be the core features added
later by extended features, or parts of the whole added by
other parts as the development goes, or any combination
thereof.

Traditional SDLC processes yield unavoidable incon-
sistencies, gaps and mismatches that cannot be discov-
ered due primarily to the separation of concerns until
later phases. As a result, costly analyses of gaps and
mismatches are frequently experienced. This calls for
complex change management, quality management and
configuration management as frequently exercised in
these models. Model R allows the early detection of the
above.

As parallelism is exercised from the start of the project,
development time is potentially reduced. Synchroniza-
tion, correlation and collaboration are also exercised at
every level or scale of abstraction, thus possibly mini-
mize rework. Model R offers an examination of com-
pleteness, correctness, consistency and compliance as the
development goes.

4. Example of a Case Application
Development Using Model R

4.1. Example Problem and Application

For illustration, we select an application and exercise the
idea of improved parallelism via early start and end time
sameness. The application is complex, therefore we se-
lect one use case for illustration.

For this particular use case, we develop requirements,
design, construction and V&V following Model R. We
will not provide the documentation (the three reports
elaborated in section 3) but rather show a screen output
from a collection of input data.

4.2. Application Motivation: An MBE for
Bankruptcy Prevention

Over the last two decades many bankruptcies have oc-
curred. Among them, six cases drew different attentions:
 In 1995, Baring Bank collapse due to the use of an

error account to hide trading losses or chest rated by a
single employee, Nicholas Leeson [8].

 In 2001, Enron collapse due to a group of executives,
Jeff Skilling, Andrew Fastow and Ken Lay in using
primarily Special Purpose Entities (SPE) to hide
losses [9].

 In 2002, Adelphia collapse due to an elaborate and
extensive accounting fraud scheme by its executives

led by John Rigas and his sons [10].
 In 2002, WorldCom collapse due to the report of ex-

penses as capital expenditures and the use of reserve
accounts committed by CEO Bernie Hebbers, Scott
Sullivan, David Myers and Buford Yates [10].

 In 2005 Parmalat collapse due to Calisto Zanti, CEO
and his executive team of relatives and close friends
to invent assets to cover losses and forged documents
[11].

 In 2008 Lehman Brothers collapse due to failed in-
vestment in subprime market and Repo 105 fraud by
Richard Fuld, CEO and others who assisted him [12].

While in the first case (Barings) Nicholas Leeson
brought the bank to collapse, the last one (Lehman
Brothers), the bankruptcy was at the verge of bringing
the financial world to collapse [12]. Ironically since En-
ron, many solutions and recommendations in the finan-
cial, accounting, legal and management were proposed,
started with Sarbanes-Oxley Act in 2002 to tighten con-
trol, external and internal, and punitive measures for
wrongdoings but others collapses kept happening. Obvi-
ously the collection of all solutions and recommendations
collectively could not stop other bankruptcies following
Enron. It appears that another prevention solution, a re-
vised MBE (management by exceptions) for detection of
symptoms and wrongdoing would be appropriate, since
no such solution yet exists. To that end, we develop an
MBE application for bankruptcy prevention. As previ-
ously mentioned, only the portion of the development
effort of use cases is selected to illustrate Model R, and
discussed here as an example.

4.3. Application Modeling Concept

We tend to be lengthy in describing the application mod-
eling concept below since this modeling task is crucial to
all the four spaces of Model R.

In this particular application example, the problem
under investigation and the aspiring solution is based on
the analogy to cancer in humans. The idea is that if we
think of an institution as a human body then its employ-
ees can be analogously considered as the body’s cells.
Thus a group of “abnormal” or “special” employees such
as Jeff Skilling, Andrew Fastow and others in Enron can
develop into a malignant institution tumor which, if pro-
liferated to other organizational units, can bring bank-
ruptcy to the institution, much as a cancer brings death to
human. Symptoms of wrongdoings in Enron were all
there but either undocumented, ignored or went unde-
tected. Analogously, symptoms of cancer in a human
body are there but difficult to find. When cancer symp-
toms are detected, the cancer would be in later phases
and therefore mostly too late. Death is practically un-
avoidable. So was each of the six cases above. When
wrongdoings surfaced, bankruptcy was unavoidable.

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process 496

The analogy to cancer motivates us to look into an in-
stitution as a potential cancerous institution in terms of
structure, functionality and behavior. At the top-level of
Figure 5(a) (left side), the first guiding principle is de-
rived from the concept of “milieu interieur” (or internal
environment) of the body in which all cells bath as stated
by Claude Bernard [13]. Analogously, we observe that
there exists an information environment in which all em-
ployees of an institution live in and act upon.

Next is the principle of cybernetics dealing with feed-
back and control, a concept owned by Norbert Weiner
[14] and is further exploited and applied to business
management discipline, termed managerial cybernetics
by Stafford Beer [15]. Cybernetics is to maintain homeo-
stasis (equilibrium) in the human body. Homeostasis is a
principle by Walter Cannon [16]. We can equate stability
in business as the analogous concept to homeostasis.

At the lower level, it appears that the biological proc-
esses involve the basic constructs created by the cell’s
organelles: the protein synthesis. Analogously, the pro-
teins created in the cells are much like the tasks per-
formed by the employees in the institution. The cellular
exchanges at the membranes are much like the transac-
tions created between employees. Similarly the proteins
to all macromolecules and at the membranes the cellular
exchanges to produce chemical products in a human
body are much like, respectively, the tasks to the projects
and the transactions to the accounts.

In other words, the human tissues, organs, organ sys-
tems made up the structure, functionality and behavior of
a human (middle level) are determined by the constituent
cells governed by genes of the DNA in terms of proteins
and chemical products (low level) to observe the bio-
logical principles of milieu interieur, cybernetics and
homeostasis (top level). Figure 5(a) summarizes the
analogy.

The guiding principles, structure, functionality, be-
havior and all supporting entries in Figure 5(a) do not
suggest how we can address prevention, however. There-
fore, we rearrange them in terms of activities, events and
control mechanisms (shown in Figure 5(b)).

The dotted blue box (activities) indicates tasks
(analogous to proteins) performed by employees, within
projects, analogous to macromolecules, and which in
turn are reported in accounts(analogous to chemical
products) by numerous transactions, analogous to cellu-
lar exchange, during the business processes (analogous
to the biological processes). All employees work in the
institution’s information environment (analogous to the
cells in the interstitial fluid and plasma-milieu interior)
and produce activities where events occur (e.g. analogous
to the diffusion due to different levels of concentration at
cell membranes). These are subject to control and feed-
back (managerial cybernetics/cybernetics) to keep the

Human body Institution

Guiding principles “Milieu interieur”  Information environment

Managerial cybernetics
(Stafford Beer)
Stability

(top level) (Claude Bernard)
Cybernetics 
(Norbert Weiner)
Homeostasis 
(Walter Cannon)

Organization
(mid‐level)
Structural Cells, Tissues, Organs 
Functional Organ systems 
Behavior Biological processes 

Employees, Professionals, Dept.
Division
Business processes

Supporting entities
(low‐level) Cells Employees

Proteins 
Macromolecules 
Cellular exchange 
Chemical products 
DNA (genes) 

Tasks
Projects
Transactions
Accounts
Policy (regulations)

(a)

Employees  Tasks  Projects  Processes :Activities
do belong to follow

Business Stability‐driven MBE framework
(activemanagement by exception)

Transactions  Accounts  Statements

Data Control/Feedback Exceptions : Events
Information  Managerial  Stability
Environment Cybernetics

Wrongdoings :Symptoms

Policy (rules, statements, conditions, etc.) :Control
Operations
Management (Executive)

(b)

Figure 5. Modeling for bankruptcy prevention. a) analogy
between human body and institution; b) Framework for
Business institution.

institution stable or in equilibrium (homeostasis). The
blue, continuous arrow lines show the interconnections
among the activities that cause events.

Note that the application modeling in this subsection is
developed at the conceptual level. It produces a business
framework (Figure 5(b)) for further application devel-
opment. It is the umbrella for the parallel development
tasks to be discussed next.

4.4. Development of Use Cases Using Model R

We want to show the development that occurs in four
domains at the same time: requirements definition, de-
sign, construction (prototyping) and V&V.

First of all, the application model described in the pre-
vious subsection (Figure 5) serves as a conceptual model
of the problem space and solution space. Refer to Figure
6. In Step 1, we develop a document on use cases which
involves all R, D, C and V&V. The content of this
document is very much similar to the application devel-

pment concept subsection above. o

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process

Copyright © 2013 SciRes. JSEA

497

Figure 6. Development of use cases.

In Step 2, the analysis is carried out for requirements
definition, while design is investigated, programming
structure (construction) is drawn, and test cases are
drafted. All these effort are carried out within the scope
of the selected use cases.

Step 3 is also done across the board. Detailing the de-
velopment to lower levels to reach “shall” statements
exhibiting the capabilities in Requirements specs while
modules/components/features are being composed (De-
sign). For example in Requirements space, the use of too
many SPEs (Special Purpose Entities) in the Rhythms
Net Connections partnership should be considered as a
potential item of interest. They should be investigated in
a decomposition to lower-level details such as who is in
charge of the SPEs, amounts involved, whether they le-
gitimately satisfy the 3% SEC conditions. Subject to
some criteria, these details could be flagged as exceptions
if not satisfied.

While the decomposition is done in Requirements
space for identifying capability, some composition can
be draft as design feature in Design space. The capability
would be investigated and evaluated whether the collec-
tion of low-level details are enough for a severe, warning
or normal situation in the design space. There are poten-
tial missing details. But they would be eventually identi-
fied by the correlation between the decomposition in
Requirements and the composition in the Design. New
findings would emerge in the process: unusable require-
ments, unrealistic requirements, or flaw design would be
detected such as incompleteness or incorrectness in the
combined information.

Program structure is further detailed as necessary
classes and methods (with or without codes) for process-
ing. Similarly test scenarios for V&V based on use case
scenarios can be sketched and pulled together for testing
of these design/program feature portions.

Step 4 is conducted to observe quality measures in
terms of completeness, correctness, consistency and
compliance in the use cases. Shall statement list (Re-
quirement), corresponding class diagram and activity
chart or swim lanes (Design), and the corresponding
program structure, and test scenarios (all not shown)

together are compiled. So where does the parallelism
take place? The parallelism occurs in all four spaces:
problem (capabilities or requirements), solution (features
or design), Construction (program modules) and V&V
(test cases).

Figure 7(b) shows an output compiled the symptoms
potentially leading to wrongdoings in the Enron case in
terms of red exceptions (severe), yellow (warning) or
green (normal) disseminated for decisions by the re-
sponsible (board of directors, top executives, managers,
professionals, auditors, supervisors, counsels, etc.). The
report is compiled from data of the use case (Enron):
Steps 2 and 3 (Requirements) of Tasks, used in the data
model in (Design), which is programmed with test sce-
narios developed—(Construction and V&V).

The SPE creation (first row in the Exception report in
Figure 7(a)) was among three strategies listed under the
Policy entity report–top part of Figure 7(b). The Finan-
cial Analysis task was assigned to a professional (Ka-
minski) who raised concerns (“Yellow”). The Task entity
report of Figure 7(b) included other tasks performed by
an Enron manager (Woytek), an accountant (Bass), and
an outsider (Mack) who raised concerns (all “Yellow”)
on the MTM scheme in the 1990’s. The Project entity
report of Figure 7(b) shows an example of a good pro-
ject (Cactus III—marked “Green”) and two projects
(Chewco and Rhythms Net Connections) with warning
indicators due to SPEs partnerships (“Yellow”) however
both of them were overridden by Lay and Skilling. The
remaining reports are self-explained.

5. Concluding Remarks and Future Work

In traditional models, phase approach is a strong strategy
that has proven to be well-organized and successful. But
in some situations, it hinders the correlation ability of
human mind at real situations for problem solving be-
cause of separation of concerns (i.e. during Require-
ments Definition, developers are not allowed to think of
the how, during Design, developers are not allowed to
think of implementation tools such as which program-
ming language is to be used, etc.). It also inherently in-
troduces gaps and mismatches between R and D phases

Improving Parallelism in Software Development Process 498

(a)

(b)

Figure 7. Application output and inputs. (a) Output (exceptions list); (b) Inputs (symptoms list-combined).

that can be only discovered at a later time among other
problems discussed earlier.

Agile development strategy approaches this situation
in an elegant way but it does not take full advantage of
human intellectual spectrum of integration and correla-
tion. Scope is smaller for development control and qual-
ity assurance.

The parallelism of the proposed model stems on the
basic fact that human can do many complex tasks at the
same time and human ability can be exploited to the full
extent. The Model R offers the unique opportunity for
developers to exercise their human ability in identifying
potentials for parallelism. The parallelism is performed
by considering that the phases are different (but relevant)
spaces during the same period of time. The initial scheme
in this approach is early start and end time sameness for
improvement of parallelism, therefore cost and time re-
duce. We do not provide cost-benefits analysis or
CPM/PERT to measure the savings in cost or time. A
more thorough investigation is necessary to push the par-
allelism further.

Note that the Model R assumes that developers are

experienced in development for exercising synchroniza-
tion, correlation and/or collaboration. Furthermore, two
challenges arise from the basic nature of the model: 1)
higher complexity and 2) updates to the existing SOP for
application development, including the documentation
reports. These are topics of our future research.

REFERENCES
[1] R. Pressman, “Software Engineering: A Practitioner’s Ap-

proach,” 7th Edition, McGraw-Hill Science/Engineering/
Math, Boston, 2010.

[2] S. Cimic, “Applying Agility to the Parallel Software De-
velopment Lifecycle,” Proceedings of Midwest Instruc-
tion and Computing Symposium, April 2007.

[3] Software Methodologies, 2013.
http://softwaremethodologies.blogspot.com/2009/04/adva
ntages-disadvantages-of-various.html

[4] S. Ambler, “Agile Modeling,” 2013.
http://www.agilemodeling.com/style/activityDiagram.htm

[5] F. Hurley, “An Approach to Agile Automation Testing,”
2008.
http://www.cigital.com/presentations/Agile%20Automati

Copyright © 2013 SciRes. JSEA

Improving Parallelism in Software Development Process 499

on %20Testing.pdf

[6] T. N. Nguyen, “Cancer and Deadly Infections in Institu-
tions: Developing Use Cases for an MBE Application to
Prevent Another Enron or Barings,” Proceedings of the
Eighth International Multi—Conference on Computing in
the Global Information Technology, Nice, July 2013.

[7] L. M. Applegate, R. D. Austin and D. L. Soule, “Corpo-
rate Information Strategy and Management,” 8th Edition,
McGraw-Hill, Boston, 2009.

[8] N. Leeson, “Rogue Trader,” Little Brown Book Group,
Boston, 2012

[9] B. Dharan and N. Rapoport, “Enron and Other Corporate
Fiascos,” Foundation Press, New York, 2009.

[10] K. F. Brickey, “From Enron to WorldCom and Beyond:
Life and Crime after Sarbanes-Oxley,” Washington Uni-
versity Law Quarterly, Vol. 81, No. 2, 2003, pp. 357-401.

[11] C. Celani, “The Story behind Parmalat’s Bankruptcy,”
Executive Intelligence Review, Vol. 31, No. 2, 2004.

[12] L. McDonad and P. Robinson, “The Colossal Failure of
Common Sense,” Crown Business, New York, 2009.

[13] C. G. Gross, “Claude Bernard and the Constancy of the
Internal Environment,” Neuroscientist, Vol. 4, No. 1,
1998, pp. 380-385.

[14] N. Weiner, “Cybernetics or Control and Communication
in the Animal and the Machine,” The Technology Press,
1948.

[15] A. S. Beer, “Brain of the firm: Managerial Cybernetics of
Organization,” 5th Edition, Allen Lane, 1972.

[16] W. Cannon, “The Wisdom of the Body, The Norton Li-
brary,” Norton & Company, New York, 1963.

Copyright © 2013 SciRes. JSEA

