
Journal of Software Engineering and Applications, 2013, 6, 184-195
http://dx.doi.org/10.4236/jsea.2013.64024 Published Online April 2013 (http://www.scirp.org/journal/jsea)

An Approach to Developing a Performance Test Based on
the Tradeoffs from SW Architectures

Byoungju Choi*, Miso Yoon, Heejin Kim

Department of Computer Science and Engineering, Ewha Womans University, Seoul, South Korea.
Email: *bjchoi@ewha.ac.kr, misoyoon@ewhain.net, heejinkim@ewhain.net

Received February 26th, 2013; revised March 27th, 2013; accepted April 3rd, 2013

Copyright © 2013 Byoungju Choi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In a performance test, the standards for assessing its test results are not sufficiently determined due to the lack of a
well-structured test developing methods which are found in a functionality test. By extending the established workflow
structure, this approach will concentrate on tradeoffs within T-workflow and further develop tests based on T-workflow.
The monitoring and tuning point have also been investigated to understand the validity and performance of software.
Finally through a case study, it has been shown that better assessment of software performance can be obtained with the
suggested tests developed based on T-workflow and by locating its monitoring point and tuning point.

Keywords: Performance Test; Performance Tradeoff; Tuning Point; Performance Test Coverage

1. Introduction

A quality of software (SW) is directly related to its per-
formance testing, in which the system’s efficiency and
reliability are assessed. Performance test measures the
speed under certain loading conditions and discovers bot-
tlenecks within the functions of a system. A performance
test is conducted primarily for verifying a system’s satis-
faction of the performance objectives [1]. Performance of
a system is affected by many complex factors; one of the
performance attributes can affect another.

A SW performance is validated with a performance
evaluation before SW development. It is also validated
by performance test completed after SW development.
Performance models are used to build the performance
evaluations, and the most frequently used models are
based on the software architecture (SA) [2,3]. Most per-
formance evaluations are built with performance models
that only assess the performance of SA, not the SW.
Therefore, there is an inevitable gap between the per-
formance results analyzed with performance models and
the realized SW performance. In other words, there are
limitations in a performance evaluation designed only with
performance models.

On the other hand, a performance test is built with
performance requirements and workload models. Many
studies have been asserting the importance of clarifica-

tion of performance requirements in developing depend-
able performance tests due to the fact that most of the
tests are conducted by framing test scenarios based on
the performance requirements. Other performance tests
are built with more realistic workload models developed
through analyzing user behavior patterns. Whether the
test cases were developed based on performance require-
ments or workload models, only achievement of perform-
ance requirements can be verified for test items. There-
fore the complex relationships between performance at-
tributes are not reflected despite of their importance. In
this paper, a performance test’s coverage is defined for
analyzing performance attributes’ side-effects and the test
cases satisfying the suggested coverage is developed.

It is generally believed that the performance of SW is
determined at the SA development stage. Before the de-
velopment of SW, SAs are mostly used for performance
assessment [4]. Architecture tradeoff analysis method,
ATAM [5], is one of many assessment methods using SA,
in which the compatibility of architecture is evaluated by
analyzing achievement of the initially intended quality
objectives and detecting risky components through ana-
lyzing the tradeoffs of architectural decisions. In this
paper, a performance test coverage is defined using above-
mentioned tradeoffs of architectural decisions. Also, a
new approach to develop more systemic performance test
cases is proposed using the analysis of the causality of
performance attributes’ side-effects. *Corresponding author.

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 185

Following this introduction, existing architecture-based
performance evaluations, performance analyses and per-
formance tests are examined in Section 2. In Section 3,
suggested methods and processes of developing such test
cases are explained. In Section 4, case study for NAND
flash memory file system applying the suggested meth-
ods is explained. Finally in Section 5, this study is con-
cluded with future plans.

2. Related Works

2.1. Performance Test

Performance is one of the features of a whole system,
reflecting its overall functionalities. A performance test
is usually conducted at the system test level after com-
pletion of system development. The scenario-based black-
box technique is used for commonly employed perform-
ance test methods and tools. The technique develops test
scenarios based on performance requirements [4,6] or
measuring workloads by analyzing the existing usage
data [7]. However, specification-based performance test-
ing at the system level focuses on measuring perform-
ance only within certain loading conditions. Therefore it
is difficult to detect the cause of performance problems.
Moreover, because the system development is already
completed, there are limitations when solving the identi-
fied problems.

Studies on the existing model-based performance testings
are mostly aimed at constructing more realistic work-
loads [8] and their System Under Test, SUT, is focused
on web-applications [9,10]. There are two commonly-
used methods for constructing workloads; the recently
developed method, using analysis of the existing log files
for web-applications and the method deriving from user
behavior patterns obtained from existing similar applica-
tions. These two methods, however, require time and
resources for collecting and analyzing the existing log
files and user behavior patterns.

2.2. Software Architecture Based on
Performance Test and Analysis

Software architecture is a set of important decisions made
on the structure of SW. SA illustrates structures of SW at
a high level of abstraction [2]. Because the realization of
SW is established based on its architecture, SW per-
formance is greatly affected by SA.

There are various studies on SW performance analysis,
using SAs at the early SW development stage through
performance prediction and evaluation. By analyzing the
SW performance in SW development stage, weaknesses
of SW can be discovered as early as to be supplemented
or adjusted, leading to the improvement of SW quality.
In Software Performance Engineering, SPE [11], the use
of mathematical performance models is proposed to as-

sess the performance at every stage from the beginning
of the SW development.

Recently, a performance model using the SA regular
requirement models has been suggested for analysis of
the SW performance. Such a model can help select the
SA with optimum performance [2,3]. However, these
methods are basically used for selecting the optimal ar-
chitecture at the development stage due to the inevitable
gap between the SAs and the realized SWs. Therefore,
additional performance tests are required after SW de-
velopment.

In this paper, utilization of analyzed results of archi-
tectural decisions’ tradeoffs is suggested for developing
performance test cases. Architecture decisions are major
SA solutions, directly influencing on the establishment of
performance attributes and their tradeoff-relationships.
They can influence over more than one quality attributes.
Through analysis of the tradeoffs within architecture de-
cisions, four methods have been suggested for perform-
ance testing: 1) setting performance evaluation indices; 2)
developing test cases applying the tradeoff-based work-
flow design as a test coverage; 3) identifying a monitor-
ing point and using the performance-affecting data, moni-
tored for interpreting the performance test results; and 4)
identifying a tuning point. Several terms, such as trade-
based workflow, a monitoring point, and a tuning point,
are more clearly defined and explained in detail in fol-
lowing Section 3.2. Besides four methods proposed in
this paper, the study also aims at analysis of the side-
effects of the performance attributes through a perform-
ance test, in which performance indices are set and test
cases are built based on the tradeoffs.

3. A New Method for Developing
Performance Tests

To build performance test cases more effectively, the
study addresses the two major test issues. First is “what
should be tested in the performance test”, which uses SA
tradeoffs in building performance tests. In the existing
test methods, only one performance index has been evalu-
ated. However, if a performance attribute in a trade-
off-relationship with another is selected to be tested as a
performance index, its tradeoffs belonged to another
quality attribute are also selected as performance indices.
By evaluating the two or more performance indices si-
multaneously, the test results can be focused on the
analysis of side-effects of performance attributes.

Second test issue is “what should be selected as input
variables for each test case”. Problems in performance
are usually caused by complex functions with various
factors, and therefore, it is difficult to discover the causes.
However, if a test case is built with selected key vari-
ables in SW performance, the cause of the performance
problems can be more easily understood and analyzing

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures

Copyright © 2013 SciRes. JSEA

186

problems of a flash memory, secures empty blocks for
file writing by using garbage collection, and enhances the
mount speed through the checkpoint. Major architectural
decisions for performance enhancement and the related
SW structures for YAFFS2 are shown in Table 2.

the actual values of input variables can become easier to
handle. In this paper, a workflow which illustrates the
tradeoff-relationships between performance attributes,
called T-workflow, has been drawn and test cases have
been built in a way to cover this T-workflow to select
appropriate input variables. Furthermore, new methods
for locating a monitoring point and a tuning point is in-
troduced. A monitoring point is a performance affecting
point with which analysis of the causes of performance
degradation can be better understood. A tuning point is a
point at which performance adjustment can be made to
find the optimal performance state.

3.2. T-Workflow

The T-workflow in this study is designed to illustrate the
flow of events caused by architecture decisions trade-
off-relationship and include the monitoring and tuning
points.

Figure 1 illustrates the flow of inputs and outputs in
developing test cases. T-workflow is drawn based on
performance requirements, SA decisions which satisfies
the requirements, and the SA itself. Then, test cases are
developed with the T-workflow. In this section, as a run-
ning example, the suggested method is explained by
building a performance test case for YAFFS2, the NAND
flash memory file system [12].

3.2.1. Tradeoff
Tradeoffs is a relationship between two or more quality
attributes in which satisfying one attribute results in an-
other’s sacrifice. For example, when a bit-encryption
number is increased in a virtual private network which
enhances its coding level, reliability can be improved,
but its time responsiveness is declined because more
processing time is required. So, in this case, reliability
and time responsiveness are in the tradeoff-relationship. 3.1. Running Example: YAFFS2

In Table 3, tradeoffs of file write speed for YAFFS2
are shown. Here, the greedy garbage collection is se-
lected among YAFFS2 architectural decisions to illus-
trate the tradeoff-relationship in more detail. YAFFS2
employs a greedy technique. It searches over the whole
NAND memory in an aggressive mode when there are
less than 10 empty blocks and otherwise it is in a passive
mode searching only fractions of the NAND memory and
thus, selecting the garbage collection blocks.

YAFFS2 is a file system based on the Linux, a major file
system for Android OS and NAND flash memory. It
supports page write in 2 KB units as well as other major
attributes such as fast write speed, mount speed and
wear-leveling. In Table 1, YAFFS2’s major quality at-
tributes are classified, and its major performance attrib-
utes are file write speed, file read speed, and mount
speed.

YAFFS2, based on log-structure, solves over-writing In other words, with less than 10 empty blocks, the

Figure 1. Developing process of tradeoffs-based performance tests.

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 187

Table 1. Quality atrributes and performance requirements for YAFFS2.

Quality Attribute Sub Quality Attribute Test Item Requirement

File Write Speed Faster than 1.8 M/s

Mount Speed At least 43 M/s Performance

File Read Speed Faster than 7.5 M/s

Block Management Free space secured with garbage collection

Effectiveness

Resource Efficiency
Memory Management CPU occupation less than 10%

Error Recovery Recovering in case of error occurrence

Data Integrity Data integrity secured Fault Tolerance

Wearleveling Leveling the number of erasing on every block

Error Detection Data Error detected

Reliability

Recoverability
Error Correction Data Error corrected

Installability Installability Various platforms supported
Portability

Adaptability Adaptability Various OS supported

Table 2. Architectural decisions and software architectures related to file write speed of YAFFS2.

Test Item Architectural Decision Software Architecture

Ÿ When: the number of empty blocks is less than 10

Greedy Garbage
Collection

Ÿ What: setting the aggressive variable = 1 and searching over the whole NAND memory

Ÿ When: page size is not 2048 KB

File Write Speed

Cache

Ÿ What: searching the cache to write on

Table 3. Tradeoffs, monitoring points, and tuning points of file write speed for YAFFS2.

Test Item
Architectural

Decision
Tradeoff Monitoring Point Tuning Point

+ Resource Efficiency
Retainment of free chunks

of NAND memory
Greedy
Garbage

Collection − Time Responsiveness Decreased file write speed

Number of setting
“aggressive = 1”

Number of empty blocks
setting “aggressive = 1”

+ Time Responsiveness Increased file write speed
File Write Speed

Cache
− Reliability

Loss of data by a sudden
power off

Existence of Cache flush
“data size” writing on

cache

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures

Copyright © 2013 SciRes. JSEA

188

architectural decision, greedy garbage collection, retains
free chunks of NAND memory by finding a block that
can hold most of the free chunks. That is, its positive
tradeoff, resource efficiency, is enhanced. However, at
the same time, to find that block, the whole NAND
memory needs to be searched over, and thus file write
speed, its negative tradeoff, is decreased.

3.2.2. Monitoring Point
A monitoring point is data which affects the performance
measurements, giving clues when analyzing the cause of
performance degradation. A decision making point in an
architectural decision is also often referred as a monitor-
ing point. Measuring the values of a monitoring point
leads to discover which factor has affected on the per-
formance and thereby, helps interpreting the performance
testing result. A monitoring point also helps locate “what”
architectural decisions triggers to happen with two or
more performance attributes in the tradeoff-relationship
and “what” in this case is a monitoring point.

For example, as shown in the SA of greedy garbage
collection in Table 2, when the aggressive variable value
is set to 1, its positive tradeoff is enhanced by searching
the whole NAND memory and consequently its negative
tradeoff, file write speed, is decreased. In other words, as
the number of setting the aggressive variable to 1 is in-
creased, its negative tradeoff, file write speed, is more
degraded. Therefore, in this case, the monitoring point is
the number of setting aggressive variable to 1. According
to this monitoring point, changes in file write speed and
securing free chunks of NAND can be analyzed.

3.2.3. Tuning Point
A tuning point is an adjustment-required variable which
needs tuning to find the optimum performance state
when the performance requirements are unsatisfied. Like
the monitoring point, a tuning point can be found using
tradeoff-relationship. When a tradeoff-relationship is sus-
pected to cause performance degradation, by controlling
the situation or conditions causing the tradeoff-relation-
ship, performance degradation can be prevented. In other
words, by analyzing the tradeoffs results influenced by a
variable, appropriate tuning of the variable can be made
to prevent the performance degradation.

For example, as shown for greedy garbage collection
in Table 2, the negative tradeoff, file write speed de-
crease, is induced at the point “when the number of
empty blocks is less than 10”. This means that the bifur-
cation condition of causing or not-causing the tradeoffs is
“the number of empty blocks”. Therefore, the tuning
point of the greedy garbage collection is the number of
empty blocks, which determines setting of aggressive
variable to 1.

3.2.4. T-Workflow
Workflow diagram is a flow chart which clarifies flows
of tasks and actions from a person, composed of set of
arrows connecting actions to show its flow [13]. At the
system test stage, black box technique is used mostly
based on requirements and the flow of user commands
can be used as workflow, illustrating test scenarios.

For example, to test the performance of file write of
YAFFS2, a workflow can be drawn as shown on the top
of Figure 2. It is because YAFFS2 which is located in-
side the kernel can be accessed through system calls such
as open or write triggered by a person.

However, there is a limitation in developing test cases
for performance testing of file write of YAFFS2 only
with the workflow of system calls. If a test case is de-
veloped regarding only system calls, it is difficult to pre-
dict the internal status of YAFFS2 because there are only
system calls to be used for analyzing the cause of per-
formance problems. Therefore, extension of workflow
chart is needed to describe internal state of the test sub-
ject in more detail. However, it is too broad to illustrate
every process handled by YAFFS2 through system calls
and limiting the extension range is also necessary.

In this paper, the extension range of the workflow is
focused on the tradeoffs for analysis of side-effects. To
show the location of the tradeoffs of the tested source
codes, extended T-workflow is suggested. By extending
the workflow composed of the existing user triggered
calls, T-workflow illustrates that what kinds of trade-
off-relationship is induced by which user commands in-
side the test subject. Also, the tuning and monitoring
points related to this are illustrated. An additional com-
ponent for T-workflow is shown in Figure 3.

In Figure 2, T-workflow diagram about the perform-
ance of file writing is illustrated with basic workflow of
applications extended with the components shown in
Figure 3. Because the architecture decision, greedy gar-
bage collection, with tradeoffs of file writing perform-
ance is executed when writing system is called, T-work-
flow can be drawn by extending SW structure of greedy
garbage collection in the tradeoff-related area based to
writing system call. At the bottom of Figure 2, it is illus-
trated that in the “tradeoff-related area”, the tuning point
is set as a reference point for division mark between
tradeoff-occurring and tradeoff-not-occurring paths. The
monitoring point, which is affected by occurrence of
tradeoffs, is also shown in Figure 2.

3.3. Test Coverage and Test Cases

A test case is generally composed of inputs, expected
outputs and actual outputs. As shown in Figure 1, our
performance test cases include the estimation of per-
formance tradeoffs in the expected outputs and the moni-

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 189

Figure 2. T-workflow diagram for greedy garbage collection of file write speed for YAFFS2.

 Tradeoff Occurring Location A location at which tradeoffs are induced by some of user-triggered commands

 Tradeoffs-Related Area
An area showing both the tradeoff f-occurring and the tradeoff-not-occurring paths from the tradeoff
occurring location inside the test subject

 Tradeoff Occurring Path Tradeoff-occurring path among tradeoff-related extension area

Tuning point

A bifurcation condition dividing into tradeoff-occurring and tradeoff-not-occurring paths in the
tradeoff-related extension area

 Monitoring point A variable and its location, influenced according to the tradeoff-occurring or tradeoff-not occurring paths

Figure 3. The components of T-workflow.

toring point value in actual outputs.
T-workflow diagram can be used as performance test-

ing coverage. In this paper, the all-edge is applied among
the existing white-box test criteria. For example, if edge
coverage is applied on the basic workflow shown on the
diagram at the top of Figure 2, the paths shown with
thick lines are “WP1: “1→2→4→5→8→11→12→15”,
covered in a set of test cases shown in Table 4. When the
edge coverage is applied to the T-workflow suggested in
this paper, not only the basic workflow but also the ex-
tended diagram shown at the bottom of Figure 2 must be
covered. When extended to T-workflow, the tuning point
value is also included in inputs because there is a bifur-
cation at the tuning point. Table 5 shows a set of test
cases for TWP1 and TWP2, obtained from WP1 added
with extended paths from tradeoff points in our T-work-
flow. In Figure 2, NAND memory usage, which reflects
the number of empty blocks, is the variable to cover the
tradeoff used as a tuning point. Therefore, tests covering
TWP2 is for those with less than 99% NAND memory
usage.

4. Case Study

4.1. Test Subject and Purpose

Through a performance testing, it is commonly verified
whether performance requirements are satisfied or not.
Also, important objectives of performance testing are to
find when the performance is declined and to identify the
tuning point of the performance by analyzing the cause.
Generally the black-box tests based on performance re-
quirements are conducted to confirm the achievement of
each performance requirements through selecting test
data among the mostly used data range by the user-based
workflow.

In this paper, through the case study, the superiority of
our T-workflow-covering test is shown, compared to the
existing workflow-covering test in two aspects: 1) the
effectiveness in evaluating the performance and 2) the
advantage of the tuning point. Firstly, through the per-
formance testing covering T-workflow, it is shown that
how tradeoffs analysis contributes to the performance
evaluation. If a key variable can be identified among

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 190

Table 4. Workflow based tests and results.

Input
Expected
Output

Actual Output

ID Path NAND Memory
Usage

(initial condition)

Lseek () Search
Location

Write ()
File Size

File Write
Speed

File Write
Speed

Test Result

TC_1_1 0% ~ 10% - 1 M 2.01 MB/sec Pass

TC_1_2 10% ~ 20% - 1 M 1.9 MB/sec Pass

TC_1_3 20% ~ 30% - 1 M 2.0 MB/sec Pass

TC_1_4 30% ~ 40% - 1 M 2.0 MB/sec Pass

TC_1_5 40% ~ 50% - 1 M 2.0 MB/sec Pass

TC_1_6 50% ~ 60% - 1 M 2.0 MB/sec Pass

TC_1_7 60% ~ 70% - 1 M 2.0 MB/sec Pass

TC_1_8 70% ~ 80% - 1 M 2.0 MB/sec Pass

TC_1_9 80% ~ 90% - 1 M 2.0 MB/sec Pass

TC_1_10

WP1: “1→2→4→5→8→11→12→15”

90% ~ 100% - 1 M

1.8 MB/sec

0.58 MB/sec Fail

Table 5. T-Workflow based Tests and Results.

Input Expected Output Actual Output

Tuning Point
(initial

condition)
Input Variable Tradeoff (+) Tradeoff (−) Tradeoff (+) Tradeoff (−)

Monitoring
Point

ID Path

NAND
Memory Usage

Lseek ()
Search

Location

Write ()
File Size

Number of
Newly

Retained
Free Chunks

File Write
Speed

Number of
Newly

Retained Free
Chunks

File Write
Speed

Number of
Setting

“aggressive = 1”

Test
Result

T_TC_1_1 0% ~ 10% - 1 M 0 1.9 MB/sec 0 Pass

T_TC_1_2 10% ~ 20% - 1 M 0 2.0 MB/sec 0 Pass

T_TC_1_3 20% ~ 30% - 1 M 0 2.0 MB/sec 0 Pass

T_TC_1_4 30% ~ 40% - 1 M 62 2.0 MB/sec 0 Pass

T_TC_1_5 40% ~ 50% - 1 M 0 1.9 MB/sec 0 Pass

T_TC_1_6 50% ~ 60% - 1 M 0 2.0 MB/sec 0 Pass

T_TC_1_7 60% ~ 70% - 1 M 0 1.9 MB/sec 0 Pass

T_TC_1_8 70% ~ 80% - 1 M 0 2.0 MB/sec 0 Pass

T_TC_1_9

TWP1:
“1→2→4
→5→8→16
→17→18→20
→22→24→26
→27→11→12

→15”

80% ~ 90% - 1 M

More than 0 1.8 MB/sec

0 2.0 MB/sec 0 Pass

T_TC_1_1
0

TWP2:
“1→2→4→5
→8→16→17
→19→21→22
→23→25→27
→11→12→15”

99% - 1 M More than 0 1.8 MB/sec 520 0.18 MB/sec 70 Pass

many complex factors which affects on the performance,
adjusting the variable can be very effective for optimiz-
ing the performance. Secondly, it is shown that how
much and what kind of changes can be made on per-
formance after adjusting the tuning point.

The subject of a case study in this paper is YAFFS2.
The performance test items are file write speed, mount
speed, and file read speed. However, as NAND flash
memory basically supports fast file reading, there was no

tradeoff of file reading in YAFFS2. Therefore, in this
study, performance tests are conducted on two perform-
ance test items of YAFFS2, file write speed and mount
speed, using the previously suggested methods in this
paper, and greedy garbage collection result of file write
speed is analyzed.

The tests carried out in this study are shown in Table 6.
For example, for greedy garbage collection of file write
speed, there are 6 test paths, and 100 tests are formed to

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 191

Table 6. Some of test sets.

Workflow Based Test T-Workflow Based Test
Performance Test Items

Path #of tests Path # of Tests Path # of Tests

WP1 10 TWP1 1 TWP2 9

WP2 10 TWP3 1 TWP4 9

WP3 30 TWP5 3 TWP6 27

WP4 30 TWP7 3 TWP8 27

WP5 10 TWP9 1 TWP10 9

WP6 10 TWP11 1 TWP12 9

File Write Performance Greedy Garbage Collection

Total 100 Total 100

cover them all when edge coverage is applied only to the
workflow shown on top of Figure 2. When it is extended
to T-workflow and edge coverage is applied, there will
be 12 test paths in total due to the bifurcation at the tun-
ing point dividing into two different paths. To cover the
12 test paths, 100 test cases are selected.

4.2. Test Results and Analysis

4.2.1. Effectiveness in Evaluating the Performance
Good performance test evaluates the performance prop-
erly through its results and also enables the analysis of
the causes of performance degradation. For file write
speed, the results of workflow tests and T-workflow tests
are shown in Figures 4 and 5, respectively. The tests
which are developed based on the simple workflow
measure values of the performance index of a test item.
As shown in Figure 4, x-axis represents test cases and
y-axis represents performance index of the test item. As
shown in Table 1, performance requirements states with
more than 1.8 M/s for file write speed and 7.5 M/s for file
read speed are needed. In cases of TC_1_10, TC_1_60,
and TC_1_100, the file write speed is shown to be de-
creased as in Figure 4.

In Figure 5, T-workflow based tests results are shown
with test cases on x-axis and tradeoff measurements on
y-axis. On the file write speed graph (a), the right side of
the y-axis is for the number of newly secured free chunks
as the positive tradeoff and the left side is for the meas-
urement of file write speed as the negative tradeoff. In
graph (b), the measurement of the monitoring point is
shown. As mentioned in Section 3.2, the monitoring
point for file write speed is the number of setting “agr-
gressive = 1”.

In graph (a), it is shown that file write speed is de-
creased in 10 test cases such as T_TC_1_10, T_TC_1_20
and etc. while its tradeoff, the number of newly secured
free chunks, is increased. T_TC_1_10 is examined more
closely. The file write speed is 0.18 M/s, not satisfying
the performance requirements, but the number of newly
secured free chunks is more than 400, showing enhanced
resource efficiency. Those cases shown in graph (a) cor-

respond to graph (b), showing that, for such cases, the
number of setting “aggressive = 1” is more than 60 times.
As shown in the SA of greedy garbage collection in Ta-
ble 2, if 1 is set for aggressive variable, whole NAND
memory is searched to find garbage collection subject
blocks so that the most number of free chunks can be
retained. In the monitoring point graph of Figure 5(b),
for test cases with more than 60 settings of “aggressive =
1”, it can be deduced that many of free chunks can be
secured with the cost of decreased file write speed due to
the frequent calculations, searching the whole NAND
memory during the file writing.

Therefore, despite of the unsatisfied performance ob-
jective, file write speed, for the enhanced resource effec-
tiveness and its tradeoff, the 10 test results including
T_TC1_10 are not counted as failed but passed cases. In
contrast to this result, previously in the workflow based
tests, T_TC1_10 and TC_1_10 with the same test input
values are regarded as failed cases.

As shown in the test results illustrated in graph 5, per-
formance testing is not sufficient only with final per-
formance indices. However, the performance testing can
be improved by analyzing the test items side-effects, us-
ing the tests covering the tradeoff area. It is because, as
shown in our example, other performance attribute might
be enhanced even though the test item did not satisfy the
performance requirements, resulting in passed test cases
in overall. Also, it is shown that the monitoring point, the
variable and the point changing with tradeoff-occurring
and not-occurring paths, help analyzing the test results
since they are the factors influencing on performance
measurement values.

4.2.2. The Advantage of Tuning Point
A tuning point is the point with the bifurcation condition
determining between the tradeoff-occurring and not-oc-
curring paths, which can be used to adjust the SW per-
formance. Through adjustment of the suggested tuning
point values, it can be helped to determine the optimum
performance state. In Figure 6, results of adjusting file
write speed tuning point are shown. The dotted-line is for
before tuning and the solid line is for after tuning.

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 192

Figure 4. Workflow based test.

(a) File Write Speed

(b) Monitoring Point of File Write Speed

Figure 5. T-workflow based test.

For representing the measurements of the negative
tradeoff, square is used for before tuning and star for
after.

If the Figure 5(a) is regarded as before tuning, the dot-
ted-lines and squares in Figure 6(a) represent the cases
when the number of empty blocks is less than 1% of
NAND capacity. The solid line and stars in Figure 6(a)
represent the cases when it is less than 25% of NAND
capacity.

In Figure 6(b), only test results from T_TC_1_7 to
T_TC_1_10 are illustrated. In (b), T_TC_9 is shown to
satisfy its expectation in file write speed of 2.0 MBs/sec
before tuning, but the speed is decreased to 1.5 MBs/sec
after tuning. The number of newly recurred free chunks
has increased to 4 from 0 after tuning. In Figure 6(d), it
is shown that the monitoring point of T_TC_1_9, number
of setting “aggressive = 1”, was measured more than 500

times after tuning. T_TC_9 has failed because the num-
ber of setting “aggressive = 1” is measured too many
times, scanning the whole NAND too frequently, de-
creasing file write speed but not securing enough number
of free chunks. It passed before tuning but failed after.

In T_TC_10, before tuning, the test result was re-
garded as passed because of the increased number of
newly secured free chunks despite of unsatisfied ex-
pected output in file write speed of 018 MBs/sec. After
tuning, file write speed was enhanced to 0.6 MBs/sec but
still fails to satisfy the performance expectation. The
number of newly secured free chunks was 520 resulting
in enhanced resource effectiveness before tuning, but
decreased to 33 after tuning, which, with the unsatisfac-
tory file write speed, eventually led to failed test result.

As shown in Table 7, after tuning, 14 tests, which
were determined as passed, are determined as failed.

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 193

(a) File Write Speed (Number of Empty Blocks, Before Tuning: 1% → After Tuning: 25%)

(b) File Write Speed (T_TC_1_7 ~ T_TC_1_10)

(c) Monitoring Point of File Write Speed (Number of Empty Blocks, Before Tuning: 1% → After Tuning: 25%)

(d) Monitoring Point of File Write Speed (T_TC_1_7~T_TC_1_10)

Figure 6. Before vs. after tuning.

For adjusting tuning point values for the source code
of YAFFS2, the number of empty blocks setting 1 to the
aggressive variable was tuned to 25%, 50%, and 75% of

NAND memory capacity. As shown in Table 7, it was
concluded that the file write speed was best optimized
before tuning. It is because the subject test, YAFFS2,

Copyright © 2013 SciRes. JSEA

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 194

Table 7. Failed tests.

Tuning Point

Number of Empty Blocks Setting
Aggressive Variable with 1

Failed Tests # of Failed Tests

10 (1% of NAND memory) - 0

246 (25% of NAND memory)
T_TC_1_9, T_TC_1_10, T_TC_1_19, T_TC_1_20, T_TC_1_30,
T_TC_1_40, T_TC_1_50, T_TC_1_60, T_TC_1_69, T_TC_1_70,

T_TC_1_80, T_TC_1_90,T_TC_1_99, T_TC_1_100
14

492 (50% of NAND memory)
T_TC_1_6, T_TC_1_7, T_TC_1_8, T_TC_1_9, T_TC_1_10,

T_TC_1_16, T_TC_1_17, T_TC_1_18, T_TC_1_19, T_TC_1_20,
T_TC_1_26, T_TC_1_27, T_TC_1_28, T_TC_1_29, T_TC_1_30, and 35 more

50

738 (75% of NAND memory)

T_TC_1_3, T_TC_1_4, T_TC_1_5, T_TC_1_6, T_TC_1_7, T_TC_1_8, T_TC_1_9,
T_TC_1_10, T_TC_1_13, T_TC_1_14, T_TC_1_15, T_TC_1_16, T_TC_1_17,
T_TC_1_18, T_TC_1_19, T_TC_1_23, T_TC_1_24, T_TC_1_25, T_TC_1_20,
T_TC_1_26, T_TC_1_27, T_TC_1_28, T_TC_1_29, T_TC_1_30 and 56 more

70

was an optimized distribution version.

4.2.3. Threats of Validity
In this case study, not only performance testing but also
the analysis of tradeoff of YAFFS2 were performed. Al-
though it was endeavored to draw out tradeoffs based on
the existing studies and data on performance of YAFFS2,
the analysis of tradeoffs on more professional basis with
SW architects is still desired. Also, for there are com-
paratively less performance testing items on YAFFS2,
more various test subjects are needed to be tested and
analyzed to strengthen the external validity.

5. Conclusions and Future Work

In this paper, methods for developing a performance test
were suggested using T-workflow diagram, monitoring
point, and tuning point based on tradeoffs. The key to the
suggested methods was verifying test items as well as
their side-effects to improve the degree of completion of
a performance test. For this, performance attributes in
tradeoff-relationships are included as performance indi-
ces by analyzing tradeoffs of the architectural decisions.
Also, T-workflow is developed to apply the existing
white-box test coverage criteria so that performance tests
can be developed better. Through these methods, the
evaluation of performance test results can be improved
and the cause of performance degradation can be ana-
lyzed.

The suggested plan was applied to YAFFS2, a NAND
flash memory file system, to illustrate a case study. The
results show that some test data, previously determined
as failed, was actually not too quickly to be judged as a
failure. When tested by T-workflow, the failed data im-
proves the validity of other performance attributes. Also,
for test cases with performance degradation, the meas-
ured values of monitoring point can be used to help the
analysis of the cause of the degradation. The values

showed that performance degradation was due to the
tradeoffs.

To improve a SW’s performance, generally the num-
ber of threads was increased or the hardware operating
the SW was adjusted. However, in this paper, it was
shown that the SW performance can be optimized by
adjusting the tuning point under various conditions.

At present, we are performing the suggested T-work-
dflow based tests on other different SWs beside YAFFS2.
SA tradeoffs were used as criteria of building test cases
of a performance test. However, as there are also trade-
offs on technical side of SWs, T-workflow can also be
used for technical tests. In the future, effectiveness of
identifying problems and weaknesses and analyzing their
cause through T-workflow covering tests will be shown
for technical tests as well.

6. Acknowledgements

This research was supported in part by the Samsung
Electronics Co., Ltd., 2010-2011.

REFERENCES
[1] F. Mattiello-Francisco, E. Martins, A. R. Cavalli and E. T.

Yano, “InRob: An Approach for Testing Interoperability
and Robustness of Real-Time Embedded Softwarem,”
Journal of Systems and Software, Vol. 85, No. 1, 2011,
pp. 3-15.

[2] S. Balsamo, P. Inverardi and C. Mangano, “An Approach
to Performance Evaluation of Software Architectures,”
Proceedings of the 1st International Workshop on Soft-
ware and Performance, Sata Fe, 12-16 October 1998, pp.
178-190. doi:10.1145/287318.287354

[3] F. Aquilani, S. Balsamo and P. Inverardi, “Performance
Analysis at the Software Architectural Design Level, Per-
formance Evaluation,” Vol. 45, No. 4, 2001, pp. 147-178.

[4] E. J. Weyuker and F. I. Vokolos, “Experience with Per-
formance Testing of Software Systems: Issues, an Ap-

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1145/287318.287354

An Approach to Developing a Performance Test Based on the Tradeoffs from SW Architectures 195

proach, and Case Study, Software Engineering,” IEEE
Transactions on Software Engineering, Vol. 26, No. 12,
2000, pp. 1147-1156.

[5] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson and J. Carriere, “The Architecture Tradeoff Ana-
lysis Method,” Proceedings of the 4th International Con-
ference on Engineering of Complex Computer Systems
(ICECCS ’98), Monterey, 10-14 August 1998, pp. 68-78.

[6] C. W. Ho and L. Williams, “Deriving Performance Re-
quirements and Test Cases with the Performance Refine-
ment and Evolution Model (PREM),” North Carolina
State University, Raleigh, 2006, Technical Report No.
TR-2006-30.

[7] F. I. Vokolos and E. J. Weyuker, “Performance Testing of
Software Systems,” Proceedings of the 1st International
Workshop on Software and Performance, Sata Fe, 12-16
October 1998, pp. 80-87. doi:10.1145/287318.287337

[8] D. Draheim, J. Grundy, J. Hosking, C. Lutteroth and G.
Weber, “Realistic Load Testing of Web Applications,”

Proceedings of the 10th European Conference on Soft-
ware Maintenance and Reengineering (CSMR ‘06), Bari,
22-24 March 2006, pp. 57-70.

[9] Y. Y. Gu and Y. J. Ge, “Search-Based Performance Test-
ing of Applications with Composite Services,” Interna-
tional Conference on Web Information Systems and Min-
ing, Shanghai, 7-8 November 2009, pp. 320-324.
doi:10.1109/WISM.2009.73

[10] C. D. Grosso, G. Antoniol, M. Di Penta, P. Galinier and E.
Merlo, “Improving Network Applications Security: A
New Heuristic to Generate Stress Testing Data,” In: Pro-
ceedings of the 2005 Conference on Genetic and Evolu-
tionary Computation (GECCO ‘05), Hans-Georg Beyer,
Ed., ACM, New York, pp. 1037-1043.

[11] C. U. Smith, “Performance Engineering of Software Sys-
tems,” Addison-Wesley, Boston, 1990.

[12] http://www.yaffs.net/

[13] IEEE Standard Glossary of Software Engineering Termi-
nology.

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1145/287318.287337
http://dx.doi.org/10.1109/WISM.2009.73

