
Journal of Software Engineering and Applications, 2013, 6, 98-112
http://dx.doi.org/10.4236/jsea.2013.63014 Published Online March 2013 (http://www.scirp.org/journal/jsea)

Using UML Behavioral Model to Support Aspect Oriented
Model

Zahid Hussain Qaisar1, Nauman Anwar2, Shafiq Ur Rehman3

1Computer Science Department, Institute of Engineering and Technology, National Fertilizers Corporation (NFC-IET), Multan, Paki-
stan; 2Cyber Designs, F-8 Markaz, Islamabad, Pakistan; 3Center for Software Dependability, Mohammad Ali Jinnah University, Islama-
bad, Pakistan.
Email: zahidqaisar@yahoo.com, nauman.anwar@ymail.com, shafiq.rehmaan@gmail.com

Received January 15th, 2013; revised February 17th, 2013; accepted February 25th, 2013

ABSTRACT

Aspect oriented software development is an emerging paradigm of software development. The notion of this technique
is separation of concerns which means to implement each concern in a single object in object oriented programming but
still there are concerns which are distributed on different objects and are called crosscutting concerns while another
form is Core concerns are the core functionality provided by the system but crosscutting concerns are the concerns like
logging, performance etc. Modeling of aspect oriented software is different from the normal modeling of object-ori-
ented or procedural language software, because aspects don’t have the independent identity or existence and they are
tightly coupled to their woven context so it is difficult to model them. The one aim of our research paper is to explore
the domain of Modeling of the aspect oriented software. The goal of this research paper is to give a UML Behavioral
modeling techniques in the domain of aspect oriented software development. This technique of generating UML Be-
havioral Model for aspects will give better understating of separations concerns.

Keywords: Aspects; Concerns; Cross Cutting Concerns; Cut Points; Join Points; Advices; Meta Data; UML and Meta

Model; Aspect Oriented Modeling; Software Modeling

1. Introduction

Aspect oriented development paradigm gives the idea of
the separation of concerns. Separation of concerns is not
a new idea. Parnas in 1972 gave an idea that a system
should be decomposed in modules so that the system
should be easy to create, implement, verify and evolve.
Each module should hide an aspect of the system that
should be evolved independent of the other module. In
other words he gave an idea to identify the independent
concerns. In the consequence of this research object ori-
ented programming is developed.

These crosscutting concerns are cause of the code tan-
gling and code scattering [1]. In code tangling to imple-
ment one concern we have to write the code in different
modules. In code scattering one piece of code is written
in different classes. To address this issue we use aspect-
oriented programming. Core concerns can be imple-
mented in any object-oriented language. To implement
cross cutting concerns we use aspects.

Object oriented development paradigm is lacking the
idea of separation of concerns [2]. Separation of concerns
deals with separating the functional properties of the sys-
tem from its non-functional properties. Aspect oriented

software development is an emerging new programming
paradigm. In aspect oriented software development we
use the notion of separation of the concerns. There are
two major types of concerns when we develop a system;
the core concerns and the crosscutting concerns. Core
concerns are the functionality provided by the system to
be developed. Crosscutting concerns are the concerns
like performance, memory management etc.

Within aspect oriented development paradigm, there
are several programming and modeling facilities avail-
able to the developers. There are several programming
languages available supporting aspects, e.g., AspecctJ [3],
AspectC++, Aspect Oriented C (AspeCt C Development
Team, 2007) etc.

There is also extensive support of modeling available
in aspect oriented development paradigm. In aspect ori-
ented development paradigm there are pointcuts, join
points, advices, introductions and aspect. A pointcut is a
collection of join points. Join point is a well defined
point to interact with base classes for example method
execution, object initialization, field get or set etc. Ad-
vice is a piece of code that executes for the join point for
it is defined. Three types of advices are before, after and
around. The piece of code in the advices is executed ac-

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 99

cording to the type of advice and the join point on which
they are defined. These are encapsulated in aspects. As-
pect can be abstract or inherited.

When we use modeling it provides us the structure for
solving the problem, knowledge to find out the multiple
solutions, give abstractions to handle complexity, reduce
time-to-market for business problem solutions, reduces
the development costs, and handle the risk of errors
(UML summery V1.1, 1997, UML syntax and Semantics
V1.1, 1997). Benefit of modeling in the aspect oriented
development is that aspects are identified at the early
stage then they are more reusable and it is also make
possible of automated code generation for AOP. Model-
ing aspect oriented programs provide the better under-
standing of the system. Check the behavior of the as-
pect after they are woven into the base class behavioral
models is often used [4].

In this research paper, we present an approach for
modeling aspect oriented systems. The main contribution
of this research paper is to provide a meta-model for as-
pect oriented modeling which will show the static and
behavioral structure of the aspect.

We propose a Meta modeling notation which is for as-
pect modeling. We also define how the weaving of as-
pect and base classes will be done. We define how the
joinpoints are modeled so that they can be weaved the
aspect and base class. This extension for aspects will
help in representation of how the aspect will interact with
the system.

2. Related Work

In this section, we discuss the literature survey of model-
ing of aspect oriented constructs. We surveyed different
techniques for the modeling of the aspect oriented pro-
grams. We will do analysis of the proposed modeling
work on different parameters. We focus on the tech-
niques of the Meta model extension that’s why our sur-
vey has some limitation. We include the literature which
is about the extension of the Meta model either it is a
profile or an MOF based.

Joerg Evermann presented the Meta level specification
and profile for AspectJ in UML. They modeled the as-
pect as a Meta class because of the characteristics of the
aspect. They make an aspect Meta class a stereotype on
the UML class construct. They modeled the advice by
the extension of Behavioral Feature. They also put con-
straints that the stereotype “Advice” can only be associ-
ated with the behavioral features of the classes stereotype
“Aspects”. There extension for the static crosscutting
features is from behavior that is the superclass for both
property and Operation. They also put constraints that the
stereotype “Static Cross Cutting Feature” stereotype can
only be associated with the behavioral features of the
classes stereotype “Aspects”. They extend the Meta class

for pointcut from the Meta class structural features. They
also put constraints that the stereotype “Pointcut” can
only be associated with the behavioral features of the
classes stereotype “Aspects”. In their profile they define
the stereotype of join points and the stereotype of point-
cut for every type of pointcut. Their profile is very help-
ful for the modeling of aspect oriented programs because
it provides a very detail view for the modeling of the
aspects. They use the UML 2.0 for extension.

Mosefaoui and Vachon proposed an approach in which
aspects are modeled using the aspect-UML. They also
define the pointcuts as class diagrams. They model the
aspects oriented programs with two types of models one
show the static view and other shows the dynamic view.
In static view the technique defines the aspects and base
classes in class diagrams. They made a relationship of
crosscut between base class and the pointcut class. They
relate the pointcut with the aspect with the type of advice
which will be executed on matching the required join-
point which is contained by the pointcut. In dynamic
view they use sequence diagrams in which they show the
interaction between aspect and base classes after weaving
[2].

Heidenreich et al. proposed an approach for the mod-
eling of aspect oriented programs using the fragment
quires. Their approach applies to aspect-oriented model-
ing using two UML class diagrams. The first is the core
model represents the core, into which the second is the
advice model which shall be woven. They define the
pointcuts over the core, they apply a fragment query. The
anchors in the advice model are then bound to slots and
hooks in the core model. Additionally, the bound advice
fragments have to be conFig Nouring with core informa-
tion. Thus, certain anchors in the core model are bound
to slots in the advice model [5].

A. Zakaria et al. proposed an approach which provides
an UML extension for the modeling of the aspect ori-
ented systems. They proposed aspects as class in aspect
oriented modeling with the stereotype aspect. They rep-
resented the relationship b between the aspects and the
class by the UML association relationship. Aspect must
be associated to the one or more base class in order to
make an impact on the system. They make different
types of aspects as the affect the base classes. They pro-
posed different types of tags for the relationship between
the classes and aspect these tags are according to the af-
fect of the aspect on the system. They modeled the point-
cuts as a stereotype of UML model element class. They
associate these pointcuts with the aspect class as a “has
pointcut” relationship. They also gave the relationship
between aspects. If an aspect has the higher precedence
then the other then they give the name of relationship
between them as a “dominates”. For advices they use
bases UML Meta model element operation and they use

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 100

the stereotype with the same name as the type of advice
[6].

Technique proposed by Meier et al. presents the model
the crosscutting concerns in Adora. Adora is a modeling
language. Adora is basically an object oriented modeling
language. They provide the extension of Adora for aspect
oriented programs. Their aspect oriented extension of
ADORA is based on three concepts: Aspect containers
represent modules of crosscutting concerns and comprise
a description of crosscutting elements, such as behavior
and scenarios, join relationships denote explicitly where
the crosscutting concerns affect other concerns and view
mechanisms provide abstraction for aspect oriented
ADORA models. They also define a weaving mechanism
for aspects and base classes [7].

An approach by J. Whittle and Jayaraman which pre-
sents a Modeling Aspects Using a Transformation Ap-
proach (MATA), a UML aspect oriented tool that uses
graph transformation to specify and compose aspects. In
MATA aspects are graph rules. They use the technique
of the critical pair analysis (CPA) to find the dependen-
cies and conflicts between rules. CPA checks the rules in
pair if one rule needs model elements which are intro-
duced by another element then there is a dependency and
there is a conflict if one rule modifies the base in this
condition the other rule is no longer applied [8].

Technique by Klein and Kienzle which presents a
purpose for specifying reusable aspect models that de-
fines structure and behavior of aspects. For structural
modeling they use the class diagrams and for behavioral
modeling they use the sequence diagram. They model the
aspect in a package. In this package they model aspect as
class diagram. They model pointcut and advice as se-
quence diagrams [9].

Approach by Mahoney and Ellard presented a tech-
nique to model the aspects with sequences charts. They
use live sequence charts to model the aspects and base
classes. In a live sequence chart the pre chart is for
pointcut designator and the main chart is for advice.
They show the interaction between base class and the as-
pect with these sequence diagrams. They model the as-
pects and base classes as separate sequence diagrams and
then combine them. They use live sequence chart to mo-
del the interaction. They use play engine to see the im-
pact of the aspects on the base class. They play engine
plays the live sequence charts. They modeled the weav-
ing mechanism through state charts [10]. This approach
presents a technique to model the aspect with the Aspect
Interaction Charts. The idea is same as it was in previous
work but in this approach they provide some advance
features like what scenario could not happen in the main
chart which they called forbidden scenario [10]. In this
they also introduce a new message event in aspect inter-
action chart which they name as before method event

which is used to capture the before method call joinpoint
[11].

An approach by M. Kende presents how we can model
the aspect oriented programs. They made two types of
models one is aspect design model and the second is
config Nouration model. In first model they identify the
connection point form where aspects interact with the
objects. In the conFig Nouration model they combine the
aspect intense with the interaction component. This
model shows the before and after weaving process. After
weaving shows additional features introduced by the as-
pect in the component [12].

Aldawud presented an approach which presents a
UML profile for the aspect oriented programs. In their
approach they define stereotype for the aspect, pointcuts,
joinpoints and advices and for the relationship they de-
fine the control stereotype. They present this idea at an
abstract level [13].

“A Metamodel for Aspect-Oriented Modeling” tech-
nique was proposed by Chavez and Lucena. In this ap-
proach there is a UML Meta model for aspect oriented
programs. They describe base elements which will take
part into the crosscutting relationship. Crosscutting ele-
ments are the model elements which take part in cross-
cutting relationship. Crosscutting relationship describes
the structural and behavioral increment which is intro-
duced by the crosscutting elements into the base ele-
ments. Aspects are model elements which are combina-
tion of local features and the crosscutting interfaces.
Crosscutting interfaces are the points at which the aspect
crosscut the base class. The crosscutting feature model
elements that describe the features that will be combined
with the one or more elements of base class [14].

D. Xu, and X. Dianxiang proposed works on aspects
are modeled using the state machine. This state machine
shows the aspect after the weaving process how an aspect
can introduce new states and new transactions in the base
class state machine. They use these state machines for
testing the aspect oriented programs [15].

“Towards aspect oriented UML executable models” in
this paper a technique is proposed to make executable
aspect oriented UML models. They first made the ex-
ecutable UML model for the base class. They model the
aspects with the aspect oriented executable model profile.
To view how the crosscutting concerns must be com-
posed with others concerns they made a joinpoint model.
They composed the aspect and base model which they
called is a woven model. This model is a common UML
executable model. They then use UML tool having ex-
ecutable capabilities to execute the woven model [16].

Cottenier et al. presented a technique for modeling the
aspect oriented composition. They use Specification and
Description language for the modeling and weaving of
the aspect oriented programs. They also presented a SDL

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model

Copyright © 2013 SciRes. JSEA

101

Meta model for aspect oriented programs. This Meta
model consists for different profiles and Meta models.
They define the profile for aspect beans with the name of
aspect bean profile which shows how the aspect SDL
weaver sees the aspect Bean SDL state charts. They de-
fine a profile for the join points this profile identify the
elements which can be used as join points in the SDL
state charts. They define a connector Meta model which
is used to identify the join points in the core model and
the advices in the aspect bean. This is used in the first
phase of the weaving process. They defined a weaver
behavioral Meta model which is used in second phase of
weaving for the identification and binding of the join
points and the advices [11].

M. Lion proposed technique in which a metamodel for
the aspect oriented programming is proposed. They used
a tool OpenTool/UML for the extension of the UML.
They used they mechanism provided by the OpenTool/
UML for the extension of the UML metamodels. They
basically discuss how the OpenTool can be used for the
extension of the UML. They use aspect oriented pro-
gramming as their case study for the extension of the
UML. They proposed a UML AOP extension Meta-
Model [17]. In given below Table 1 we have mentioned
comparison of different techniques on few research pa-
rameters and compared them to analyze.

A technique by Y. Han presented a metamodel for the
aspect oriented programs. They first introduce the meta-
model for the java. They basically present the metamodel
for the AspectJ so they use java Meta model for the ex-
tension for the aspect. Java Meta model shows the static
structure of the java language. They extend that java
Meta model for the AspectJ. They also gave graphical
notation for the AspectJ and crosscutting elements [18].

3. Proposed Approach

This paper is about using the behavioral model. There is
no Meta model presented to use the behavioral model for
aspects. So we introduce Meta models for the aspects in
this paper so that we can use the behavioral models for
the aspects. This is the reason it looks more like a Meta-

model paper. We have to make Meta models to show the
aspects behavior. The main emphasis in on the behav-
ioral model for the aspects but we have to make the Meta
model to verify that we can use behavioral models for
aspects.

We proposed an approach for modeling of aspect ori-
ented programs on the basis of the literature review
which is about behavioral modeling of the aspect ori-
ented programs. In the literature most of the modeling is
language specific. No one has modeled the behavioral
structure of the aspect before weaving. We proposed a
metamodel for the modeling of the aspects, joinpoints,
pointcuts and advices. This proposed Meta model is the
extension of the UML Meta model. No specific tool for
modeling is needed because it will use all the standard
notations of the UML.

3.1. Overview of Our Proposed Approach

We suggested a Meta model for aspect oriented programs
in which we proposed a Meta model extension for aspect
oriented programs. We used MOF (Meta Object Facility)
which has the heavyweight extensibility mechanism in its
specification. Because in this mechanism we can make
any Meta model the restrictions of profile are not applied
on MOF. In this Meta model we modeled the aspect con-
cepts in a Meta model. Our proposed approach not only
models the static structure of the aspect but also models
the behavioral structure of the model.

In our above Meta model in Figure 1 we made the
static structure of the aspect. Aspect encapsulates the
advices, pointcuts and intertype declarations. Aspect can
also have inner classes but those classes are abstract.
Above Meta model also show the association of the as-
pect with the pointcut and advices and pointcuts associa-
tion with the joinpoints as in Figure 2.

Three types are before, after and around advice. Be-
fore advice execute on meeting the pointcut expression
before that piece of code which is crosscut by the point-
cut. “After” advice is executed after the piece of code is
crosscut by the pointcut. Around advice can be used on
meeting the required criteria of the pointcut expression it

Table 1. Comparison of different related technique.

Joerg

Evermann
Mostefaoui. F
and Vachon. J

Mahoney. M
and Elrad. T

Cotternier. T
et al.

Chavez. C and
Lucena. C

Lion. J
et al.

Aldawud. O
et al.

Han. Y
et al.

Proposed
work

UML
Profile

UML
Profile

Sequence
Charts

Framework
MOF
Based

MOF
Based

UML
Profile

MOF
Based

UML
version used

UML2.0 UML 2.0 NA UML 2.0 UML 1.4 UML 1.4 NO UML 2.0

Language
specific

Yes NO NO NO NO No NO Yes

Structural
model

Yes Yes NO Yes Yes YES Yes Yes

Behavioral
Model

No No Yes Yes No No NO Yes

Using UML Behavioral Model to Support Aspect Oriented Model 102

Figure 1. Aspect meta model.

Figure 2. Aspect and base classes Meta model.

can change the flow of the execution of the programs.
Intertype declarations are the class variables that can be
initialized by the aspects and the method of the classes
that can be declared inside the aspects.

In our modeling technique we make a Meta class for
the pointcuts. Pointcut contains all the join points. Join-
points are expressions which define the points where
they crosscut the base class. Advices are piece of code
that should execute when the join point expression is met.
Advices are associated to the pointcuts. Three types of
advices are there and they execute according to their
type.

3.1.1. Pointcut
A pointcut is a construct designed to identify join points
and obtain the context surrounding the join point. The
pointcut is more than just a container for join points. It

directly shows how a concern will crosscut the base class.
Pointcut may also have some parameters. These parame-
ters are used by the advices associated to the particular
pointcut [19].

In Figure 3 we make a Meta class for the pointcut. In
a pointcut there may be more than one pointcut designa-
tors. Pointcut has a specific name and the visibility.
Name attribute of the pointcut is for the name of the
pointcut. Pointcut can also have parameter. These pa-
rameters are used by the advices which are associated
with these pointcuts. It should be the name given to the
pointcut any string value.

Figure 4 shows the Meta class for the pointcut desig-
nator. These designators are used to capture the join-
points. The designator may be an execution which
matches execution of a method or constructor. It may be
a call which matches calls to a method or constructor.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 103

Figure 3. Point cut Meta class.

Figure 4. Pointcut designator Meta calss.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 104

It may be an initialization which matches execution of
the first constructor to a class. It may be a handler which
matches exceptions. It may be a get designator which
matches the reference to a class attribute. It may be a set
designator which matches the assignment of a class at-
tributes [20].

This designator which returns the object associated
with a particular join point or limits the scope of a join
point by using a class type. The target designator which
returns the target object of a join pointcuts limits the
scope of a join point. The args designator which exposes
the arguments to a join point or limits the scope of the
pointcut. The cflow designator which returns join points
in the execution flow of another join point. The cflow
below designator which returns join points in the execu-
tion flow of another join point but not including the cur-
rent join point. The static initialization designator which
matches the execution of a class’s static initialization code.
The within code designator which matches join points
within a method or constructor. The within designator
which matches join points within a specific type. The if
designator which allows a dynamic condition to be part of
a pointcut. The advice execution designator which matches
on advice joins points. The pre initialization designator
which matches pre initialization join points [19,20].

3.1.2. Joinpoint
Joinpoints are the points where the aspects crosscut the
base classes. Joinpoint is any execution point in the class.
Joinpoint may be a method signature or a field signature
or an exception type. These joinpoints are picked by the

pointcut designator.
Figure 5 shows the Meta class for the join point. As

joinpoint may be any method signature, any exception
type or any data type signature. So we inherit this class
form the Meta classes of operation, type and datatype
[20].

3.1.3. Advice
We made a Meta class for advices that is extension for
operation diagram (OMG, UML, Superstructure, and
V2.1.2). We have modeled the advices through activity
diagrams. In which we have show that how advices are
executed according the pointcut to which it is associated.

In Figure 6 given below advice shows the behavior of

Figure 5. Joinpoint meta class.

Figure 6. The advices meta class.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 105

the aspect. Advices are like operation in the classes. But
like methods in class the advices have no identifier which
is logical because we don’t have to refer the advice in our
code it will execute according to the pointcut, to which it
is associated. We extend the metaclass for the operation
to make the metaclass for the advice. Advices may have
some parameters. They have the pointcut expression
which defines that on which pointcut this advice should
be executed. Redefined operations are those which are
redefined by the advices. The advice must have an advice
type which defines that when the advice should be exe-
cuted according to the pointcut expression before, after
or around. Before advice will execute before the join-
point which is referred by the pointcut [20].

We modeled the advices through the activity diagram.
The activity diagram will show how the advice will be
executed according to the pointcut which is associated to
it. Advices are actions performed against the pointcut to
which these are associated so we modeled them through
activity diagram. We show that advices are activities
performed according to the pointcut associated to them.
An activity is a behavior and Basic Behavior is type of
Behavior has a association with the behavioral feature.

Advice is a behavioral feature so an activity can specify
an advice.

3.1.4. Aspect
Aspect encapsulates the pointcuts, advices and inter-
types. Aspect like a class can have its own fields and
methods so we extend the Meta class of the aspect form
the Meta class for class. Aspect can be inherited from
the abstract aspect. An aspect is abstract if any pointcut
or method in the aspect is abstract [20].We can inherit
aspect from another aspect as we can do inheritance in
the classes. The sub aspect can use the pointcuts of the
super aspect.

The given below Figure 7 shows the Meta class for
the aspect. Aspect encapsulates the advices and the
pointcuts. Intertype is a special relationship between base
classes and interfaces. Intertype is a method or property
of the class or of the interface. Which will be weaved in
to the base classes and interface by the aspect [21].

Our package is merged into the Kernal package in
Figure 8 because our all Meta classes are extension of
the Meta classes in the kernel package. So this aspect
package will be merged into the kernel package [20].

Figure 7. Aspect Meta class.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 106

Figure 8. Aspect model.

Figure 9 Shows state diagram for purchasing requisi-
tion as mentioned in our case study.

4. Results and Discussion

Different modeling techniques are presented to model the
aspects and to show the weaving mechanism. The pro-
posed techniques are either language specific or not the
extension of the standard UML Meta models. We extend
the UML Meta model to model the aspects. We pre-
sented how we can model the static structure and behav-
ioral structure of the aspect. In order to verify the tech-
nique discussed above now we model the aspects using
those Meta models.

The proposed study shows here how we can model the
aspects by using the Meta model extension presented
above. This modeling technique is an extension to the
latest UML Meta model and based on the UML notation
so it is easy to understand and easy to implement for the
developers. Because this technique base on the UML so
it is also helpful in order to narrow down the gap be-
tween the aspects oriented programming and the object
oriented programming.

5. Case Study

In this chapter we will use the case study in which we
will cover almost every aspect of the aspect oriented
programming. We take a real life example case study so
that it is easy to understand and can explain the approach
proposed. This case study is about banking system in
which has the power to create new customers, add ac-
counts to customers, mark certain accounts as overdraft

Figure 9. State diagram for purchase requisition.

accounts, and make transactions in the accounts. This
also has a facility of a check clearance system. The cus-
tomer class models a banking customer and is associated
with a set of accounts that belong to a customer and a
subset of those accounts marked as overdraft accounts.
Overdraft accounts are designated to automatically trans-
fer money to the checking account when a check clear-
ance system detects an insufficient balance in that che-
cking account.

In the given below Figure 10 we modeled the aspects
and their relationship among the each other. First we
have an abstract aspect with the name of Abstract Debit

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 107

Figure 10. Aspect static structure.

Rules Aspect that has the pointcut with the name of the
debit Execution which is an abstract pointcut because it
does not have the advice associated to it. This aspect also
has an intertype declaration for the interface Account. It
introduces a method with the name of get Available Bal-
ance in the interface account. The debit Execution poin-
cut in this aspect has two pointcut designators execution,
args and this. The pointcut debit Execution also has two
parameters one is account and other is with drawal amount.
“Minimum Balance Rule Aspect” aspect is inherited
from the “Abstract Debit Rules Aspect” aspect. This as-
pect has the poincut savings Debi Execution which use
the debit Execution poincut of the parent aspect and has
one poincut designator this. This aspect has an advice of
before type which will be executed before any poincut to
whom it is associated. This aspect also has an intertype
declaration for the interface saving account. This is an
introduction of the field in the interface savingaccount
with the name MINIMUM_BALANCE_REQD of data
type float.

“Overdraft Protection Rule Aspect” aspect has two
pointcuts and one before type advice. Check Clearance
Transaction pointcut used the pointcut designator execu-
tion. Checking Debit Execution designator uses the debit
Execution pointcut of the base class and this poincut

designator. This aspect has a local method with the name
perform overdraft protection these.

The advices are modeled through activity diagram in
Figure 11 to show the behavior of the aspect. In our
Meta class of advice we inherit the adive from the be-
havioral feature.

The advices are modeled through activity diagram to
show the behavior of the aspect. In our Meta class of
advice we inherit the advice from the behavioral feature
[21]. Which is a type of behavior and we can model a
behavior through activity diagram so we modeled the
advices through the activity diagram following activity
diagrams show the advice how these advices were exe-
cuted according to the associated pointcuts.

This advice is associated with checking Debit Execu-
tion pointcut of the aspect Overdraft Protection Rule As-
pect. This activity diagram shows that advice will be
executed when the pointcut will match and this advice
will check the protection that withdrawal amount will not
be more than the actual balance.

Figure 12 shows an advice which is associated with
saving Debit Execution pointcut of the aspect Minimum
Balance Rule Aspect. This advice will through an excep-
tion, if the withdrawal amount in more than the actual
amount in the account.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 108

Figure 11. Activity diagram of advice.

Figure 12. Activity diagram of advice.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 109

The below given Figure 13 shows the classes diagram

of our banking system. In Figure 13 there are three in-
terface Account, saving Account and Checking Account.
Account Simple Impl, Savings Account Simple Impl,
Checking Account Simple Impl, Customer and Check
Clwerances System are the bases classes used in this
banking system example. We made the sequence dia-
gram of the base classes and show the interaction of the
advices with them through the interaction overview dia-
gram. Inter action overview diagram is used to show the
cooperation between the interaction. Activity and se-
quence diagram shows the interaction and we combine
these two interaction diagrams to show the interaction
between advices and the base classes [21].

The above Figure 14 shows the sequence diagram of
the banking system of our case study and Figure 15
shows the interaction overview diagram of the advices
and base classes. The above two nodes represents the
activity diagrams of the advices. These two advices will
interact to the base classes according to the pointcut des-
ignators which contains the join points where these ad-
vices will be executed.

We can see that how advices can interact with the base
classes. The advices will be executed according to the
pointcuts they are associated. Whenever a joinpoint will
match the point in the base class the advice will be exe-
cuted if a before advice as it is in our case it will be exe-
cuted before that point.

Figure 13. Base classes.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 110

Figure 14. Banking system sequence diagram.

Figure 15. Interaction overview diagram.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model 111

5.1. Discussion

In our proposed approach we model the aspect. We show
aspects static and behavioral structure. How we can
model the aspect before weaving. We can model the be-
havioral structure of the aspect before weaving which is
helpful in testing the operation performed by the advice.
To show the complete functionality of the advice it must
be weaved with the base class but to show the operation
performed by advice we can model it in sequence dia-
gram which will give the better understanding of the
system.

5.2. Test Goal Generation through Scenarios

The advantage of applying guards at the scenario enables
to generate the test cases also referred to as test goals.
These test goals capture the flow of events for the use
case scenario. As the test goals are based on contracts so
that can be formalized as logical expression.

5.3. Contractual State Chart

State diagrams represent the object behavior with invo-
cation of event “represent operation” and are used to re-
cord different states with events that can cause a state
transition. A state machine is composed of state repre-
senting the behavior of the system on certain input
whereas transition may result in an output action, event
“an input” and action the output result [17]. State dia-
gram annotation with guards “Guards are associated with
pre and post conditions” enables to specify the entry and
exit conditions. Optional Guards can be added to states
and transition may be annotated with guard, event, and
action. If there is no guard or both guards are true then
the exit action is performed. Test cases are imposed to
verify the behavior of the system when applied on the
state chart.

We had implemented a tool that takes XML containing
guards of scenario as input and generate test path ex-
pressing test cases as logical expression.

5.4. Limitations of Proposed Approach

Our proposed approach helps to get elaboration of aspect
details. We have shown the aspect’s static and behavioral
structural model. It covers the structural and behavioral
features of the aspect. We have not modeled the behavior
of the aspect after weaving but we have shown the static
structure of weaved model. Our metamodel shows how
the aspect will model or behave before weaving. It is an
extension of metamodel given by UML metamodel.

6. Conclusions

This approach is helpful in the better understanding of
the aspect. In this approach as we have shown how we

can model the aspect’s static and behavioral structure.
This Meta model is also helpful to make a better aspect
because we can clearly show the static structure of the
aspect which shows what we can encapsulate in the as-
pect. We can show the behavioral structure of the aspect
which shows what operation advice should perform.

The proposed approach in this paper is a Meta model
for the aspect oriented programs. The idea is to give a
Meta model for the aspect oriented program which is the
extension of the UML Meta model which is a standard
language for the modeling. This basic idea is to provide a
Meta model for the modeling of the aspect oriented pro-
grams. Our modeling approach covered the structural and
behavioral features of the aspects. We emphasize on the
modeling of aspect not on the weaving mechanism. We
cover both the structural and behavioral features of the
aspects. Pointcuts and the advices both are modeled. Ad-
vices are like operation so we modeled them in sequence
diagram which show what operation this advice will
perform. This will show the operation of the advice but
not impact of the advice on the base class. This is helpful
for the testing of the advice operation in separate before
weaving. We can easily check either advice is perform-
ing the correct operation or not to check it performs op-
eration at the correct time or not it must be weaved into
the base class.

Our Meta model shows how the aspect will model be-
fore weaving. The static structure of the aspect is mod-
eled as well as the behavioral structure is also modeled
which shows the behavior of the aspect. We don’t model
the behavior of the aspect after weaving but we show the
static structure of weaved model.

REFERENCES

[1] S. Clark and E. Baniassad, “Aspect-Oriented Analysis
and Design: The Theme Approach,” Addisn-Wesley Pro-
fessional, Boston, 2005.

[2] J. Vachon and F. Mostefaoui, “Achieving Supplementary
Requirements Using Aspect-Oriented Development,” In
ICEIS, Vol. 3, No. 4, 2004, pp. 584-587.

[3] J. Ivar and W. G. Pan, “Aspect Oriented Software Devel-
opment with Use Cases,” 2004.

[4] F. Lidia and P. Sanchez, “Towards Executable Aspect-
Oriented UML Models,” Proceedings of the 7th Work-
shop on Aspect-Oriented Modelling (AOM), Vancouver,
2007, pp. 28-34.

[5] F. Heidenreich, J. Johannes and S. Zschaler, Proceedings
of 11th International Workshop on Aspect-Oriented Mod-
eling Co-Located with Models Nashville, 2007.

[6] A. A. Zakari and H. Hosny, “A UML Extension for Mod-
eling Aspect-Oriented Systems,” 2002.

[7] S. Meier, T. Reinhard, R. Stoiber and M. Glinz, “Zurich
in Aspect-Oriented Requirements Engineering and Ar-
chitecture Design,” Early Aspects at ICSE: Works, 2007.

Copyright © 2013 SciRes. JSEA

Using UML Behavioral Model to Support Aspect Oriented Model

Copyright © 2013 SciRes. JSEA

112

[8] J. Whittle and P. K. Jayaraman, “MATA: A Tool for As-
pect-Oriented Modeling Based on Graph Transformation
Models Workshops,” 2007.

[9] J. Klein and J. Kienzle, “Reusable Aspect Models in Pro-
ceeding of the 11th International Workshop on Aspect
Oriented Modeling,” 2007.

[10] T. Cottenier, V. B. Den and E. Tazill, “Stateful Aspects:
The Case for Aspect Oriented Modeling,” Proceedings of
the 7th Workshop on Aspect-Oriented Modelling (AOM),
Vancouver, 2007.

[11] M. Kandé, M. Kienzle and J. Strohmeier, “The Second
International Workshop on Aspect-Oriented Modeling with
UML,” 2002.

[12] O. Aldawud, E. Tazill and A. Bader, “A UML Profile for
Aspect Oriented,” Modeling in Proceedings of OOPSLA,
2001.

[13] C. Chavez and C. Lucena, “A Metamodel for Aspect-
Oriented Modeling Workshop Aspect Oriented Modeling
with UML,” Proceedings of the 2nd Workshop on As-
pect-Oriented Modelling (AOM), Vancouver, 2002.

[14] D. Xu and W. Xu, “State-Based Incremental Testing of
Aspect-Oriented Programs,” Proceedings of the 5th In-
ternational Conference on Aspect-Oriented Software De-
velopment, Bonn, 2006.

[15] L. Fuentes and P. Sánchez, “Towards Aspect-Oriented
UML Executable Models,” Proceedings of the 10th Wo-
rkshop on Aspect-Oriented Modelling (AOM), 6th Inter-
national Conference on Aspect-Oriented Software De-
velopment (AOSD), Vancouver, 2007, pp. 28-34.

[16] J. M. Lions, D. Simoneau, G. Pitette and I. Moussa, “Ex-
tending OpenTool/UML Using Metamodeling: An Aspect
Oriented Programming Case Study,” Aspect-Oriented
Modeling with UML, 2002.

[17] Y. Han, G. Kniesel and A. Cremers, “Towards Visual
AspectJ by a Meta Model and Modeling,” 6th Interna-
tional Workshop on Aspect-Oriented Modeling, Vancou-
ver, 2006.

[18] L. Ramnivas, “I Want My AOP!” 2002.

[19] J. D. Gradecki and L. Nicholas, “Mastering AspectJ,”
2003.

[20] R. Mužar and M. Grgec, “Role of UML Interaction Over-
view Diagram in Business Domain Modeling,” IIS Con-
ference, 12-14 September 2007.

[21] M. Wimmer, A. Schauerhuber and G. Kappel, “A Survey
on UML-Based Aspect-Oriented Design Modeling,” Jou-
rnal of ACM Computing Surveys, Vol. 43, No. 4, 2011.

