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ABSTRACT 
Magnetotactic bacteria is a kind of polyphyletic group of prokaryotes with the characteristics of magnetotaxis that make 
them orient and swim along geomagnetic field lines. A magnetotactic bacteria optimization algorithm(MBOA) inspired 
by the characteristics of magnetotactic bacteria is researched in the paper. Experiment results show that the MBOA is 
effective in function optimization problems and has good and competitive performance compared with the other clas-
sical optimization algorithms. 
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1. Introduction 
Learning from life system, people have developed many 
nature inspired computing(NIC) methods to solve com-
plicated optimization computation problems in recent 
decades. There has been a considerable attention paid for 
employing algorithms inspired from natural processes 
and/or events in order to solve optimization problems. 
For example, genetic algorithms(GAs) which was first 
introduced by Holland are now a standard optimization 
tool in engineering. Since 1980s, more and more NIC 
algorithms were developed following GAs, including 
Ant Colony Optimization(ACO)[1] and Particle Swarm 
Optimization(PSO)[2], Immune Algorithm(IA)[3], Ar-
tificial Bee Colony(ABC)[4], Bacterial Chemotaxis Al-
gorithm[5], Biogeography based Optimization[6] and so 
on. 

Since many studies were carried out with inspirations 
from ecological phenomena for developing optimization 
techniques, we still pay attention to find new inspiration 
source. ‘No free lunch theorem’ had told us that there is 
no universal algorithm which can be better over all 
possible problems. So it is necessary for us to develop 
new algorithms for problem solving. Tayarani proposed 
a magnetic optimization algorithm which is based on the 
principle of particles’ interaction in magnetic optimiza-
tion [7]. In nature, there is a kind of polyphyletic group 
of prokaryotes that can orient and swim along magnetic 
field lines. They are called magnetotactic bacteria (MTBs) 
[8]. A striking property of MTBs is their ability to orient 
and propel themselves along geomagnetic field lines 

(magnetotaxis) in the earth magnetic field. Propelled by 
their flagella, the bacteria migrate in a net downward 
direction, following the declination of the field lines of 
the earth, toward oxygen-poor regions with advantages 
for survival.  

In[9], we have proposed a new algorithm called mag-
netotactic bacteria optimization algorithm (MBOA) in-
spired by the distinct behavior of MTBs. It had been 
tested on some standard benchmarks and compared with 
some optimization algorithms, and it shows good per-
formance in solving some optimization problems of 
standard functions. In this paper, MBOA is researched in 
further.  

The remainder of this paper is organized as follows: 
Section 2 describes the basic procedure of MBOA. In 
Section 3, experiments on 14 standard functions optimi-
zation and analysis are provided. Finally, the conclusions 
are drawn in Section 4 . 

2. MBOA 
2.1. Principles of MBOA 
MTBs occur widely in natural sediments from both ma-
rine and freshwater habitats. They produce intracellular, 
membrane-bounded magnetite particles and synthesize a 
kind of magnetite colloids with enveloping membrane. It 
is called magnetosomes, which are typically arranged in 
the form of one or several chains and impart a permanent 
magnetic dipole moment to the bacterium[10]. 
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In magnetotactic bacteria, magnetosomes play impor-
tant role in regulating the movement of MTBs. The 
magnetic field lines bend in some of the magnetosomes 
to minimize their magnetostatic energy[11], whereas in 
others their direction differs slightly from that of the 
chain axis. In fact, the MTBs have evolved to be adap-
tive to the magnetic field. Based on the biology know-
ledge, we know that one kind of MTBs has multiple cells 
with chains of magnetosomes. Only those MTBs with 
magnetosomes in their cells which can make magnetic 
field lines bend in some of the magnetosomes to minim-
ize their magnetostatic energy can survive in nature. 
Each magnetosome can produce moment[11]. The MTBs 
with multi-cell need to produce magnetosome moments 
with which can minimize their magnetostatic energy. We 
can consider such a process as an optimization one. 

When the MBA runs to solve a problem, it corres-
ponds to the process of producing magnetosomes to be 
adaptive to magnetic field. It needs to regulate the mo-
ments of each magnetosome, just like producing feasible 
solutions. MBOA obtains the optimal solution by regu-
lating the moments of cells continually.  

Consider a problem solving inspired by MTBs, the 
minimal magnetostatic energy is looked as optimal solu-
tion. The multiple cells are looked as feasible solutions. 
The magnetosomes in each cell can be looked as the fea-
tures of a candidate solution. The moment of a magneto-
some corresponds to feature value. 

2.2. Procedures of MBOA 
Considering a chain of magnetosomes as a cylinder of 
infinite length in a magnetic field B, its energy aE  of 
the bacterial, moment can be estimated as follows. 

     
θcosMBBMEm −=⋅−=  (1) 

 
where θ  is the angle between M and B. 

According to[9], the interaction energy between two 
dipoles from different magnetosome chains in a MTB 
with multi cells is: 
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where ...2,1,0, =mn  are the number of magnetosomes 
of two cells, d is the distance between neighbor centers 
in a chain. 

Suppose that the interaction energy between two cells 
in a MTB as follows:    
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where mn EE , are the energy of two cells, respectively.  

If two cells have the same number of magnetosomes, 
that is mn = , and suppose mn EE = , then we have 

         

mnmn EE ,, =  (4) 
 
The total procedure of MBOA is described as follows: 

1: Generate initial cells population nC and set con-
stant a,,ρλ .   

2: While ( ionMaxGeneratt < ) 
3: calculate cost of each cell 
4: normalize cost to calculate magnetic field B  

5: for ni :1=    

6:    for nj :1=  

7:        If ji ≠  

8:       calculate the distance D   

9:        If D r>     

10:      calculate interaction energy E of two cells 
11:       else 
12:          RprandE *),1(=  

13:   end 
14: end  
15: for ni :1=    

16:    calculate moment M of each cell  
17     regulate the moment of each cell by M    
18: end 
19: calculate the cost J of each cell, rank the cells, re-
place some proportional cells by randomly produced 
moments.  
20: rank the cells and find the optimal solution  
21: end while 

The procedure of MBA is described as follows in de-
tail: 
Step 1: All of the moments of magnetosomes in cell 
population (for t=0) are initialized randomly between 
upper and lower limit of feature value. 
In step 4: The i th magnetic field value if is normalized 
as follows:   
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ni ...,2,1= , n is the size of population.  

The magnetic field of a cell is defined as [9].  
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ρλ += ii fB  (6) 

where λ  and ρ  are constant.  
In step 8: we define the distance between two cells as:  
          

∑
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Suppose that ],[, ,, ULxx kjki −∈  are the k th 

feature value (moment) of ji xx  , , respectively. n is the 

population size. L−  and U  are the lower limit and 
upper limit of feature value. Then D  can be defined as 
the following function.             
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In step 9, pUar *)2/(∗= , where a  is a distance 

threshold constant. 
In step 10, suppose that ),...,,( 21 pi mmmM = , 

ni ,...,1=  is the i th moment of magnetosome of a 
cell. Assume the interaction energy E  between two 
cells as Equation (9). 
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According to Equation (1), and for simplification, 

suppose θcos =1, then we get  
                       

i
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So we have the ways of regulating moments of mag-

netosomes in a cell (individual) as follows: 
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where 1, −t

i
t
i xx  are the i th moment of the i th indi-

vidual(cell) in t  generation. t
iM  is the moment of 

corresponding individual in t  generation. 
In step 19: after the regulation, the solutions are sorted 

according to their costs in ascending. The last half of 
cells is replaced by the following way:  

 
Rmrandmrandxi /)),1()1),1((( ∗−∗= λ  (12) 

In general, the generation number is set as the stop-
ping condition. At last, find the optimal result and output 
the result. 

3. Experiment Results and Analysis 

3.1. Problem Definition 
Global numerical optimization problems are frequently 
arisen in almost every field of engineering design, ap-
plied sciences, molecular biology and other scientific 
applications. Without loss of generality, the global mi-
nimization problem can be formalized as a pair ),( fS , 

where DRS ⊆ is a bounded set on DR  and 
RSf →:  is a D-dimensional real value function. 

The problem is to find a point SX ∈*  such that 
)( *Xf is the global minimum on S. More specifically, 

it is required to find an SX ∈*  such that 
 

)()(: * XfXfSX ≤∈∀  (13) 
 
where f does not need to be continuous but it must be 
bounded. 

3.2. Parameter Settings 
In all experiments in this section, all algorithms are the 
basic ones without any improvement. The values of the 
common parameters used in each algorithm such as pop-
ulation size and total evaluation number were chosen to 
be the same. Population size was 50 and the maximum 
evaluation number was 500 for all functions. The other 
specific parameters of algorithms are given below[12]: 

GA Settings: Single point crossover operation with the 
rate of 0.8 was employed. Mutation rate was 0.01. Sto-
chastic uniform sampling technique was our selection 
method. 

DE Settings: F is a real constant which affects the dif-
ferential variation between two solutions and set to 0.5 in 
our experiments. Value of crossover rate was chosen to 
be 0.9. 

PSO Settings: Cognitive and social components are 
constants that can be used to change the weighting be-
tween personal and population experience, respectively. 
In our experiments cognitive and social components 
were both set to 1.8. Inertia weight, which determines 
how the previous velocity of the particle influences the 
velocity in the next iteration, was 0.6.  
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MBOA: For MBOA, we only need to set λ  and ρ  
to decide magnetic field. In our experiments, 5.0=λ , 

0001.0=ρ . 
3.3. Experiment Results 
In order to characterize the type of problems for which 
the algorithm is suitable and test the performance of 
MBOA, we used 14 benchmark problems in order to 
comparison the performance of these algorithms. This set 
is large enough to include many different kinds of prob-
lems such as unimodal(U), multimodal(M), regular, ir-
regular, separable(S), non-separable(N) and multidimen-
sional. Initial range, formulation, the dimensions(D), 
parameters setting and characteristics(C) of these prob-
lems are listed in Table 1. The minimal values of Easom 
and Dropwave are -1. The minimal value of all the other 
functions is 0. The formulations of benchmark functions 
are shown in Table 2. 

The compared results of the MAB with GA, PSO, DE 
on a large set of functions are listed in Table 3 and Ta-
ble 4. Each of the experiments in this section was re-
peated 30 times with different random seeds and the 
mean best values produced by the algorithms have been 
recorded. In order to make comparison clear, the values 
below 1210− are assumed to be 0.  

 
Table 1. Characteristic of benchmark functions 

No. Function Range D C 

1 Step [-100, 100] 30 US 

2 Sphere [-100, 100] 30 US 

3 SumSquares [-10, 10] 30 US 

4 Quartic [-1.28, 1.28] 30 US 

5 Easom [-100, 100] 2 UN 

6 Schwefel1.2 [-100, 100] 30 UN 

7 Zakharov [-5, 10] 10 UN 

8 Powell [-4, 5] 24 UN 

9 Rotatedhyper [-65.536,65.536] 30 UN 

10 Rastrigin [-5.12, 5,12] 30 MS 

11 Branin [ 5,10] [0,15]− ×  2 MS 

12 Dropwave [-5.12,5.12 1] 2 MS 

13 Schaffer [-100, 100] 2 MN 

14 Griewank [-600, 600] 30 MN 

 

Table 2. Benchmark function formulations 

No. Formulations 
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Because of space limit, we separate experiment results 

to two sets as shown in Table 3 and Table 4, respective-
ly. Statistical results of 30 runs obtained by GA, DE 
MBOA are shown in Table 3 and those of  PSO and 
MBOA are shown in Table 4, where Mean: Mean of the 
Best Values, Std: Standard Deviation of the Best Values. 

 
Table 3. Comparison results of GA, DE and MBOA 

No.  GA DE MBOA 

1 Mean 78.2333 0 0 
Std 41.1563 0 0 

2 Mean 91.1986 0 0 
Std 36.4409 0 0 

3 Mean 0.4881 0 0 
Std 1.1443 0 0 

4 Mean 0.2670 0.006891 2.7511e-05 
Std 0.2237 0.00148 3.8863e-05 

5 Mean -0.6413 -1 -0.9966 
Std 0.4614 0 0.0037 

6 Mean 2.4527e+04 18324.1 0 
Std 6.4361e+03 3022.165 0 

7 Mean 0.2301 0 0 
Std 0.6375 0 0 

8 Mean 2.5631 0.059135 0 
Std 1.6810 0.02199 0 

9 Mean 395.4911 1.9523e-09 0 
Std 182.5482 2.3682e-09 0 

10 Mean 0 98.21781 1.3281e-10 
Std 0 7.976648 1.5040e-11 

11 Mean 0.4075 0.3979 0.3984 
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Std 0.0127 0 4.9229e-04 

12 Mean -0.9793 -1 -1 
Std 0.0561 0 0 

13 Mean 0.0010 0 0 
Std 0.0031 0 0 

14 Mean 0.7959 0 0 
Std 0.4205 0 0 

As seen from Tables 3 and Tables 4, there are 8 func-
tions with 30 variables. MBOA outperforms all the other 
algorithms on 4(Quartic, Powell, Rotatedhyper, Rastrigin) 
and has the same performance on 1(Matyas) with GA, 
DE, PSO. It has the same performance on 5 (Step, 
Sphere, Sumsquares, Schaffer, Griewank) with DE, PSO, 
GA has the worst performance on these functions. It is 
better than GA on Step, Sphere, Schaffer, Griewank, 
Easom, Schwefel1.2, but is worse than PSO, DE on Ea-
som, Branin. It is better than GA, PSO on Zakhavov. And 
it has the same performance as DE on Dropwave. It is 
better than DE, PSO on Rastrigin and worse than GA. It 
is better than GA but worse than PSO, DE on Branin. In 
total, it is better than PSO on 6, GA on 12, DE on 5 of 
these 14 functions. So, MBOA has better performance 
than GA on these functions and is competitive with PSO, 
DE on these functions. 

 
Table 4. Comparison results of PSO and MBOA 

No.  PSO MBOA 

1 Mean 0 0 
Std 0 0 

2 Mean 0 0 
Std 0 0 

3 Mean 0 0 
Std 0 0 

4 Mean 0.00115659 2.7511e-05 
Std 0.000276 3.8863e-05 

5 Mean -1 -0.9966 
Std 0 0.0037 

7 Mean 0 0 
Std 0 0 

8 Mean 91.8336 0 
Std 50.8704 0 

9 Mean 403.7601 0 
Std 886.0659 0 

10 Mean 2.3695e+06 0 
Std 8.6174e+06 0 

11 Mean 43.9771369 1.3281e-10 
Std 11.728676 1.5040e-11 

12 Mean 0.3978 0.3984 
Std 0 4.9229e-04 

13 Mean -0.8473 -1 
Std 0.1643 0 

14 Mean 0 0 
Std 0 0 
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Figure 1. Comparison on convergence of the four algorithms. 
 
In Figure 1, the performance of convergence of the 

four algorithms on four functions is shown as examples.  



Magnetotactic Bacteria Optimization Algorithm 

Copyright © 2012 SciRes.                                                                                 JSEA 

71 

The four functions have difference characteristics as 
shown in Table1. We can see that MBOA converges 
much faster than PSO, DE and GA. 

4. Conclusions 
In this paper, a new nature inspired computing method- 
Magnetotactic Bacteria Optimization Algorithm is re-
searched. It adopts the principles of energy and moment 
of magnetosomes in magnetotactic bacteria to produce 
optimal solution for engineering problems. It has simple 
procedure and is easy to implement. The experimental 
results show that it is effective in solving optimization 
problems and is competitive with the compared classical 
algorithms PSO and DE. And it converges faster than 
PSO, DE and GA. It shows competitive performance 
with some classical algorithms, such as GA, DE, PSO. In 
future, it needs to be analyzed in theory and improved its 
performance for solving more complex problems. 
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