
Journal of Software Engineering and Applications, 2012, 5, 983-990
http://dx.doi.org/10.4236/jsea.2012.512113 Published Online December 2012 (http://www.SciRP.org/journal/jsea)

983

ML-CLUBAS: A Multi Label Bug Classification Algorithm

Naresh Kumar Nagwani1, Shrish Verma2

1Department of Computer Science & Engineering, National Institute of Technology Raipur, Raipur, India; 2Department of Electron-
ics and Telecommunication Engineering, National Institute of Technology Raipur, Raipur, India.
Email: nknagwani.cs@nitrr.ac.in, shrishverma@nitrr.ac.in

Received October 4th, 2012; revised November 6th, 2012; accepted November 17th, 2012

ABSTRACT

In this paper, a multi label variant of CLUBAS [1] algorithm, ML-CLUBAS (Multi Label-CLassification of software
Bugs Using Bug Attribute Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using text clus-
tering, frequent term calculations and taxonomic terms mapping techniques, and is an example of classification using
clustering technique. CLUBAS is a single label algorithm, where one bug cluster is exactly mapped to a single bug
category. However a bug cluster can be mapped into the more than one bug category in case of cluster label matches
with the more than one category term, for this purpose ML-CLUBAS a multi label variant of CLUBAS is presented in
this work. The designed algorithm is evaluated using the performance parameters F-measures and accuracy, number of
clusters and purity. These parameters are compared with the CLUBAS and other multi label text clustering algorithms.

Keywords: Software Bug Mining; Software Bug Classification; Bug Clustering; Classification Using Clustering; Bug

Attribute Similarity; Multi Label Classification

1. Introduction

Classification algorithms in text mining can be catego-
rized using the class labels assigned to each category.
Using class labels as classification parameters there are
two major categories of classification algorithms, the
first category is single label algorithms and the other
category is multi label classification algorithms. In mul-
tilabel categorization a text document may belong to one
or more number of categories. In single-label classifica-
tion, each document is mapped to exactly one category.
Software bugs contains most of the important informa-
tion as text. The algorithm CLUBAS (CLassification of
software Bugs Using Bug Attribute Similarity) is pre-
sented in [1] for creating the categorized groups of simi-
lar bugs using the textual similarity of bug attribute.
CLUBAS is a single label text clustering based classifi-
cation algorithm, where one bug cluster can be mapped
to exactly one bug category. In this paper a multi label
variant of CLUBAS, namely ML-CLUBAS (Multi Label-
CLassification of software Bugs Using Bug Attribute
Similarity) is presented.

2. The ML-CLUBAS Algorithm

In this section, the pseudo code and working of the
ML-CLUBAS algorithm is presented. ML-CLUBAS is
segmented into the five major steps just like CLUBAS.
All the steps are same as CLUBAS except the step 4

(Mapping Clusters to Classes), which transforms the
CLUBAS algorithm to ML-CLUBAS algorithm. Like
CLUBAS, it takes two parameter for performing the bug
classification i.e. textual similarity threshold value ()
and number of frequent terms in cluster label (N). The
initial step in the Extract Data, where the bug records
from a particular bug repository is retrieved and stored in
the local system. The next step is Pre-processing Step,
where the software bug records available locally in
HTML or XML file formats are parsed and bug attributes
and their corresponding values are stored in the local
database. After this the stop words elimination and
stemming is performed over the textual bug attributes
summary (title) and description, which are used for cre-
ating the bug clusters. In the following step (Clustering),
the pre-processed software bug attributes are selected for
textual similarity measurement. Cosine similarity tech-
nique from symmetric [2] Java API (Application Pro-
gramming Interface) is used for measuring the weighted
similarity between a pair of software bugs. For all soft-
ware bug pairs the weighted similarities are calculated
and stored, using which the clusters are created. The
clusters are created as follows—initially one cluster is
created with a random bug, then if the similarity value
for a paired bugs with this bug is less than the similarity
threshold value (), then both of the bugs are mapped to
the same clusters, otherwise the new cluster is created
and the bug which is not belonging to the cluster is

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 984

mapped to new cluster. This similarity threshold value is
one of the important parameters for the ML-CLUBAS
algorithm. If the value of (similarity threshold value) is
the high, then high similarity between the software bug
attributes is expected for clustering and vice-versa.

The next step (Cluster Label Generation) is to gener-
ate the cluster labels using the frequent terms present in
the bugs of a cluster. In this step the summary (title) and
descriptions of all the software bugs belonging to a par-
ticular clusters are aggregated and frequent terms present
in this aggregate text data is calculated and the N (where
N is the number of frequent terms in labels and is an user
supplied parameter) top most frequent terms are assigned
to the clusters as the cluster labels. Mapping of the clus-
ter labels to the bug categories using the taxonomic terms
for various categories is carried out next (Mapping Clus-

ters to Classes). In this step, the taxonomic terms for the
entire bug categories are pre-identified and cluster label
terms are matched with these terms. Matching of the
terms indicates the belongingness of clusters to the cate-
gories. Here in ML-CLUBAS one bug cluster can belong
to more than one bug category depending on the taxo-
nomic term and cluster label match. On every match of
these terms, the bug cluster can belong to the bug catego-
ries. The last step (Performance Evaluation and Output
Representation) is generating the confusion matrix, using
which various performance parameters like precision,
recall, and accuracy is calculated. The precision and re-
call can be combined together to calculate f-measure, the
formulas for these parameters is mentioned in the next
section. Finally the cluster information is visualized and
represented as the output of the ML-CLUBAS.

ALGORITHM ML-CLUBAS

Returns: a) Clusters consisting of similar bugs,
b) Categories of each cluster.

Arguments: —Similarity Threshold,
N—Number of frequent terms in cluster labels.

Step 0 (Extract Data):
0a) Generate the numbers set R for bug data sources (bug-id range, randomly etc.).
0b) For each number m R, append it to the bug repository URL.
0c) Using URL programming, extract the HTML or XML page for the bug with the bug-id value as m.

Step 1 (Pre-processing Step):
for-each bug record retrieved from the bug repository.
1a) Parse and extract the bug attributes from each bug file.
1b) Eliminate the stop words from bug summary, description and comments.
1c) Apply stemming to the textual attributes bug summary, description and comments.

Step 2 (Clustering):
2a) For each pair of bugs Bi and Bj, calculate the textual similarity between the attributes summary and description, using the similarity
weights WS and WD such that the similarity value is normalized to 1, i.e. WS + WD = 1.
2b) Sim (Bi, Bj) = WS × Sim (Bi-summary, Bj-summary) + WD × Sim (Bi-description, Bj-description).
2c) IF Sim (Bi, Bj) > THEN Assign Bi, Bj to same cluster ELSE Create a new cluster and Assign Bj to this cluster.

Step 3 (Cluster Label Generation - Using Frequent Terms for a Cluster):
For each cluster Ci, get the lists of bugs belonging to this cluster.
3a) Extract the summary and description of these bugs.
3b) Concatenate this textual data to form the cluster text data.
3c) Calculate the N frequent terms {Ti1, Ti2 ··· TiN} from each cluster text data, and assign them to these clusters as cluster labels.
3d) Label (Ci) {Ti1, Ti2 ··· TiN}.

Step 4 (Mapping Clusters to Classes):
4a) For each cluster Ci, get each term TiK in the Label (Ci) (cluster label) and match it with the bug taxonomic terms. The match indicates
the belongingness of cluster in that bug category. If matching occurs with taxonomic terms of two or more number of categories, then the
cluster will belong to all of these categories.

Step 5 (Performance Evaluation and Output Representation):
5a) Generate the confusion matrix.
5b) Calculation of the performance parameters Accuracy, Precision, Recall, F-Measure, Number of Clusters and Entropy.
5c) Visualized representation of bug clusters and its labels.

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 985

3. Classifier Performance Evaluation

The accuracy and performance of prediction models for
classification problem is typically evaluated using a con-
fusion matrix. Various performance measures like accu-
racy and F-measure are derived from the confusion ma-
trix. The formula’s for the parameters is covered in the
CLUBAS [1]. From clustering quality comparison point
of view two parameters are important i.e. number of
clusters and entropy.

Entropy

Entropy is the amount of information by which the know-
ledge about the classes increases, when clusters are in-
creased. Entropy tends to increase with the number of
clusters, it reaches maximum to log2(N), where N is the
number of clusters. Entropy is a measure of uncertainty
associated with the random variables. Lower value of
entropy indicates the better quality of clusters. In an ideal
situation, if the software bug has a one to one mapping
with a cluster, then the value of entropy will be zero [3,4].
Entropy is defined as follows:

i 2entrpoy P log P i (1)

where Pi is the probability of a document being in ith
cluster.

4. Implementation

Implementation is done using open source object ori-
ented programming language Java, and MySql is taken as
local data base management system, Weka [5] API is
used for implementing the stemming and other classifi-
cation algorithms for comparison. The multi map data
structure is also used for calculations and storing the
clusters information at run time.

4.1. Datasets and Sampling

The random software bug records are selected from four
open sources online software bug repositories namely,
Android [6], JBoss-Seam [7], Mozilla [8] and MySql [9].
Random sampling technique is used and the sample size
of 1000 is taken for the experiments from these four re-
positories for the comparison of the classifiers.

4.2. Pre-Processing

After the software bug records are extracted and made
available at local system, and then pre-processing of these
records is performed. The pre-processing takes places in
three stages: parsing, elimination of stop words and
stemming [1].

4.3. Mapping Bug Clusters to Categories

The categorical terms are generated from the software

bug clusters labels. The technique of generating these
taxonomic terms from various bug repositories is given
in [1]. Cluster labels are generated by computing the
frequent terms present in the bug clusters, then these
terms are matched against the taxonomic terms of vari-
ous bug categories presented in [1], whenever there is a
match of cluster label term and taxonomic term that in-
dicates the category of the bug cluster, here in this case a
bug cluster can belong to more than one bug category.
Experiments are performed from binary classification
(two bug classes) to eleven number of bug classes. Ten
bug classes are mentioned in [1], if a software bug does
not fall on these ten categories, then it is mapped to a
special category “Other”, i.e. the eleventh category of
bug classes. In ML-CLUBAS a bug may fall on one or
more categories from these eleven bug categories.

5. Comparison of CLUBAS, ML-CLUBAS
and Other Similar Algorithms

The comparison of ML-CLUBAS is first performed with
CLUBAS using the performance parameters accuracy
and F-measure. Since up to cluster generation stage both
CLUBAS and ML-CLUBAS are same, so same number
of bug clusters are generated by both of these algorithms.
ML-CLUBAS is further compared with the other multi
label text clustering algorithms Lingo and STC using the
parameters accuracy, F-measure, number of clusters and
entropy. Lingo is proposed by Osinski et al. [10,11] for
clustering search results, which uses the method of alge-
braic transformations of the term-document matrix and
frequent phrase extraction using suffix arrays. Lingo is a
popular web clustering algorithm and is commonly used
for clustering the web search results. Grouper [12,13] is a
snippet-based clustering engine. The main feature of
Grouper is the introduction of a phrase-analysis algo-
rithm called STC (Suffix Tree Clustering). The STC al-
gorithm groups the input texts according to the identical
phrases they share.

5.1. Accuracy

The result of the parameter accuracy for the algorithm
and various repositories is shown in Figure 1. In ML-
CLUBAS algorithm, a single cluster is mapped to more
than one bug category which causes higher values of true
negative and false positives in the confusion matrix. And
because of higher values of true negative and false posi-
tive values there are drop in accuracy and F-Measure
values in ML-CLUBAS algorithm. From the experimen-
tal results and graphs, it is clearly shown that algorithm
CLUBAS performs better than any of the multi label text
algorithms in terms of accuracy and F-Measure. The re-
lationship between the number of classes and accuracy of

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 986

(a) (b)

(c) (d)

Figure 1. Accuracy in % for different number of classes in text clustering based classification techniques for (a) Android (b)
JBoss-Seam (c) Mozilla (d) Mysql Bug Repository.

the multi label text clustering algorithm is shown in fig-
ure. With increase in number of classes, drop in accuracy
values is observed. Accuracy wise ML-CLUBAS per-
forms much better than both Lingo and STC algorithms
for all the bug repositories taken in experiment except
JBoss-Seam repository. In case of JBoss-Seam bug re-
pository STC gives higher accuracy than ML-CLUBAS
and Lingo, the reason behind this is analyzed from man-
ual section of JBoss-Seam repository. From manual in-
spection it is observed that JBoss-Seam bug repository
consist of less textual information (less amount of text in
textual attributes of bug) than the other bug repositories.

5.2. F-Measure

The relationship between the F-Measure and number of

classes is plotted in Figure 2. With increase in number of
classes in bug classification, there is a minor drop ob-
served in all the multi label text clustering algorithms.
Except JBoss-Seam, for rest of the bug repositories there
is a similar behavior of algorithms in terms of F-Measure.
In case of JBoss-Seam bug repository, STC algorithm
gives maximum values than other text clustering algo-
rithms ML-CLUBAS and Lingo.

5.3. Number of Clusters

Number of clusters generated for different bug reposito-
ries is depicted in Figure 3 for different number of bug
samples taken for experiment. A sample size of 200, 300,
500, 800 and 1000 is taken for the experiment. From
figure, it is shown that the number of clusters created

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 987

(a) (b)

(c) (d)

Figure 2. F-Measure in % for different number of classes in text clustering based classification techniques for (a) Android (b)
JBoss-Seam (c) Mozilla (d) Mysql Bug Repository.

increases with the number of software bugs. This is be-
cause as the number of bugs increases the more number
of bugs are discovered which are not falling in any of the
existing clusters, in other words the dissimilar bugs are
entering into the system, which causes forming of the
newer bug clusters.

Both CLUBAS and ML-CLUBAS creates same num-
ber of bug clusters, since up to the bug cluster step, the
mechanism of the algorithms is same. After creation of
bug clusters only the implementation of CLUBAS and
ML-CLUBAS differs. Lingo creates maximum number
of clusters (with less number of bugs in the clusters) for

all the repositories than ML-CLUBAS and STC. STC
always creates less and fixed number of clusters, because
of its tree data structure. STC algorithm generates less
number of clusters, up to 2000 bug samples it generates
16 (24) clusters because it follows a tree based structure
to generate the clusters. Lingo generates more clusters
than STC, but less than the CLUBAS algorithm for the
same number of bugs. Lingo creates clusters by identify-
ing key phrases in text, whereas CLUBAS generates
clusters using textual similarity information in the text
collection of software bug attributes. The reason behind
the less number of clusters in Lingo and STC is more

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 988

(a) (b)

(c) (d)

Figure 3. Number of clusters for multi label text clustering algorithms for different repositories.

number of software bugs are ignored in clusters and
treated as outliers in Lingo and STC whereas less number
of bugs is identified as outliers in CLUBAS. Around 7%
bugs are identified as outliers in CLUBAS, whereas
around 13% - 15% bugs are identified as outliers in
Lingo and STC.

5.4. Entropy

The graph plotted for the corresponding entropy values
in Figure 4. Figure indicates the entropy values calcu-
lated for different bug repositories at different sampling
point. Lower value of entropy indicates the better quality
of clusters. From figure it is observed that, for none of
the repositories Lingo is able to produce the acceptable

values (the ideal value for entropy is zero). For MySql
bug repository the values are slightly better than other
two repositories. Entropy wise ML-CLUBAS performs
better than Lingo but not from STC algorithm, since
Lingo creates more number of clusters than ML-CLUBAS
algorithm. From the experimental results it is observed
that almost in all the cases there is a log leaner relation-
ship between the number of clusters and entropy values
for multi label text clustering algorithms. Entropy wise,
STC is the best algorithm than since it creates less num-
ber of clusters. However, ML-CLUBAS gives acceptable
entropy values in the practical scenario, since it is diffi-
cult to get fewer clusters for text data using textual simi-
larity mechanism for cluster creation.

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 989

(a) (b)

(c) (d)

Figure 4. Entropy values for multi label text clustering algorithms for different repositories.

5.5. Computation Time

The computation time for creating the software bug clas-
sification using the text clustering algorithms (Lingo and
STC) takes only five seconds up to 1000 software bugs
records, whereas the algorithm ML-CLUBAS takes slightly
higher computation time than Lingo and STC algorithms.
The computation time calculated is around 20 seconds up
to 1000 software bugs on the same machine using the
same software bugs records. This is because measuring
pair-wise attributes similarity and then applying cluster-
ing and label generation requires lot of calculations,
which requires slightly more time than Lingo and STC
algorithms. For 1000 bugs the maximum time taken is

about 3.5 seconds and the maximum time taken for 100
bugs is about 1.2 seconds. The experiments are performed
over a machine with CPU as 2.0 GHz and 2 GB of RAM
(Random Access Memory).

6. Threats to Validity

The limitation of the work is same as with CLUBAS [1].
The experiments are performed a number of time to
validate the results still there is a possibility that parame-
ter values may slightly differ from the claimed results
due to the randomness (random samples taken for the
experiments). The other limitation of the work can be de-
rived from the Zipf’s power distribution law [14,15]. It

Copyright © 2012 SciRes. JSEA

ML-CLUBAS: A Multi Label Bug Classification Algorithm 990

states that most of users use limited number of words
(terms) frequently in the documents. Zipf’s law supports
the algorithm CLUBAS, and ML-CLUBAS algorithms
since both are derived from the frequent terms concept,
however in few cases where the developers or testers
from different places can use the different set of vocabu-
laries to specify the bug information, in that case, the
accuracy values may drop slightly.

7. Conclusion & Future Scope

CLUBAS is a single label classification algorithm, where
each bug cluster belongs to a single bug category. In this
work, a multi label variant of CLUBAS, ML-CLUBAS is
present with pseudo-code where a single bug cluster can
be mapped to more than one bug category. The compari-
son of ML-CLUBAS with CLUBAS and other text clus-
tering algorithm Lingo and STC is also presented. From
results it is observed that since bug clusters are mapped
to more than one category in ML-CLUBAS, which causes
more values in TN (True Negative) and FP (False Posi-
tive) and hence less accuracy and F-measure than CLUBAS.
From the comparison with Lingo and STC, it is found
that accuracy wise algorithm ML-CLUBAS performs
better. From cluster entropy wise STC is the best algo-
rithm, however ML-CLUBAS gives the acceptable en-
tropy values.

REFERENCES
[1] N. K. Nagwani and S. Verma, “CLUBAS: An Algorithm

and Java Based Tool for Software Bug Classification Us-
ing Bug Attributes Similarities,” Journal of Software En-
gineering and Applications, Vol. 5, No. 6, 2012, pp. 436-
447. doi:10.4236/jsea.2012.56050

[2] S. Chapman, “Simmetrics, Java Based API for Text Simi-
larity Measurement,” 2011.
http://www.dcs.shef.ac.uk/~sam/simmetrics.html.

[3] C. D. Manning, P. Raghavan and H. Schuitze, “Introduc-
tion to Information Retrieval,” 2008.
http://nlp.standford.edu/IR-book/html/htmledition/evaluation

-of-clustering-1.html

[4] H. Li, K. Zhang and T. Jiang, “Minimum Entropy Clus-
tering and Applications to Gene Expression Analysis,”
Proceedings of IEEE Computational System Bioinfor-
matics Conference, Stanford, August 2004, pp. 142-151.

[5] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Hol-
mes and S. J. Cunningham, “Weka (Waikato Environment
for Knowledge Analysis),” 2011.
www.cs.waikato.ac.nz/ml/weka

[6] “Android Bug Repository,” 2011.
http://code.google.com/p/android/issues

[7] JBoss-Seam, “Bug Repository,” 2011.
https://issues.jboss.org/browse/JBSEAM

[8] “Mozilla Bug Repository,” 2011.
https://bugzilla.mozilla.org

[9] MySql, “Bug Repository,” 2011. http://bugs.mysql.com

[10] S. Osinski, J. Stefanowski and D. Weiss, “Lingo: Search
Results Clustering Algorithm Based on Singular Value
Decomposition,” Proceedings of the International Intel-
ligent Information Processing and Web Mining Confer-
ence, Zakopane, 17-20 May 2004, pp. 359-368.

[11] S. Osinski, “An Algorithm for Clustering of Web Search
Results,” Master’s Thesis, Poznań University of Technol-
ogy, Poznań, 2003.

[12] O. Zamir and O. Etzioni, “Grouper: A Dynamic Cluster-
ing Interface for Web Search Results,” Computer Net-
works, Vol. 31, No. 11-16, 1999, pp. 1361-1374.
doi:10.1016/S1389-1286(99)00054-7

[13] O. Zamir and O. Etzioni, “Web Document Clustering: A
Feasibility Demonstration,” Proceedings of the ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR), Melbourne, 24-28 August 1998, pp.
46-54.

[14] W. Li, “Random Texts Exhibit Zipf’s-Law-Like Word
Frequency Distribution,” IEEE Transactions on Informa-
tion Theory, Vol. 38, No. 6, 1992, pp. 1842-1845.
doi:10.1109/18.165464

[15] W. J. Reed, “The Pareto, Zipf and Other Power Laws,”
Economics Letters, Vol. 74, No. 1, 2001, pp. 15-19.
doi:10.1016/S0165-1765(01)00524-9

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.4236/jsea.2012.56050
http://dx.doi.org/10.1016/S1389-1286(99)00054-7
http://dx.doi.org/10.1109/18.165464
http://dx.doi.org/10.1016/S0165-1765(01)00524-9

