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ABSTRACT 

The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two 
steps are necessary; the first one is the estimation of the sensor fault amplitude using a Luenberger observer with delay, 
and the second one consists to generate the additive fault tolerant control law and to add it to the nominal control of 
delayed system. The additive control law must be in function of fault term, then, in the absence of fault the expression 
of additive control equal to zero. The generation of nominal control law consist to determinate the state feedback gain 
by using the Lambert W method. Around all these control tools, we propose an extension of the additive FTC to de-
layed singularly perturbed systems (SPS). So, this extension consists to decompose the delayed SPS in two parts: de-
layed slow subsystem (delayed SS) and fast subsystem (FS) without time delay. Next, we consider that the delayed SPS 
is affected at its steady-state, and we apply the principal of FTC to the delayed SS and finally we combine them with the 
feedback gain control of FS by using the principal of composite control. 
 
Keywords: Additive Fault Tolerant Control; Composite Control; Lambert W Function; Order Reduction; Sensor Fault; 

Singularly Perturbed System 

1. Introduction 

Several physical processes are on one hand high order 
and on the other hand are complex what returns their 
analysis and especially their control, with the aim of cer- 
tain objectives, very delicate. However, knowing that these 
systems possess variables evolving in various speeds (tem- 
perature, pressure, intensity, voltage…) it turned out in- 
teresting to separate their dynamics [1-6] with the aim of 
the implementation of singularly perturbation technique. 
Indeed, this one allows, in the case of two time scales, [7] 
to describe the behavior of global studied process by 
those of two their subsystem (slow and fast) obtained by 
a temporal decomposition. 

The interest of this decomposition is to define a re- 
duced order model which allows in several control prob- 
lems to found a solution simpler to implement for some 
approximations. 

Like for all the types of systems who can contain a 
time-delay in its dynamic or in their control, the singu- 
larly perturbed systems “SPS” can also contain a delay. 
This problem was studied in several references such as 
[8-12], etc.  

Moreover the presence of fault in delayed SPS com- 
plicate their designs for this reason it’s necessary to 

elaborate a fault tolerant control FTC. 
This paper is the extension of the additive fault toler- 

ant control designed for the SPS in [13] to the delayed 
SPS case and it’s the extension of additive FTC in [14, 
15] to the delayed systems and specially to the delayed 
singularly perturbed system. 

2. Delayed Singularly Perturbed System 

Consider the standard linear singularly perturbed system 
with small state time-delay described by [16,9]: 

Delayed SPS 
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      (1) 

where: 2   1
fsx t , x t

nn   are the states vector, 
 u t r  the control input, d the positive time-delay, μ 

the small positive perturbation parameter Aij, Bi, i = 1, 2; 
j = 1, 2, 3, constant matrices of appropriate dimensions, 
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and φ(t) the continuously differentiable initial function. 
The slow subsystem (SS) and fast subsystem (FS) are 

obtained by considering that the fast variable in x2(t) rea- 
ched there established regime, which corresponds to the 
assumption μ = 0 [2,17]. This leads then to the following 
reduced models: 

Delayed SS 
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0
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with: 
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and FS 
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    (4) 

3. Principle of Additive Fault Tolerant 
Control 

The accommodation principle of fault is based on the 
addition of an additive control uad to the nominal control 
law u. To design this control law, we need two steps: 
estimation and compensation of the fault. 

In our work we studied only the sensor fault case 
which appears as bias. In this section we will consider 
that the delayed SPS is affected at its steady-state, so that 
it is equivalent to consider that the fault affects only the 
delayed slow subsystem and by consequence we will 
design only the reduced additive FTC of slow subsystem 
and the additive control of delayed slow subsystem will 
be applied to delayed SPS to compensate its sensor fault. 
The first step consists to design nominal composite con- 
trol for the delayed SPS, secondly the sensor fault am- 
plitude will be estimated by using the delayed slow sub- 
system, and finally we determinate the expression of re- 
duced additive FTC. 

3.1. Composite Nominal Control 

This approach was developed for the SPS without time- 
delay in [1,7,13]. The results will be extended it to the  

delayed SPS. Its principle consists to determinate the 
state feedback gain of slow subsystem and of fast sub-
system, the last ones will be regrouped to find a global 
gain of SPS. 

We remark that the delayed SPS is decomposed in de- 
layed slow subsystem and fast subsystem without time- 
delay, for this reason we will design the state feedback 
gain of slow subsystem by using the Lambert-W function 
and the state feedback gain of fast subsystem will be de- 
terminate by using the classical pole placement method. 

3.1.1. Determination of Reduced Nominal Control of 
Delayed Slow Subsystem 

The Gain of slow subsystem control is determined by 
using the Lambert-W approach. 

Definition of Lambert W function: 
Let’s x

x
 be a solution, to determinate, of the equa- 

tion x e y  for y , This type of equation can be 
resolve by using the Lambert W function  such that 
[18,19]: 

kW
 kx W y . 

With: k branches of Lambert W function and k є [−∞, 
+∞], k = 0 principal branch [18,19]. 

Consider the delayed system: 

    d x t A x t A x t - d         (5) 

This can be represented by the delayed differential 
equation (DDE): 

      0dx t A x t A x t d          (6) 
Let’s   0

S tx t e x  be a solution of (6) with S: matrix, 
with appropriate dimension, to determinate. 

Replacing the expression of  x t

 

 in (6) we find: 

  0 0dS A A e e xS -d S t          (7)  

By consequence we found: 

   0S d
dS A A e              (8) 

Then: 
d S

dS A A e               (9) 

Multiplying the Equation (9) by    we 
find: 

d S d Ad e e  

    S A d Ad
dd S A e A d e         (10) 

In this step we can use Lambert W function with 
 x = d S A  and Ad

dy A d e , by consequence the 
expression of S is: 

1 Ad
dS W A de

d
  A          (11) 

Equation (11) represents the characteristic equation for 
the general time-delayed system [20]. The roots of Equa-
tion (6) are the eigenvalues of the matrix S and can be 
used to describe the stability of the DDE (6), which 
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represents the stability of the general system. 
State feedback gain of slow subsystem by using Lam- 

bert W function 
Consider the feedback control of delayed slow sub- 

system: 

   s s su t K x t             (12) 

To find sK  we place the desired eigenvalue as fol- 
low: 

    

 
0 0

1
sa b K d

d s

desired

Re S W a d e a bK
d

Re λ

    
 




   (13) 

We consider, also, that the slow subsystem is aug- 
mented by an integrator to ensure a null static error. So, 
the expression (12) of Reduced will be: 

     Rs s s su t K x t ε t           (14) 

where:  

 
The expression of delayed slow subsystem in closed 

loop is: 

      
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: output of delayed SS .

s

s sr s

sr

s

K W

ε t y t y t ,

y t

y t




 







       
   

0 3

0

s f s f s

s f s

srX t A X t A x t d G y

y t C X t

    




 t
 (15) 
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3.1.2. Gain State Feedback of Fast Subsystem 
The Gain of fast subsystem control is determined by us-
ing the classical placement pole method. 

   f f fu t K x t            (16) 

3.1.3. Composite State Feedback Control of SPS 
The composite nominal control of SPS is determinate by 
regrouping the two gains of delayed slow subsystem and 
fast subsystem. 

View on the composite control of SPS without time- 
delay 

Consider the form of slow subsystem and fast subsys-
tem control represented by the two Equations (12) and 
(16), the composite control can be determinate by using 
the following equation [1,7]: 

s f s s fu u K x K x   f          (17) 

However, the composite control law must be expressed 
using the system states x1 and x2, this can be obtained by  

replacing xs by x1 and xf by x2 – x2s ,with: 1

2

=
x

x
x

 
 
 

 and  

x2s is the slow part of x2. 
By consequence, the composite control law is: 

 1
1 2 22 21 1 2

-
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 
x   (19) 

 1
1 22 2 22 21f f s f

1K I K A B K K A A        (20) 

Composite control of delayed SPS 
The composite control gain of delayed SPS is determi- 

nate by analogy of non-delayed case of SPS, and as 
shown in Figure 1 the composite nominal control  Cnu t  
of delayed SPS is: 

   Cn gu t K x t ε t   

d

t

        (21) 

with:  
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: output of SPS .
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

3.2. Additive Control Law 

We suppose that the SPS is affected by a sensor fault in 
its steady-state. Given that the SPS output in steady-state 
is approximated by the one of slow subsystem; we can 
estimate the fault amplitude affecting the SPS by using 
the delayed slow subsystem. 

The main goal in this part is the determination of re-
duced additive control by using the delayed slow subsys-
tem in order to compensate the sensor fault affecting the 
global delayed SPS. 

Figure 2 represents the principle of Fault tolerant con-
trol of delayed SPS. 

3.2.1. Fault Amplitude Estimation 
This step is realized by using the delayed Luenberger 
observer represented by the following equation:  

     

      
   

0 3

0

s f s f s

sr s s

s f s

ˆ ˆ ˆX A X A xt t t

ˆG y L y yt t
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with:  
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ε+ 
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Delayed SPS in closed loop 

Composite nominal control 

FS without Delayed SS  

Ks 

SPS output 
Delayed Yref +    

           
1/s 

 

Kg=[f(Ks ,Kf), Kf] 

 

Figure 1. Principle of composite nominal control of delayed 
SPS. 
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Figure 2. Principle of fault tolerant control of delayed SPS. 
 

The dynamic of observation error is: 

     s s
ˆe t X t X t           (23) 

The output of delayed slow subsystem affected by 
sensor fault is: 

     0s f s s sy t C X t F f t        (24) 

: matrix of fault directionsF  
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Using the Equations (15), (22) and (24) the expression 
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In steady-state the estimation error becomes null 
  0e t   then via (25) we can find the expression of 

fault amplitude: 

    3s s f sL F f t M e t A x t d         (26) 

Knowing that Fs is scalar and L is the observer gain of  

augmented system (dim (L) =2 × 1 and ) then (L  1

2

L
L

L

 
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 

Fs) is not invertible and by consequence we decompose 
the Equation (26).  

So, the expression of fault is: 

   
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with:      s s sˆε t ε t ε t   

3.2.2. Determination of Reduced Additive Control of 
Delayed Slow Subsystem 

The compensation of sensor fault effect on the closed- 
loop system can be achieved by adding a new control law 
to the nominal one [14,15]: 

      FTs s s s Radu t K x t ε t u   t

s

     (28) 

The output and the integrator are affected with the 
fault such that: 

     
     
    

0

s
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  
  


   dt

       (29) 

If C0 = 1 and by using Equations (28) and (29), the 
control law becomes the follow expression: 

    
     

s

FTs s s s s s

s ε Rad

ˆu t K x t K F f t

ε t f t u

 

  


t

     (30) 

The effect of sensor fault can be compensated by using 
the additive control as follow: 

   
sRad s s s ε

ˆu t K F f t f    t       (31) 

3.2.3. Determination of Global Additive Control of 
Delayed SPS 

We can deduce the expression of global additive control 
of delayed SPS by adding the reduced additive control 
(31) to the composite nominal control defined by expres-
sion (21): 
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     FTG Cn Radu t u t u  t      (32) 

4. Simulation Example 

Consider the delayed SPS: 
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If μ tends toward zero we find the delayed slow sub-
system and the fast subsystem: 
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By using the Equation (13), “lambertw” function in 
MATLAB and by placing the desired pole equal (- 2.1), 
we find Ks = –1.5; 

So, the reduced control is      1 5Rs s su t . x t ε t  .  
The gain Kf = –0.1 is determined by using expression 

(16). 
By regrouping the two gains and using the expression 

(20) and (21) we find the following composite nominal 
control of SPS:        1.8 0.1Cnu t x t ε t      

The gain of observer is determined by placing the poles 
of 0 0f fA LC  such as the eigenvalues of 0 0f fA LC  

equals 40 times the eigenvalues of 0 fA , so  

3 0.19
10

1.6
L

 
  

 
. 

So, the fault tolerant control of delayed SPS as show 
the expression (32) is: 

           1.8 0.1 1 5
sFTG s ε

ˆu t x t ε t . f t f t       

To simulate the effect of the fault tolerant control we 
generate a sensor fault as bias at time t = 40 sec with am- 
plitude equal 0.5;  

The following Figures 3(a) and (b) show the effect of 
sensor fault respectively in the control and in the output, 
of delayed SPS and delayed slow subsystem. 

The estimation of the sensor fault using the delayed 
observer is shown in the Figure 4: 

Figure 4 shows that the observer can estimate the am-  

 
(a) 

 
(b) 

Figure 3. (a) Time evolution of controls in the occurrence of 
sensor fault; (b) Time evolution of outputs in the occurrence 
of sensor fault. 
 

 

Figure 4. Sensor fault estimation. 
 
plitude of sensor fault. 

The following Figures 5(a) and (b) show the ability of 
the fault tolerant control to compensate the effect of sen- 
sor fault in the delayed SPS. 
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(a)                                                  (b) 

Figure 5. (a) Time evolution of fault tolerant controls; (b) Time evolution of outputs after compensation of sensor fault. 
 

    
(a)                                                     (b) 

Figure 6. (a) The outputs of delayed SPS and delayed SS for L1; (b) The outputs of delayed SPS and delayed SS for L2. 
 

It’s clear in the Figure 5 that the reduced additive 
control added to the composite nominal control can com- 
pensate the effect of sensor fault in the delayed SPS out- 
put.  

Effect of observer gain value on the fault compensa-
tion  

In this paragraph we discuss the effect of observer gain 
value in the fault compensation error. Figures 6(a) and 
(b) show the delayed SPS and the delayed SS output for 
different gain values. Figures 7(a) and (b) represent the 
control signal for different gain values. 

Case (a) for gain . 1

9.91

8
L

 
  
 

Case (b) for gain 3
2

0.19
10

1.6
L

 
  

 
 

It’s clear that for the case (b) the error value is equal to 
zero, but in case (a) it’s equal to 25% from the amplitude 

of fault (equal 0.5). 
For the case (b) the deviation of control signal at the 

occurrence of fault (40 sec) is more important than the 
case (a). 

So, more the observer gain value is important, more 
the compensation error in output of delayed SPS and 
delayed SS is better but the deviation of control signal is 
than more important. 

5. Conclusions 

In this work we studied the fault tolerant control of de- 
layed SPS by using the reduced fault tolerant control 
based on the delayed slow subsystem. This slow-fast 
decomposition approach simplifies the design of com- 
plex systems control with sensor failure.  

We notice an important deviation of the control signal 
at time of fault occurrence. So it will be interesting to 
study the fault tolerant control with constraints on the 



Additive Fault Tolerant Control Applied to Delayed Singularly Perturbed System 223

 
(a) 

 
(b) 

Figure 7. (a) The controls of delayed SPS and delayed SS 
for L1; (b) The controls of delayed SPS and delayed SS for 
L2. 
 
control signal. 

Also, this result can be extended to nonlinear delayed 
process with other type of faults. 
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