
Journal of Software Engineering and Applications, 2011, 4, 86-94
doi:10.4236/jsea.2011.42010 Published Online February 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

An Agent-Based Framework for Automated
Testing of Web-Based Systems
Samad Paydar, Mohsen Kahani

Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
Email: samad.paydar@stu-mail.um.ac.ir, kahani@um.ac.ir

Received November 15th, 2010; revised January 18th, 2011; accepted January 22nd, 2011.

ABSTRACT
Parallel to the considerable growth in applications of web-based systems, there are increasing demands for methods
and tools to assure their quality. Testing these systems, due to their inherent complexities and special characteristics, is
complex, time-consuming and challenging. In this paper a novel multi-agent framework for automated testing of web-
based systems is presented. The main design goals have been to develop an effective and flexible framework that sup-
ports different types of tests and utilize different sources of information about the system under test to automate the test
process. A prototype of the proposed framework has been implemented and is used to perform some experiments. The
results are promising and prove the overall design of the framework.

Keywords: Web Application, Web Service, Agent, Framework, Test, Test Script

1. Introduction
In the last few years, web-based systems1 as a new genre
of software systems have found their way into many dif-
ferent domains like education, entertainment, business,
communication, and marketing. Parallel to this interest in
development of web-based systems, many needs arise
due to the importance of assessing the quality of these
systems. Software testing is the traditional mechanism for
this purpose and it has long been used in the software his-
tory. Web-based systems, due to their special characteris-
tics and inherent complexities are more difficult to test,
compared to traditional software [1-4]. These complexi-
ties increase the cost of testing web-based systems. Test
automation is the main solution for reducing these costs.
Considerable effort has been dedicated to the develop-
ment of tools, techniques and methods that automate dif-
ferent tasks in the testing process [1,5], but they are
usually limited to one part or activity of the test process
(e.g. test case generation, test execution). In addition to
these limited solutions, some works have focused on
presenting an integrated test framework that can be used
to perform the whole test process with as much automa-
tion as possible. The complexity of web-based systems
dictates that a systematic test framework, which is suita-
ble for their architecture, is needed rather than a set of in-

dependent tools [1].
In this paper, an agent-based framework is presented

for testing web-based systems and a prototype of this
framework is developed. The main design goals have
been to develop an effective and flexible system that un-
like most of the existing test frameworks is capable of
supporting different types of test with as much test auto-
mation as possible. The framework is designed to be ca-
pable of utilizing different sources of information about
the System Under Test (SUT) in order to automate the
test process.

To meet these goals, the proposed framework is a mul-
ti-agent system consisting of a set of agents. Different
agents, collaborating with each other, perform the activi-
ties involved in the test process. Therefore, one of the
main issues in the design of the framework is the identi-
fication and separation of different parties and roles that
are involved in the test process. From this point of view,
a reasonable design helps to improve the extendibility
and flexibility of the framework. As will be discussed in
Section 0, these goals are met in the design of the pro-
posed framework.

The paper is organized as follows: Section 2 briefly re-
views the most related works. In Section 3, the design of
the proposed framework is discussed in detail and its
components are introduced. Section 4 briefly discusses
the implementation of the prototype system. Section 5

1By web-based systems, we mean traditional web applications and also
web-service based systems.

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

87

discusses the evaluation of the proposed framework. Fi-
nally, Section 6 concludes the paper.

2. Related Works
In [6] a framework has been presented to automate test-
ing of operational web-based systems. In this framework,
user sessions are extracted from the web server logs dur-
ing real user interactions. This information is then used to
generate a reduced set of test cases. Each test case consis-
ts of a set of URLs and name-value pairs. These test cases
are replayed against the system and system responses are
recorded. Then, a fault-seeded version of the system is
created and all test cases are rerun against this version.
Results are captured and compared by the oracle with the
previously recorded results, i.e. expected results. One of
the main benefits of this framework is that the test suite
evolves automatically as the operational profile of the ap-
plication changes. This framework, despite its success in
automating the test process to some extent, is focused
only on user-session based testing of an operational sys-
tem. Further, it is required that the source code of the sys-
tem is available and accessible. The white-box strategy
clearly limits the applicability of the framework in real
situations.

Beside this work, in [7,8] session data have been used
for web application testing. However, they have not pro-
posed a new framework.

In [9] a framework is developed focusing on testing
web services. The main idea of this work is that a service
should be accompanied by a testing service. The testing
service that tests the original service, called functional
service, can be provided either by the same vendor of the
functional service, or by a third party. Therefore, the tes-
ting framework is itself a service-oriented system. Despi-
te its valuable insights that present a good theoretical fra-
mework, this work has only focused on web services and
there are many issues to be addressed before it can be
considered as a complete framework for automatic testing
of web based systems.

In [10] authors present a model for developing soft-
ware testing frameworks using agent-oriented software
engineering paradigm. The layout of this framework con-
sists of three sets of components: distributor agents, test-
ing agents, and cloning agents; each of which runs locally
on different machines in a network. The distributor agen-
ts, at the topmost layer, are responsible for coordination
activities and resource allocation of lower layers. Testing
agents receive their assignments from their respective
distributor agents, and are responsible for providing dif-
ferent testing environments. Testing agents, based on the
load of their task, select one or more cloning agent to de-
legate the task to. The authors have concluded that al-
though their experimented goals have been quite narrow,

but it is quite powerful in reducing the test case genera-
tion time and effort, and also testing effort and fault de-
tection cost.

In [11] a discussion is presented with some supporting
examples on how a test specification based approach us-
ing a language, such as TTCN-3, can be used to define
the test cases at different levels of abstraction [12]. It has
concluded that test specification at an abstract level is
less volatile in the face of presentation and implementa-
tion complexities. The main drawback of this approach is
the high level of sophistication needed in terms of under-
standing TTCN-3 specification and also required effort to
analyze and generate these specifications. Also, as these
specifications are usually lengthy and they are created
manually not automatically, they can become a source of
failures, as well.

In [13] a framework is discussed for testing security of
the web-based systems. The framework is developed to
address two types of security attacks; SQL injection and
XSS attacks. The main drawback of this work is its limi-
ted scope, as it is only useful for security testing.

Kung introduces an agent-based framework for web
application testing [14]. The agents are designed based on
the Belief-Desire-Intention (BDI) model of rational agents.
Each agent has belief, desire, and intention. The frame-
work has been discussed at an abstract level. A set of
abstract classes (e.g. Belief, Goal, Agent) are defined and
it is said that in order to test a web application, specific
test agent classes must be subclassed from the appropri-
ate abstract classes. Therefore, the proposed frame-work
provides just a high-level sketch of an agent-based frame-
work for web application testing. No discussion is pre-
sented from the implementation point of view. For ins-
tance, it does not discuss how the action plans are gener-
ated, how test cases are defined.

In [15] a multi-agent framework is introduced for data-
flow testing of web applications. The proposed frame-
work is based on the idea presented in [14] and it realizes
the framework discussed there. A set of testing agents are
developed for performing method level, object level, and
object-cluster level data-flow tests on web applications.
This work is focused only on data-flow testing and uses
white-box strategy. The framework is not fully automatic
and test cases are generated manually or by the use of
some automatic test case generation technique, but no
special technique has been presented in [15].

A test harness is proposed in [16] for web applications.
Here, test scripts are presented in an abstract test script
language. Test harness analyzes the source code of the
web application to determine which technologies are used
in its development. It then selects a testing tool capable of
testing features specific to the detected technologies, con-
verts the abstract test script to the required technology-

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

88

specific version which can be run by the tool. It then uses
the testing tool to execute the test and stores the results.
The proposed test harness does not provide any facility to
automate generation of abstract test scripts.

Webtest [17] is another test framework which is based
on the notion of hybrid testing, i.e. using both static and
dynamic testing methods. Record-replay style is used as a
static testing method, while model-based testing is used
for dynamic testing.

3. The Proposed Framework
The existing web application test frameworks have two
main characteristics in common. First, all of them are
somehow limited both in terms of the test strategy they
use (white-box, black-box, gray-box) and the types of
tests they are designed for. For instance, [6] addresses
only white-box strategy and session-based test case gen-
eration, while [13] is addresses only security tests. The
second point is that, despite their differences, the way
they finally execute a test is almost similar. In other words,
regardless of whether a security test is being executed, or
a functional test generated from TTCN-3 specifications,
in both cases the test execution is performed by a set of
HTTP interactions with the target system. Therefore, it
can be concluded that it is possible to have a framework
that supports different types of tests. The reason is that a
test, whether a security test or a load test, finally is ex-
ecuted in terms of a set of HTTP interactions with the
SUT. So, if there is a formal format for test specification,
then it is possible to develop different modules, each of
which generates the specification of a special type of test.
In addition, a single module can be developed for execu-
tion of all types of tests. All that is needed is that the tests
are represented in a format that the executer module un-
derstands, and the executer module is able to behave like
a web browser and perform HTTP-based interactions.
The proposed framework relies on this point to support
different test types.

Our goal was to design a test framework for testing
web applications. The main design goals were effective-
ness and flexibility. By effectiveness we mean that the
framework is useful for automated execution of different
types of tests, such as functional, load, stress, security or
regression test. By flexible we mean that the framework
should be designed in a way that adding new functionali-
ties can be achieved with some reasonable level of effort,
i.e. the architecture of the framework is open to future
changes and improvements. To meet these goals, it was
decided to design a multi-agent architecture for the fra-
mework. By analyzing the system from a more abstract
point of view, different concepts (e.g. test script, test code)
and roles (e.g. test script generator, test executer) invol-
ved in the test process were identified.

In the proposed framework, different kinds of agents
responsible for performing different tasks and playing
different roles are defined. This separation of concerns is
helpful in achieving the desired goals. As each agent is
responsible for performing almost a single task, it reduces
the complexities of implementing the agents and also
enables new agents to be added in the future. Another be-
nefit of using multi agent architecture is that different
agents can be distributed across a network and provide a
distributed framework for testing web-based systems that
are themselves inherently distributed. This distributed ar-
chitecture can increase the effectiveness of the framework
because it facilitates some tests to be performed in a more
actual style. The main drawback of using a multi-agent
architecture for the framework is that it imposes some
communication overhead because of the messages that
must be transferred between different agents to perform
their activities. In addition to the communication over-
head, the definition of interfaces through which different
agents collaborate with each other is important.

The overall architecture of the framework and its parts
are illustrated in Figure 1. Different parts of the system
are discussed in the following sections.

3.1. Basic Terms
In this section, some of the basic terms that are frequently
used in the description of the framework are introduced.

Test Script: A test is composed of a set of actions or
steps (e.g. opening a web page, entering some values in
the fields of the page, submitting the page…). Each ac-
tion has a type (e.g. open, submit, fill, assertTitle) and it
may require some parameters (e.g. the URL of the page
to be opened). Therefore, having an appropriate set of
actions defined, a test can be specified in a text file which
we call it test script. It is worth mentioning that a test
script contains test criteria and information needed to
judge about the test result. In other words, there is no se-
parate part as a test oracle.

Test Code: Test code is a piece of program written in a
programming language which is logically equivalent to a
test script. A test code is generated by performing some
transformations on a test script

Test Case: Test cases are data items used in perform-
ing different steps of the test. For instance in the login
scenario presented earlier, the values used as the user-
name and password are some test cases.

3.2. Test Runtime Environment Agent
Test Runtime Environment (TRE) agent is the central
part of the system. It communicates with other agents in
order to manage the setup and execution of different acti-
vities of the test process. TRE is also responsible for pro-
viding suitable interfaces for the user. TRE uses Test

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

89

Script Generator (TSG) agent for creating test scripts.
When TSG has created the test script, it sends it to TRE.
Receiving the test script from TSG, TRE passes it to a
Test Code Generator (TCG) agent, which creates the test
code from the test script, compiles it and returns the com-
piled test code back to TRE. Then, TRE allocates some
Test Executer (TE) agents for executing the test, and
sends the compiled test code to them to be executed. TRE
is also responsible for allocating a Dashboard agent and
introducing it to the TE agents executing the test. TE
agents communicate with the Dashboard agent to provide
real-time information about the test process.

3.3. Test Script Generator Agent
TSG agent is responsible for providing facilities through
which the user can create a test script. Using TSG, the
user can select how the test script is generated. There are
two possible choices in the framework: using a Recorder
agent, or using a Modeler agent. Based on the user’s cho-
ice, TSG calls the recorder agent or the modeler agent to
create a test script. These agents, after generating the test
script, return it back to TSG. TSG enables the user to

view the test script and to edit it if required. After all,
TSG sends the test script to TRE and TRE continues the
test process.

3.4. Test Code Generator Agent
Test Code Generator (TCG) agent generating a test code
from a test script, compiles it and sends the compiled code
to TRE.

3.5. Test Executer Agent
A TE agent receives the executable code (generated by
TCG agent) from the TRE. It then executes the received
code. In addition, during the test execution, it is in com-
munication with a Dashboard agent and sends the partial
results to it. After the execution of the test is completed,
the TE agent sends the total result to the TRE. It is impor-
tant to note that it is possible (and even sometimes re-
quired) that multiple TE agents be involved in running a
test. For instance, in case of load test, multiple agents can
be created on different machines and execute the test
from that machine to simulate concurrent users of the
system.

Test Runtime Environment
Agent

Test Executer

Agent

Result Analyzer
Agent

Dashboard Agent

Test Script Generator

Modeler Agent
Recorder Agent

Web Application/Web Service

Information Flow
Direct Interaction

Control Flow

RMI RMI

HTTP/SOAP

RMI

RMI

RMI

RMI

RMI

Test Code Generator
Agent

RMI

Database of the
framework

SQL

SQL

User Session

UML
Diagrams

SQL

Ontology

Source Code

HTTP HTTP

Database of
the SUT

WSDL spec.

Figure 1. The architecture of the proposed framework.

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

90

3.6. Dashboard Agent
When a TE agent is executing a test, it sends the partial
results of the test to a Dashboard agent. Dashboard agent
uses such data to provide a real-time display of the test
execution status and test results.

3.7. Result Analyzer Agent
When the TRE receives the test results from TE agents, it
sends them to a Result Analyzer agent to perform user-
specified analysis on them. It is possible that different ty-
pes of Result Analyzer agents, with different capabilities,
exist in the system. Such agents can create reports in dif-
ferent formats and generate different kinds of graphs and
tables presenting the test results in more comprehensible
forms.

3.8. Recorder Agent
Recorder agent is responsible for generating test scripts
by recording the user interactions with the SUT. It provi-
des a browser-like facility for the user to perform some
interactions with the SUT and it captures these interac-
tions as a test script.

3.9. Modeler Agent
Modeler agent, which enables model-based testing, is
used to generate a test script based on some formal or
semi-formal model of the SUT. If such models are avail-
able, they can be utilized to generate test scripts.

Different types of Modeler agents can be implemented,
each of which uses different source of information as a
model to create the test script. We have identified these
types of models or information sources:
• Navigation model: The simplest case for a Modeler

agent is to create a test script from the navigation
model of the SUT. Navigation model represents a
web application in terms of its composing pages and
navigation links [18]. As an example, [18,19] are
based on extracting the navigation model and using
this model for testing a web application.

• UML Diagrams: a modeler agent can use the UML
diagrams of the SUT to create test scripts. Such test
scripts can be used for functional tests for instance.
Especially if OCL (Object Constraint Language) is
used in the UML diagrams to specify restrictions on
concepts of the system, they can improve the perfor-
mance.

• Session Data: session data can be used by a modeler
agent to generate test scripts.

• Ontology: Ontologies can also be used as a source
of information to generate test cases required for a
test script. For instance, in [13] a knowledge base is

used to generate appropriate data for automated form
filling. Ontologies can be used in a similar way.
Some ideas about ontology-based web application
testing are presented in [20].

• Source code: in case that the source code of the sys-
tem is available, it can be utilized to generate test
scripts, for instance test scripts that cover all the ex-
ecution paths. Techniques like Java annotations can
be used to add useful metadata to the source code to
ease such test script or test case generation [21].

• Database of the SUT: Although it is not a model of
the system, but the database can contain useful in-
formation about the concepts and entities present in
the SUT.

• Security: A modeler agent for security testing gene-
rates a model for the system from the perspective of
evaluating its security. The result of this test provi-
des some useful information about the degree of se-
curity of the system based on ASVS standard [22].

4. Implementation
A prototype of the proposed framework was implemented
in Java. In this section some issues about the implemen-
tation of this prototype are briefly discussed, since a com-
prehensive discussion of the implementation details is be-
yond the scope of this paper. JADE2 is used as the under-
lying infrastructure of the framework. It provides the es-
sential services for developing a multi-agent system and
hides many low level complexities and implementation
details. TRE, TE, Dashboard, Result Analyzer, TSG, TCG
and Modeler agents have been developed. A Recorder
agent is developed which uses Selenium3. Selenium is an
open source tool that provides the recording functionality
through a plugin for Fire-fox browser.

In the prototype system, the format of the test scripts
was chosen to be the same as that of Selenium. A Sele-
nium test script is a simple XHTML file, containing a ta-
ble. Each row of this table (except the first one) indicates
one step of the test. Each step represents one action. The
first row indicates the title of the test script (i.e. its name).
Other rows have three columns. The first column inclu-
des the name of the action. Other two columns are used
for the parameters of that action (e.g. the URL to be
opened, the field name to be filled with the input value,
the expected title).

Test scripts can be created manually or automatically
by the framework. Since test scripts are simple text files,
they later can be edited easily by human testers. In the
current implementation of the framework, there are diffe-
rent possibilities for creating a test script: Using recorder
agent, and using modeler agent. Different types of mod-
eler agents are implemented: based on navigation model,
based on session data, based on both the navigation mod-

2http://jade.tilab.com/
3http://seleniumhq.org/

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

91

el and the database of the SUT and also the notion of on-
tologies. In addition, another modeler agent is developed
for web service testing.

A TCG agent is implemented which translates the test
scripts into Java source code. The generated source code
uses SeleniumHTMLUnit class (from the Selenium tool
API) to simulate behavior of the browser. TCG compiles
the generated Java class and sends the created .class file
to the TRE. When a TE agent receives this compiled test
code from the TRE agent. Then it creates a new object
from the received .class file (using Java reflections). We
call this object the test code object. Then is starts execu-
tion of the test by calling the action methods on the test
code object. Each action method executes one of the test
steps. Dashboard agent receives the test results from TE
agents during the test execution and generates diagrams
representing number of failed and passed action. A sim-
ple result analyzer agent is developed in the framework.
Currently, in addition to computing the average number
of failed steps among all executers, the result analyzer

agent computes ‘functional adequacy’ and ‘accuracy to
expectation’ defined based on ISO/IEC 9126 standard.

In order to perform security tests, a modeler agent was
implemented that focuses on generating test scripts for
security tests. This Security agent uses w3af4, which is a
Python-based tool. Based on the user configurations, Se-
curity Agent creates a simple test script. This test script is
defined using a set of new actions we added to actions
defined by Selenium. These actions are specific to w3af,
it means that TCG agent translates theses actions to spe-
cific Java code which enables running w3af plugins from
Java. Therefore, the generated test script, is finally trans-
lated to a piece of Java code that when run, calls w3af
with appropriate parameters to perform the desired test.
However, the details of this translation phase are beyond
the scope of this paper, and will be discussed in another
paper.

5. Evaluation
A comparison of the proposed framework with similar

Table 1. Comparison of different frameworks.

Framework Supported
Test Types Test Strategy Information

Sources
Manual

Intervention
Test

Applicability Time
Target
Type

Framework
Architecture

[6]
Regression,

unit,
functionality

White-box
(because fault

injection is
Performed
on the code

User session
information

Medium
(manual fault

injection)

Operational
phase

Web
applications Non-Distributed

[9] Functional

White-box
(in presence of a

trusted third
party), gray-box

WSDL description
or source code of
the web service

Low (if test services
are generated from

WSDL descriptions),
average (if test

services are written
manually)

After web services
are published in the

registry

Web
services Non-Distributed

[11]
Functional,

unit,
integration

White-box

Requirement
documents and

information about
internal structure

of the system

High (writing test
procedures in

TTCN-3 is manual,
time-consuming and

complex)

Whole lifecycle Web
applications Non-Distributed

[13] Security Black-box public web
interface Very low Operational phase Web

applications Non-Distributed

[15] Data-flow White-box Source code medium (manual test
case generation) Whole lifecycle Web

applications Distributed

[16] Functional,
regression white-box source-code

medium (generating
abstract test script

and test cases)
Operational phase Web

applications Non-Distributed

[17] Functional,
regression Black-box public web interface low Operational phase Web

applications Non-Distributed

Proposed
framework

Functional,
security, load,

stress,
performance

All strategies
(depending on
the available

sources)

Source code,
ontology, UML

models, session data,
public web interface

low Operational phase

Web applications
(web services
are potentially

supported)

Distributed

 4http://w3af.sourceforge.net/.

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

92

works discussed in this paper is presented in Table 1.
This comparison is performed based on these factors:
• Supported Test Types: The more test types are

supported by a test framework, the more powerful is
that framework.

• Test Strategy: Generally there are three test strate-
gies. Black-box testing imposes the least require-
ments for the test to be performed. It does not re-
quire the source code or internal information about
the SUT. White-box strategy is on the other end. It
requires that the source code of the system to be
available. Gray-box strategy resides in the middle. It
requires some information about the internal struc-
ture of the system or its details, for instance the da-
tabase structure, but not the source code. A frame-
work that is limited to white-box strategy has less
applicability than one that uses black-box strategy,
because it may not be possible to ask the providers
of a system to make the source code of the system
accessible in order to test the functionality of public
interface of the system.

• Information Sources: This item indicates the types
of information sources that are utilized by the fra-
mework to automate the test process. A framework
that is able to use different sources (e.g. UML mod-
els, session information, source code…) is clearly
more effective than a framework that works only in
the presence of a single source.

• Human Manual Intervention: The less human in-
tervention is needed in the execution of a test pro-
cess, the more effective is the underlying framework.

• Test Applicability Time: In which phases of SDLC
the framework can be used? Is the framework appli-
cable only when the system is deployed or it can be
used during the whole development cycle?

• Framework Architecture: As mentioned before, a
distributed framework is more powerful and flexible
in the testing web applications, because it copes bet-
ter with the characteristics of these systems.

• Target Type: What type of systems can be tested
using the framework? Does it support web services
or only traditional web application?

Here, we concentrate on discussing the proposed fra-
mework with regards to these factors. The framework
supports functional, load, stress, security, and performan-
ce tests. All of these tests are possible through appropri-
ate test scripts. For instance if a test script for assessing
SQL injection is available (for instance using the idea
presented in [13]) then this test script can be used to per-
form a security test. Therefore, the main issue is how to
represent the logic of a test in a test script. After such a
test script is available, it is executable. Fortunately, all of

the test types mentioned above, can be represented in a
Selenium test script, because they do not need anything
more than a sequence of HTML interactions with the
SUT. SeleniumHTMLUnit API declares methods for
handling dynamic behavior of web pages, but these me-
thods are not yet completely implemented. Our point of
view is that our framework will be capable of testing dy-
namic aspects of web pages (e.g. Ajax) if required such
functionality is provided by Selenium.

Currently the framework is used for performing some
load, stress, functional, performance, and security tests. If
a valid test script representing the logic of the test is avai-
lable, the test process can be performed automatically.
Therefore, the main issue is the way a test script is gener-
ated. As mentioned before, the framework provides facil-
ities for automatic test script generation based on the user
session logs and navigation model of the SUT. It also
provides semi-automatic test script generation using the
recorder agent.

The framework supports all three test strategies. Based
on the presence or absence of different information re-
sources, different functionalities of the system might be
available or unavailable. At least, the black-box strategy is
available and the system requires no access to the inter-
nals of the SUT. But if some sources like user sessions or
system models are available, the frame can well utilize
them.

The manual intervention in the framework is at an ac-
ceptable low level. The framework provides automatic
and semi-automatic facilities for creating test scripts. Af-
ter a test script is created, it can be run automatically with
little human intervention (e.g. specifying some parame-
ters). Also as mentioned in section 3, the level of automa-
tion gained by the framework is much more in case of
distributed tests.

The framework is useful in testing operational systems.
Therefore, it does not support tests like unit test and inte-
gration test. Although some of these tests can be perfor-
med by functional tests.

The framework is a distributed one, consisting of dif-
ferent agents collaborating with each other.

As an example of how the framework possesses good
flexibility, it is worth to mention an actual experience we
made during the implementation of the prototype. First
we had used TestGen4Web5 tool as the recorder facility
in the framework. Therefore, the format of the test scripts
was based on what TestGen4Web uses for its test scripts,
i.e. XML format. We had developed TCG agents for this
kind of test script, and also we had developed the TE
agents. After that, due to shortcoming we found in Test-
Gen4Web, we decided to replace it with another tool, i.e.
Selenium. This change would result in changing the for-
mat of test scripts (which are an important entity in the 5http://developer.spikesource.com/wiki/index.php/Projects:TestGen4Web

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

93

framework), but fortunately this change was easy to han-
dle. The TCG and TSG agents needed to be modified, but
the other agents like TRE, and TE agents did not. There-
fore some functionality of the framework was modified
with reasonable effort.

Another example that proves the flexibility of the fra-
mework is the capability of the system to test web ser-
vices. In this case we used an open source product named
soapUI6. This tool takes a WSDL file as input and gene-
rates a test script for testing the web service described by
that WSDL file. Although this test script is different from
the test scripts we had used in the system, but it has the
same role and meaning. We created a special Modeler
agent that takes a WSDL file as its information source
and using soapUI API generates a test script. In fact, it is
soapUI that generates a test script from the WSDL file.
Then, the Modeler transforms this test script into the for-
mat of our test scripts. This test script is then used like
simple test scripts in the system.

Adding this functionality (i.e. the capability of testing
web services) to the framework required developing a
new kind of Modeler. This Modeler was then attached to
the framework with no extra complexity. Of course it
must be noted that it also required some new actions to be
added to the set of actions that were possible in definition
of a test script. Therefore, it required to add some new
functionality in the TCG agent to implement these new
actions.

6. Conclusions
In this paper, a multi-agent framework was introduced for
testing web-based systems. Different agents are designed
with specific roles and they collaborate with each other to
perform the test. The main design goals have been to
develop an effective and flexible framework that supports
different types of tests and utilize different sources of
information about the system under test to automate the
test process.

One of the novelties of this work is the use of test code
which is based on the idea of mobile code. It provides
benefits like increasing the performance, and decreasing
the complexity of test executer agents. Another novelty
of the work is the modeler agents that use different in-
formation sources for automatic test script generation. A
prototype of the proposed framework has been imple-
mented and is used to perform some experiments. The re-
sults are promising and verify the overall design of the
framework.

7. Acknowledgements
This work has been supported by a grant by Iran’s Tele-
communication Research Center (ITRC), which is hereby

acknowledged. We would like to thank members of the
Web Technology Laboratory (WTLab) of the Ferdowsi
University of Mashhad: Saeid Abrishami, Behshid Beh-
kamal, Razieh Rezaee, Soheila Dehghanzadeh, Mahbou-
beh Dadkhah and Hamideh Hajiabadi.

REFERENCES
[1] A. G. Lucca and A. R. Fasolino, “Testing Web-Based

Applications: The State of the Art and Future Trends,”
Information and Software Technology, Vol. 48, No. 12,
2006, pp. 1172-1186.

[2] A. G. Lucca and A. R. Fasolino, “Web Application Test-
ing,” Web Engineering, Springer, Berlin, Chapter 7, 2006,
pp. 219-260. doi:10.1007/3-540-28218-1_7

[3] S. Murugesan, “Web Application Development: Chal-
lenges and the Role of Web Engineering,” J. Karat and J.
Vanderdonckt, Eds., Web Engineering, Modelling and
Implementing Web Applications, Springer, Berlin, 2008,
pp. 7-32.

[4] A. G. Lucca and M. Penta, “Considering Browser Interac-
tion in Web Application Testing,” Proceedings of the 5th
IEEE International Workshop on Web Site Evolution,
IEEE Computer Society Press, Los Alamitos, 2003, pp.
74-83.

[5] F. Ricca and P. Tonella, “Web Testing: A Roadmap for
the Empirical Research,” Proceedings of the Seventh
IEEE International Symposium on Web Site Evolution,
Budapest, 26 September 2005, pp. 63-70.

[6] S. Sampath, V. Mihaylov, A. Souter and L. Pollock,
“Composing a Framework to Automate Testing of Opera-
tional Web-Based Software,” 20th IEEE Conference on
Software Maintenance, Chicago, 11-14 September 2004,
pp. 104-113. doi:10.1109/ICSM.2004.1357795

[7] S. Elbaum, S. Karre and G. Rothermel, “Improving Web
Application Testing with User Session Data,” Proceed-
ings of the 25th International Conference on Software
Engineering, Portland, 3-10 May 2003, pp. 49-59.
doi:10.1109/ICSE.2003.1201187

[8] S. Elbaum, G. Rothermel, S. Karre and M. Fisher, “Leve-
raging User-Session Data to Support Web Application
Testing,” IEEE Transactions on Software Engineering,
Vol. 31, No. 3, 2005, pp. 187-202.
doi:10.1109/TSE.2005.36

[9] H. Zhu, “A Framework for Service-Oriented Testing of
Web Services,” 30th International Computer Software
and Applications Conference, Chicago, Vol. 2, 17-21 Sep-
tember 2006.

[10] P. Dhavachelvan, G. V. Uma and V. Venkatachalapathy,
“A New Approach in Development of Distributed
Framework for Automated Software Testing Using
Agents,” Knowledge-Based Systems, Vol. 19, No. 4, 2006,
pp. 235-247. doi:10.1016/j.knosys.2005.12.002

[11] B. Stepien, L. Peyton and P. Xiong, “Framework Testing
of Web Applications Using TTCN-3,” International
Journal on Software Tools for Technology Transfer
(STTT), Vol. 10, No. 4, 2008, pp. 371-381. 6http://www.soapui.org/

http://dx.doi.org/10.1007/3-540-28218-1_7�
http://dx.doi.org/10.1109/ICSM.2004.1357795�
http://dx.doi.org/10.1109/ICSE.2003.1201187�
http://dx.doi.org/10.1109/TSE.2005.36�
http://dx.doi.org/10.1016/j.knosys.2005.12.002�

An Agent-Based Framework for Automated Testing of Web-Based Systems

Copyright © 2011 SciRes. JSEA

94

doi:10.1007/s10009-008-0082-1
[12] ETSIES 203 873-1, “The Testing and Test Control Nota-

tion Version 3: TTCN-3 Core Notation,” V3.2.1, February
2007.

[13] Y. Huang, C. Tsai, T. Lin, S. Huang, D. Lee and S. Kuo,
“A Testing Framework for Web Application Security As-
sessment,” Computer Networks, Vol. 48, No. 5, 2005, pp.
739-761. doi:10.1016/j.comnet.2005.01.003

[14] D. Kung, “An Agent-Based Framework for Testing Web
Applications,” Proceedings of the 1st International Work-
shop on Quality Assurance and Testing Web-Based Ap-
plications, Hong Kong, 28-30 September 2004, pp. 174-
177.

[15] Y. Qi, D. Kung and E. Wong, “An Agent-Based Da-
ta-Flow Testing Approach for Web Applications,” Jour-
nal of Information and Software Technology, Vol. 48, No.
12, 2006, pp. 1159-1171.
doi:10.1016/j.infsof.2006.06.005

[16] J. Pava, C. Enoex and Y. Hernandez, “A Self-Configuring
Test Harness for Web Applications,” Proceedings of the
47th Annual Southeast Regional Conference, South Caro-
lina, 2009, pp. 1-6. doi:10.1145/1566445.1566533

[17] H. Raffelt, T. Margaria, B. Steffen and M. Merten, “Hy-

brid Test of Web Applications with Webtest,” Proceed-
ings of the 2008 Workshop on Testing, Analysis, and Ve-
rification of Web Services and Applications, Seattle, 2008,
pp. 1-7. doi:10.1145/1390832.1390833

[18] P. Tonella and F. Ricca, “A 2-Layer Model for the White-
Box Testing of Web Applicaions,” Proceedings of the 6th
IEEE International Workshop on the Web Site Evolution,
Chicago, 11 September 2004, pp. 11-19.

[19] P. Tonella and F. Ricca, “Statistical Testing of Web Ap-
plications,” Journal of Software Maintenance and Evolu-
tion: Research and Practices, Vol. 16, No. 1-2, 2004, pp.
103-127. doi:10.1002/smr.284

[20] S. Paydar and M. Kahani, “Ontology-Based Web Appli-
cation Testing,” In: T. Sobh, K. Elleithy and A. Mahmood,
Eds., Novel Algorithms and Techniques in Telecommuni-
cations and Networking, Springer, Berlin, 2010, pp.
23-27.

[21] W. C. Richardson, D. Avondolio, S. Schrager, M. W.
Mitchell and J. Scanlon, “Professional Java JDK,” 6th
Edition, Wiley Publishing, Hoboken, 2007, p. 32.

[22] OWASP Application Security Verification Standard
(ASVS), January 2011.
URL http://www.owasp.org/index. php/ASVS

http://dx.doi.org/10.1007/s10009-008-0082-1�
http://dx.doi.org/10.1016/j.comnet.2005.01.003�
http://dx.doi.org/10.1016/j.infsof.2006.06.005�
http://dx.doi.org/10.1145/1566445.1566533�
http://dx.doi.org/10.1145/1390832.1390833�
http://dx.doi.org/10.1002/smr.284�

