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ABSTRACT 

A lower bound to errors of measuring object position is constructed as a function of parameters of a monocular com-
puter vision system (CVS) as well as of observation conditions and a shape of an observed marker. This bound justifies 
the specification of the CVS parameters and allows us to formulate constraints for an object trajectory based on re-
quired measurement accuracy. For making the measurement, the boundaries of marker image are used. 
 
Keywords: Computer Vision System, Camera Position Measurement, Marker Observation, Lower Bound to Errors 

1. Introduction 

CVSs are widely applied for a solution of motion control 
problems. This fact is associated by the following condi-
tions. First, the computational capability of available 
processors allows for the real-time processing of large 
volumes of information formed by TV cameras. The in-
formation processing time proves to be acceptable to a 
number of practical problems [1-6]. Second, the increas-
ing application of computer-aided control systems of 
unmanned aerial vehicles requires the enhancement of 
the vector of measured parameters to solve the automatic 
landing problem [5]. Another task is a docking problem 
(including the spacecraft docking), which requires pre-
cise measuring a relative position for solving the terminal 
control task [6]. As an example we can refer to the dock-
ing the first European Automated Transfer Vehicle (ATV) 
“Jules Verne” to the International Space Station (ISS) on 
3 April 2008. In the above experiment, a special com-
puter vision system was used for measuring the relative 
spatial and angular position. 

All of these facts stimulate interest in estimation of the 
potential accuracy (lower bounds to errors) of measuring 
the position parameters as a function of the marker shape, 
its observation condition and technical parameters of the 
CVS. This allows us to evaluate an applicability of CVSs 
to solving control problems under specific conditions as 
well as to optimize the CVS parameters from the view-
point of ensuring the required accuracy of measurements. 
There are a small number of publications devoted to the 

problems of determining the current coordinates meas-
urement precision estimation. Most publications are 
based on experimental approach (full-scale experiments 
or stochastic simulation) to the measurement precision 
estimation. For obtaining reliable estimation, such ap-
proach requires too much time and additionally the 
full-scale experiments are very expensive. 

In [7], the Cramér–Rao bound is constructed to camera 
position estimation by docking marker observation. For 
position estimation, a set of the marker features (points 
of interest) are used, namely corners, contrast spots and 
others. This approach is suitable for the case of small or 
medium marker observation distance. In such distances 
the visible size of marker is of order tens or hundreds of 
pixels in any direction. In the present paper, we consider 
the approach, which is suitable for large distances by 
using the boundaries between marker image and back-
ground. This approach allows obtaining lower bound to 
errors of measuring object position with small computa-
tional expenses. It allows in one’s turn to optimize CVS 
parameters and marker shape for a specified set of the 
observation conditions. 

In Section 2, we formulate the assumptions for con-
structing the bound to errors. In Section 3, we construct a 
Cramér–Rao bound to the measurement errors and, in 
Section 4, we present experimental results. 

2. Assumptions Made When Constructing a 
Bound 

We make the following simplifying assumptions to esti-
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mate the methodic errors: 
 The resolution of the optical system is the same 

over the frame area. 
 There are no geometrical distortions of the optical 

system (or they are compensated for during the pre-
processing of images). 

 The optical system is calibrated during its manu-
facturing and the calibration error is negligible. 

 The exposure time tends to zero, so smearing of the 
picture due to the motion of the object during 
shooting can be neglected. 

 The precision of marker localization is limited by 
signal to noise ratio. 

 The parameters of this noise law are the same over 
the area of a frame. 

 The pixel size of CCD matrix tends to zero. 
All of these assumptions, except for the last one, are 

quite easily realizable at moderate cost. In regard to the 
last assumption, it is introduced for simplification of 
analysis. Without this simplification, an analytical solu-
tion is very difficult. Apparently, it is possible to obtain 
some asymptotic estimations of additional object position 
measurement errors, which is conditioned by limited size 
of CCD matrix pixels. In any case, this problem should 
be a subject of separate analysis. Thus, the used model 
has no error sources except for the image noise. 

3. Cramér–Rao Bound to Measuring Errors 

The construction and application of a likelihood function 
and Cramér–Rao bound for measurement errors are ex-
tensively described in the literature [8-10] and others. A 
likelihood function is used for constructing the 
Cramér–Rao lower bound to the variance of estimated 
parameters. The schematic view of the marker shooting 
is shown in Figure 1. The marker is placed in the coor-
dinate’s origin. 
 

 

Figure 1. TV camera position. 

The optical system forms the image of observed 
marker in the plane of a CCD matrix. The space position 
of the TV camera and its orientation gives a vector of 
parameters A that should be estimated. Camera coordi-
nate system is shown in the Figure 2. Projection center C 
of the camera is placed on the end of vector R (Figure 1), 
which is turned with respect to a normal of the surface of 
marker on angle   in the plane  which pass through 
axis OZ and is preliminarily rotated on the azimuth on 
angle 

p

  relatively plane XOZ. 
In the initial camera position vectors ,  and  

are given by the coordinates as follows: 
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The above three vectors are rotated by an angle   
together with the projection center of camera C in the 
plane . So, the obtained coordinates of the vectors are 
the following: 
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Let  ,   and   be three rotation angles around 
the vectors 1 , 2  and 3e  respectively. The first rota-
tion is the rotation by the angle 

e e
 . Since the TV camera 

is space stabilized so that, the image of observed marker 
is in the center of the vision area, it is possible to suppose 
the angles  and  small enough ( 0  , 0  ). Hence, 
the rotation operators by the angles   and   are ap-
proximately commutative. 

The coordinates of any i-th marker point  , ,i i iX Y Z  
taken in camera coordinate system are the following: 
 

 

Figure 2. Camera coordinate system. 
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where  , , X Y Z  is the coordinates of camera projection 
center C. The coordinates of the i-th point of the marker 
in CCD matrix are calculated by: 

11 12 13i i i

f
a

X e Y e Z e


   
 

 1 31 32
i

i i ia X e Y e Z e      33

23

 

2 21 2 2
i

i i ia X e Y e Z e      , 

where f -is a focal distance of the camera. 
For the specified camera’s spatial and angular posi-

tions, the i -th point  , ,i i iX Y Z  taken in the coordi-
nates of CCD matrix depends on the parameters: 

 1 1 , , , , ,i i X Y Z      

 2 2 , , , , , .i i X Y Z      

Since we consider an observation of marker from me-
dium and long distances, the measurement angular errors 
of   and   as well as the translation errors in the 
direction of the vectors 3  and 2  are heavily corre-
lated. So, we estimate the precision only for four pa-
rameters, that are given by a vector 

e e

 , , ,r v u A

2e
. Axis 

r is parallel to , v is parallel to  and u is parallel to 
. 

1e

3e
The construction and application of the likelihood 

function are well known from [8-10] and others. This 
likelihood function is used for constructing the 
Cramér–Rao lower bound to the variance of estimated 
parameters. The likelihood function depends on parame-
ters being under estimation. The estimations of the pa-
rameters are defined by the values that provide the ex-
tremum of the likelihood function: 

 P extrA , 

where  is the likelihood function.  P A
The necessary condition of extremum is given by: 

 
0, 1,..., 4.

i

P
i

A
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Accordingly, we can use a logarithm of the likelihood 
function for finding of extremum of . Analogous 
condition of extremum can be: 

 P A

 ln
0, 1,..., 4.

i

P
i

A


 



A
 

Covariance matrix of estimated parameters is: 

1R J  , 

where J  is the Fisher information matrix, which is 
calculated from the likelihood function. According to the 
Cramér–Rao inequalities, the lower bounds to the vari-
ances of unbiased estimation errors are given by: 

  2 2
11 2 2, ,r vR R  A A  
  2 2

33 4 4, .u R R  A Α    

We estimate the covariance for the estimation of vec-
tor A. For this goal, we first determine the Fisher infor-
mation matrix, which is expressed via the second deriva-
tives of the likelihood function as follows: 

     2 ln ln ln
,ij

i j i j

P P P
J E E

A A A A

     
     

         

A A  A
 

where  is a mathematical expectation. [...]E
Let’s consider an observed image of marker: 

     ,s  ω ω A ω , 

where  ,s ω A  is the marker image and   ω  is 
noise with intensity 02

2
N  . Without loss of com-

monness, we can suppose that a brightness value of 
marker image  ,ω As  is equal to one, and a brightness 
of remaining part of the cadre is zero. 

In reference [11], an expression of Fisher Information 
Matrix was derived for the case of one-dimensional sig-
nal. For the two-dimensional case, this expression can be 
easily obtained by the same way: 

   
0

, ,2
ij

i j

s s
J E d

N A A

  
 

   


ω A ω A
ω

 
, 

where   is a marker image area and  is an ele-
mentary square in 

dω
 . 

In general case, the calculation of the Fisher informa-
tion matrix requires to determine the above mathematical 
expectation . In our case, the expression in square 
brackets is deterministic, and therefore we obtain the 
following elements of the Fisher information matrix: 

[...]E

   
0

, ,2
ij

i j

s s
J d

N A A

 


 
ω A ω A

ω
 

        (1) 

Let’s consider derivatives. The  is the vector of pa-
rameters that gives the camera position. The finite dif-
ference approximation of the derivative is defined as 
follows: 

A
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estimated the errors of calculating position parameters 
for the marker shown in Figure 6. The marker is given 
by the isosceles triangle. The base of the triangle equals 
to two meters and its height equals to three meters. The 
triangle has the round spot in his centre. Contour 
(boundary)  of this marker includes both external 
boundary of this triangle and internal boundary of the 
spot in the triangle centre. 

C
Figure 3 shows the marker image in the initial posi-

tion . In Figure 4, the marker images are shown 
for both the shifted position  and the 
initial position . The gray colours of different 
intensity are used for marking difference between both 
these images. 

 ,s ω A
 , is  ω A A 

 ,s ω A
Let’s specify the following camera parameters. The 

focal distance of the optical system is 18 mm. The field 
of camera view is . Errors of position 
are calculated for a set of values of angle : 

 (7 values) and set of val-
ues of angle :  (36 values). The 
distance of the marker observation is м. We put a 
noise intensity to be equal to 0.2 (

23.23 23.23 

5, 55, 65

0, 10, 20,......350
5, 15, 25, 35, 4 

 

r
0.2

50
  ). 

The difference can be calculated by integrating an op-
tical flow on the contour of marker as follows: 

   , , ,

0, ,
i

i

s C

A C

  
 

 

ω A n Q ω

ω


 

where  is the external normal (n 1n ) with respect to 
the marker image boundary (contour),  is the optical 
flow, which is caused by 

iQ

iA ,  is a scalar 
product of the vectors  and iQ  and C is the marker 
boundary. In such a way, we show that the surface inte-
gral (1) is reduced to the following contour integral: 

 , in Q

Figure 7 shows the calculation results for the mean 
square errors of coordinates and normalized correlation. 
The coordinates are measured in meters and the values of 
angles are measured in degrees. The errors are given by 
the appropriate surfaces over the matrix of size 7  36 
samples, where the matrix sizes are determined by the 
sets of  and   values respectively. 
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Thus we have obtained the expression for any element 
of the Fisher information matrix. For the one segment, 
the integral (2) can be numerically calculated, for in-
stance, by the trapezium method: 
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(3)  

Figure 3. Triangle marker. Figure 5 explains the calculation of scalar product 
. The calculation of  , in Q   , jn Q  is made similarly. 

The q  is the difference between scalar product 
 in the integral (2) for this segment, and in the 

expression (3) for this segment. Notice that 
 , in Q 

q  is pro-
portional to  2

iA  and tends to zero in condition 
of . So we can neglect this term. Calculation of 
the expression (3) should be performed for all sections of 
the maker boundary. 

0iA 

 

 4. Experimental Results 
Figure 4. Difference .   , ,is s  ω A A ω A   To illustrate the application of the obtained relations, we  

 

 

Figure 5. Calculation of the scalar product on the one segment of marker boundary. 
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Figure 6. Marker shape. 
 

Accordingly to Figure 7, for the distance of 50 m and 
the noise intensity 0.2  , the range r  can be meas-
ured with error 0.02r 0.04  

.05 0.4

 m, as well as the dis-
placement in a CCD matrix plane can be measured with 
errors V U, 0     m. Rotation around the vec-
tor  can be measured with the error . 
As followed from Figure 7, the functional dependences 
of measurement errors and normalized correlation of 
linear and angular coordinates are very complicated 
functions. We have considered the maker of uniform 

brightness. In this case, only the contrast boundary oper-
ates in the marker image. The calculated precision values 
are much higher than the similar values in [7] that are 
based on using a small set of features (points of interest) 
of the marker. Using the boundaries of marker image for 
measurement provides an increase of the measurement 
precision. Mention should be made that optical system 
distortions and low resolution of CCD camera can seri-
ously deteriorate the precision of measurement. Joint 
analysis of noise and camera resolution influence on the 
precision of measurement is complicated enough. 

r 0.015 0.04   

The above values of the mean square error and the 
normalized correlation should be taken in an account in 
creating the computer vision system. The significant 
values of the normalized correlation show the consider-
able dependences between control loops of object posi-
tion coordinates. This fact should be taken into account 
in the control system. The development of a computer 
vision system should be carried out together with the 
development of the marker shape. 
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Figure 7. Errors of estimated parameters and correlation bonds between them (normalized correlation). 
 

For comparison, we estimated the errors of calculating 
position parameters for the T-shaped marker shown on 
Figure 8. 

This marker has the same area as the marker on Fig-
ure 6. Figure 9 shows the calculation results for the 
measurement error of coordinates. 

Accordingly to Figure 9, the T-shaped marker pro-
vides a slightly higher precision of position parameters’ 
measurement. 

 

Figure 8. T-sh ed marker. ap   
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Figure 9. Errors of estimated parameters for T-shaped marker. 
 
5. Conclusions 

The new method has been proposed for estimating the 
errors of determining the TV camera position. This 
method is based on using the marker image of a given 
shape. The method allows us to estimate the measure-
ment errors depending on shooting conditions and CVS 
parameters. The obtained error's estimations are useful 
for development of CVSs and particularly for optimiza-
tion of their parameters. 
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