
J. Software Engineering & Applications, 2010, 3: 73-80
doi:10.4236/jsea.2010.31009 Published Online January 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Integrated Web Architecture Based on Web3D, Flex
and SSH

Wenjun ZHANG1,2

1Department of Computer Science & Technology, China Women University, Beijing, China; 2Research Institute of Applied Com-
puter Technology, China Women University, Beijing, China.
Email: voicefromzhwj@yahoo.com.cn

Received September 9th, 2009; revised October 9th, 2009; accepted October 19th, 2009.

ABSTRACT

Focusing on the problems occurred in traditional 2D image-word-based web applications, the author put forward con-
cept of integrating Web3D, Flex and SSH technologies to create advanced “3D Virtual Reality & RIA” web application
architecture, researched mechanisms of their architectures, and implemented their integration and communication &
interaction: Flex and Struts2 via XML, Flex and Spring & Hibernate via BlazeDS, Flex and Web3D via JavaScript. The
practice has shown that the integrated web architecture based on Web3D, Flex and SSH is effective and valuable.

Keywords: Web Architecture, Web3D, Flex, SSH, RIA, BlazeDS

1. Introduction

E-commerce, e-government and enterprise-information-
ization (CGE) are web applications in relevant domains,
and have been quickly developed with the improvement
of web technology. The transaction mode between cus-
tomers and suppliers has been changed from direct pur-
chase in stores to shopping in internet; and information
management system within enterprises has become inte-
grated on internet covering SCM, CRM and ERP.

However, CGE encounters some serious problems as it
develops. For example, products in e-commerce websites
can only be exhibited by images and words. This kind of
manifestation can’t express completely structures and
functions of the products, which reduces the client's de-
sire to purchase. Tedious interactive form, poor effi-
ciency and unsatisfactory user experience widely exist in
current CGE applications.

The problems are essentially due to the weakness of
the traditional web technology based on HTML web
pages—thin client B/S (Browser/Server) mode. HTML
web pages only display content, but not contain the script.
The client-side can only requires data through request
and response session because all datum host on the
server-side. The content from server contains not only
data but also a lot of redundant display formats. Unlike
desktop applications, browsers (IE, Firefox) are not
equipped with multifunction controls such as DataGrid,
Tree, and PieChart. The codes in presentation, transac-
tion logic and data persistence layers, are tightly coupled

together which result in low reuse, high couple and dif-
ficult maintainability.

Because the traditional web technology seriously bot-
tlenecked progression in CGE applications, new tech-
nologies such as Web3D, RIA (Rich Internet Application)
and SSH (Struts, Spring, Hibernate) are introduced into
web application development. In other words, Web3D is
applied to simulate product shape and functions in 3D
and interact with customers on the client-side; Flex
technology, a kind of RIA, realizes business process, hu-
man-computer interaction and data visualization (charts,
curves) on the client-side; SSH, three popular web design
frameworks, implements transaction logic and data per-
sistence on the server-side which develops low-coupling
codes. The web architecture studied in this article features
3D virtual reality, high interaction, abundant user visual
experience, and low coupling & high maintainability.

In the article, the features and application development
methods on Web3D, Flex and SSH technologies in CGE
applications are studied. The advanced and integrated
web architecture (shown as Figure 1) based on Web3D,
Flex and SSH is constructed in order to convert the tradi-
tional thin client B/S mode featured by Image-Word into
advanced rich client mode featured by 3D Virtual Real-
ity-RIA.

2. Web3D Technology and Application in
E-Commerce & Data Visualization

Web3D technology enables e-commerce with three

Integrated Web Architecture Based on Web3D, Flex and SSH 74

Figure 1. Integrated web architecture based on Web3D, Flex and SSH

Figure 2. RIA & Web3D virtual shopping city

dimensional presence of the products and the scenes.
Real product features such as shape, functions and scenes
are simulated: customer can navigate in virtual 3D-store
[1–2] shown in Figure 2, interact with 3D virtual prod-
ucts, and purchase goods. Their virtual shopping experi-
ences are almost as vivid as in real stores. The success
rate in sales is expected to be much higher than before
because customer can feel the goods in this 3D store, and
it becomes unnecessary for them to check products in
real stores before making purchase decisions. In the fol-
lowing sections, the core technologies for Web3D and
application development will be presented.

2.1 Web3D Implementation Technology and
Solution

According to implementation methods of virtual 3D
models and scenes the technologies can be classified into
two categories [3]: Model-based Web3D and Image-
based Web3D.

1) Model-based Web3D. It is also called landscape-
based geometric. It is to construct virtual models and
scenes with geometric entity. The geometric entity model
is constructed by different 3D authoring software ac-

cording to computer graphics, and is rendered real time.
Human-computer interaction is implemented by adding
event response. Model-based Web3D mainly includes
X3D, Cult3D, Viewpoint and O3D released newly by
Google.

2) Image-based Web3D. Its core technology is based
on panorama, which is a kind of closed-view shot around
from some point in space. Image-based Web3D is also
classified into cylindrical panorama and spherical pano-
rama. The panorama may be required through photo-
graph and computer-3D rendering. Image-based Web3D
mainly includes Java3D and Flash3D.

2.2 Web3D Application Framework

Web3D player engine or plug-in is previously installed in
browser in the client PC before 3D models are rendered
on the client-side. Web3D application framework is
shown in Figure 1. Web3D models & scenes and built-in
scripts are downloaded from Web3D application server,
interpreted, rendered, and interacted with users by
Web3D player engine [4–5].

2.3 Web3D Design Method Based on Separation
between Model and Function Script

During authoring Web3D models one design method is
often adopted based on separation [1] between model and
function script. This approach is to author Web3D virtual
product models and scenes by ViewPoint, Cult3D or
O3D, and use XML, Java or other script languages to
program scripts for the authored 3D models so as to
change 3D model view with user’s actions and to re-
sponse different events such as click, mouse movement
and drag-drop generated from users. Thus, the 3D mod-
els are independent from their scripts.

The programming method of separation between
model and function script can improve flexibility, reus-

Copyright © 2010 SciRes JSEA

Integrated Web Architecture Based on Web3D, Flex and SSH 75

ability and scalability of Web3D product models.

3. Flex Technology and Application in
Web & Data Visualization

Most of the current CGE information systems are B/S
thin client application mode based on HTML pages. With
increasing complexity this application mode is not longer
able to meet the requirements of providing interactive
and rich user experience.

Now RIA, the next generation web technology [6], has
been developed, which combines interactive user ex-
perience with the deployment flexibility. The rich client
technology in RIA can connect with existing back-end
applications by asynchronous communication between
client and server. It is a service-oriented model with good
adaptability. It improves the user interaction of web ap-
plication, and offers abundant user experiences.

Flex [7] is one kind of RIA technology, a framework
for creating RIA based on Flash Player. Its core is
MXML, a markup language based on Extensible Markup
Language (XML) that makes it really easy and efficient
to create applications.

Flex offers highly visual, fluid, and rich experience
and user interface components. When JEE and Flex are
integrated together in a Web application, the best of both
worlds are combined. JEE provides the power and stabil-
ity on the server-side, while Flex and Adobe Flash Player
make the rich, dynamic user interfaces possible on the
client-side.

3.1 Flex Framework Technology and Development
Process

The Flex framework [8,9] shown in Figure 3 is synony-
mous with the Flex class library and is a collection of
ActionScript classes used by Flex applications. The Flex
framework is written entirely in ActionScript classes, and
it defines controls, containers, and managers in order
tosimplify the process of building RIA. The four main
parts in the Flex framework are represented in the fol-
lowing.
 1) MXML. MXML is an XML-based markup lan-

Figure 3. Flex framework

guage that primarily describes screen layout. In this re-
spect it is similar to HTML. Using MXML tags, you can
add components such as form controls and media play-
back to layout containers such as panel. In addition to
screen layout, MXML could be used to describe effects,
transitions, data models, and data binding. MXML is so
robust that it is possible to build many applications en-
tirely with MXML. Flex Builder enables developers to
construct MXML with a What-You-See-Is-What-You-
Get approach--build basic Flex applications without
writing any code.

2) ActionScript. ActionScript is the programming lan-
guage understood by Flash Player and is the fundamental
engine of all Flex applications. Even though MXML
simplifies screen layout and basic tasks, ActionScript can
not only do everything that MXML can do, it can also do
many things that MXML cannot do. For example, Ac-
tionScript can respond to events such as mouse clicks,
while MXML can not. Although it is possible to build an
application entirely with MXML or entirely with Ac-
tionScript, it is more effective to build applications with
both MXML and ActionScript and the two work well
together. MXML is best suited for screen layout and ba-
sic data features, while ActionScript is best suited for
user interaction, complex data functionality, and any
custom functionality not included in the Flex class li-
brary. ActionScript is supported natively by Flash Player,
and does not require any additional libraries to run--all
native ActionScript classes are packaged in the Fash
package or in the top-level package. In contrast, the Flex
framework is written in ActionScript, but those classes
are included in a .swf file at compile time.

3) Flex Class Library. Flex framework defines the Flex
class library. It consists of predefined components such
as controls, containers, data components, and Flex Data
Services for communication with application back-end
server.

4) Flex Data Services. They provide the remoting and
messaging foundation for connecting a Flex-based front-
end to JEE back-end services, and transport data between
the client and server. BlazeDS, a kind of Flex Data Ser-
vices technology, will be represented in the following

Figure 4. Development process of flex applications

Copyright © 2010 SciRes JSEA

Integrated Web Architecture Based on Web3D, Flex and SSH 76

section.
The development process [10] of Flex applications is

shown in Figure 4.

3.2 Strategies of Flex Access to Server-Side
Applications

Four strategies [10] to access server-side applications:
1) HTTPService. The HTTPService component sends

HTTP requests to a server, and consumes the response.
Although HTTPService is typically used to consume
XML, it can also be used to consume other types of re-
sponses. HTTPService is similar to the XMLHttpRequest
component available in Ajax.

2) WebService. The WebService component invokes
SOAP-based web services. It’s similar to HTTPService.

3) RemoteObject. The RemoteObject component di-
rectly invokes methods of Java objects deployed in ap-
plication server, and consume the return value. The re-
turn value can be a value of a primitive data type, an ob-
ject, a collection of objects, etc. In distributed computing
terminology, this approach is generally referred to as
“remoting”. This is also the terminology used in Spring
to describe how different clients can access Spring beans
remotely.

4) BlazeDS. In addition to the RPC-type services de-
scribed above, BlazeDS , a kind of the Flex Data Man-
agement Services, provides an innovative and virtually
code-free approach to synchronize data between the cli-
ent application and the middle-tier.

In the following section, the article will discuss in
more details about Remoting and BlazeDS because they
enable the tightest integration with Spring and Hibernate.

4. SSH Technology and Application on the
Server-Side

For years, JEE has been used to develop server-side web
applications. Normally these applications are developed
by Java Server Pages (JSP) and Servlet, which dynami-
cally insert server-side data into HTML for the user in-
terface to create dynamic data-driven applications. This
development technology results in highly tight-coupling
codes, which make reuse and maintainability very low.
Therefore nowadays, SSH (Struts, Spring, Hibernate),
three popular web design frameworks, is widely applied
to develop web application on the server-side in order to
program looser-coupling codes.

Struts framework, based on MVC-2 architecture, is an
open-source framework for developing the web applica-
tions in JEE, which extends Java Servlet API. Struts is a
robust architecture and can be used for the applications
of any size. Struts is often applied to develop and imple-
ment presentation layer of web applications with a set of
cooperating classes, servlets and JSP tags that make up a
reusable MVC-2 design.

Spring [11] is one of the most popular Java frame-
works. The foundation of the Spring framework is a
lightweight component container that implements the
Inversion of Control (IoC) pattern. Using an IoC con-
tainer, components do not instantiate or even look up
their dependencies (the objects they work with). The con-
tainer is responsible for injecting those dependencies
when it creates the components (hence the term “Depen-
dency Injection” also used to describe this pattern). This
will result in loosing coupling between components. The
Spring IoC container has proven to be a solid foundation
for building robust enterprise applications. The compo-
nents managed by the Spring IoC container are called
Spring beans. Spring is often applied to develop and im-
plement transaction logic layer of web applications.

Hibernate is a pure Java object-relational mapping
(ORM) and persistence framework that allows you to
map plain old Java objects to relational database tables
using (XML) configuration files. Its purpose is to relieve
the developer from a significant amount of relational data
persistence-related programming tasks. Hibernate is
mainly applied to develop and implement persistence
layer of web applications. The main advantage of ORM
like Hibernate is that it shields developers from messy
SQL. Apart from this, ORM provides following benefits:
improved productivity, performance, maintainability and
portability.

5. Integration & Interaction among Web3D,
Flex and SSH

In the following section the configurations and commu-
nication codes among Web3D, Flex and SSH are imple-
mented for their integration-Flex and Struts2 via XML,
Flex and Spring & Hibernate via BlazeDS, Flex and
Web3D via JavaScript.

5.1 Integration & Interaction between Flex and
Struts2

Apache Struts is an incredibly popular open source
framework for building Servlet/JSP based web applica-
tions on the MVC design paradigm. The view layer in
Struts is HTML, but the isolation between the view and
rest of the pieces ensures that Flex can easily replace
HTML. The migration or creation of such an application
with a Flex front-end requires transforming the existing
view layer to XML-formatted output.

The communication process between Flex and Struts
2.0 [12] is like this: on the Flex client-side the HttpSer-
vice or WebService component sends URL request such
as http://localhost:8080/flexstruts2/login.action?name=zhang
wenjun&password=iloveyou. Then Struts2.0 framework
on the server-side receives and dispatches the request to
interceptors and actions, and returns values to the result
tags in struts.xml configuration file to switch the differ-
ent JSP files. In fact the JSP files in structure have be-

Copyright © 2010 SciRes JSEA

Integrated Web Architecture Based on Web3D, Flex and SSH

Copyright © 2010 SciRes JSEA

77

come dynamic XML files. They are compiled, executed
and downloaded by application server such as Tomcat
for the HttpService or WebService component to receive
and decode XML data to refresh Flex user interfaces.
The following codes are XML-formatted JSP file. The
complete integration architecture between Flex and
Struts2 is shown in Figure1. The configurations of Struts
2.0 remain the same.

client and BlazeDS server. Channels are grouped to-
gether into channel sets responsible for channel hunting
and channel failover. The following illustration in Figure
5 shows the BlazeDS architecture.

The BlazeDS server is contained in a JEE web appli-
cation. A Flex client makes a request over a channel
routed to an endpoint on the BlazeDS server. From the
endpoint, the request is routed through a chain of Java
objects that includes MessageBroker object, a service
object, a destination object, and an adapter object. The
adapter fulfills the request either locally, or by contacting
a back-end system or a remote server such as Java Mes-
sage Service (JMS) server. The following illustration
also shows the BlazeDS server architecture.

<?xml version="1.0" encoding="UTF-8"?>
<% ……………………………… %>
<persons> <% while (rs.nexe()){ %>

<person>
<name><%=rs.name %></name>
<age><%=rs.age %></age>

The idea behind Spring IoC is to let the container in-
stantiate components (and inject their dependencies). By
default, however, components accessed remotely by a
Flex client are instantiated by Flex destinations on the
server-side. The key to the Flex/Spring integration is
therefore to configure the Flex destinations to let the
Spring container take care of instantiating Spring beans.
The Flex Data Services support the concept of factory to
enable this type of custom component instantiation. The
role of a factory is simply to provide ready-to-use in-
stances of components to a Flex destination (instead of
letting the Flex destination instantiate these components
itself). The supporting files available include a factory
class (Spring Factory) that provides Flex destinations
with fully initialized (dependency-injected) instances of
Spring beans.

</person><% } %>
</persons>

5.2 Integration & Interaction between Flex and
Spring

Spring BlazeDS Integration [13] is a top-level solution
for building Spring-powered Rich Internet Applications
using Adobe Flex for the client-side technology.

BlazeDS is an open source project from Adobe that
provides remoting and messaging foundation for con-
necting a Flex-based front-end to JEE back-end services.
BlazeDS contains configurable channels that transport
data between the client and server. Though it has previ-
ously been possible to use BlazeDS to connect to Spring-
managed services, it has not been in a way that feels
“natural” to a Spring developer, requiring the extra bur-
den of having to maintain a separate BlazeDS xml con-
figuration. Spring BlazeDS Integration turns the tables
by making the BlazeDS MessageBroker a Spring- man-
aged object, opening up the pathways to a more exten-
sive integration that follows “the Spring way”.

How does Flex access Spring beans? If Flex clients
can remotely access Java objects, and if Spring beans are
Java objects, we still need following steps of configura-
tions to access Spring beans from Flex clients: 1) To reg-
ister the Spring Beans in applicationContext.xml; 2) To
configure the Flex Remoting Destination in application-
Context.xml; 3) To register the Spring Factory in ser-
vices-config.xml. Notice that we provide the name of the
Spring bean as defined in applicationContext.xml as the
source.

BlazeDS clients use a message-based framework pro-
vided by BlazeDS to interact with the server. On the cli-
ent side of the message-based framework are channels
that encapsulate the connection behavior between Flex

Figure 5. Blaze DS client & server architecture

Integrated Web Architecture Based on Web3D, Flex and SSH 78

5.3 Integration & Interaction between Flex and
Hibernate

If Hibernate is used for web application it will be better
implementing our own DataAccess objects and providing
public methods of these objects to our clients by a Web-
service. Hibernate persists Java objects.

Hibernate and Flex front-ends can be easily connected
by using BlazeDS DataManagement Service. In Java
developed classes can be accessed in the Flex application
using an ActionScript class with the same setter- and
getter-methods. This ActionScript class represents the
Java class on the client-side. Any changes you make at
the ActionScript class will be directly affecting the Java
class on the server. There is no need to develop DataAc-
cess classes. All create-, update-, and delete-operations
are handled by DataManagement Service. Behind the
scenes the class flex.data.adapters.JavaAdapter is taking
care of the CRUD-Operations.

The hibernate.cfg.xml conatains common settings for
the database connection, the SQL dialect and a few more
which are not explained in detail here. In the my-
class.hbm.xml we map the class myclass. The mapping
file has a root tag called <hibernate-mapping>. Within
this tag the classes are mapped for the SQL database. In
more complex applications every class should have its
own mapping file.

Configuration of the RMTP-Channel and the Destina-
tions in Figure 5: Like all configuration files for the
BlazeDS we will have the DataManagement configura-
tion files in the folder [CONTEXT-ROOT]/WEB-INF/
flex of web application server, in this case the Tomcat.
The important files for the application are services-config.
xml and data-management-config.xml. In the services-
config.xml we have to declare the RTMP Channel and
the file contains this entry by default.

In the data-management-config.xml we need to declare
the Destinations for our developed Java classes. In the
<destination> tag we give this destination an ID which
will be used later by the Flex application to refer to this
particular destination.

To communicate with the Java objects at the Tomcat
we need to implement ActionScript classes which are the
counterpart to the Java classes—they have the same
properties as the Java classes. We declare the properties
public so there is no need to write getter- and setter-
methods. By definition the ActionScript classes must
contain an empty constructor. The classes are declared as
managed and we set an alias to the corresponding Java
class.

In the <mx:DataService> tag in DataService compo-
nent in the Flex application, we set the property “destina-
tion” to the name of the destination as we declared it in
the data-management-config.xml. The DataService com-
ponent also provides methods like deleteItem() and cre-

ateItem() of the typical methods of Data Access Objects.
Note that we never declared or implemented these meth-
ods. This work is already done by the Flex DataManage-
ment Service.

5.4 Communication & Interaction between Flex
and Web3D via JavaScript

In application interaction and communication between
Flex and Web3D models on the client-side are required.
Flex sends data to Web3D, and the Web3D models and
scenes change with the received data. On the other hand,
Web3D can also send data to Flex, and the visual chart-
ings or tables or other components in Flex change with
the received data. In addition, the Flex can forward the
received data to the server-side.

How can we implement communication & interaction
between Flex and Web3D? It is known that Flex runs in
Flash Player, and that Web3D models and scenes run in
Web3D Player. Both Flex and Web3D are embedded in
HTML web pages in browser, and the direct communica-
tion between Flash Player and Web3D Player is impossi-
ble. However both Flex and Web3D can communicate
with JavaScript in web browser, therefore JavaScript can
be served as an intermediary between Flex and Web3D.
That is, Flex communicates and sends data to JavaScript,
then it receives and forwards the data to Web3D; on the
other hand, Web3D can send data to Flex via JavaScript
shown in Figure 1.

5.4.1 Calling JavaScript Functions from Flex
The External Interface API is used to call JavaScript
functions from Flex and build wrappers to call from Flex.

1) Flex Codes. In Flex program shown in the follow-
ing example an ActionScript function is added into the
Script tags, and “flash.external.*” package needs to be
imported. If ExternalInterface is available, the Exter-
nalInterface.call will be executed. Then the information
will be sent to a JavaScript function called “displayPer-
son”, whose argument is the selectedItem in a DataGrid.
The status label saying “data sent” will be updated. If the
ExternalInterface is not available an error message will
be displayed in the label. The scripts look like this:

public function jsDisplayPerson():void{
if (ExternalInterface.available) {

ExternalInterface.call("displayPerson", dgPeople.
selectedItem);

lblMessage.text = "Data Sent!";}
else{lblMessage.text = "Error sending data!"; }}

2) JavaScript Codes. In HTML page the JavaScript
code receives and displays the “person” sent from Flex.
In a set of JavaScript tags the displayPerson function is
created: note that the name has to match perfectly the
ExternalInterface.call function in Flex. Firstly the Java-
Script function checks whether it gets a null object, and if
it is null an alert will be displayed. Then we just use the

Copyright © 2010 SciRes JSEA

Integrated Web Architecture Based on Web3D, Flex and SSH 79

object passed as a JavaScript object and reference the
appropriate DataGrid columns using JavaScript object
property syntax. Finally the JavaScript forwards the ob-
ject to Web3D. In HTML script tags the codes can be
written as below.

function displayPerson(person){
if(person = = null){

alert("Please select a person, or maybe I screwed
up.");}

else{
document.getElementById('nameDisplay').innerHTML =
person.Name;
document.getElementById('ageDisplay').innerHTML =
person.Age;
document.getElementById('sexDisplay').innerHTML =
person.Sex;}}

5.4.2 Calling Flex Functions from JavaScript
1) Flex Codes. To call Flex functions from JavaScript via
ExternalInterface, the first step is to add some codes to
the application startup to initialize Flex functions so that
it is accessible through external calls.

<mx:Application xmlns:mx=http://www.adobe.com/2
006/mxml initialize="initApp()">

The initApp ActionScript function checks if the Ex-
ternalInterface is available and adds a callback for an
ActionScript function. This function is externally re-
ferred to as “addPerson” and it maps the internal function
called addPerson. The initApp function is added in Ac-
tionScript Script tags and shown below:

public function initApp():void{
if (ExternalInterface.available) ExternalInterface.ad

dCallback("addPerson", addPerson);}

Now the only thing left is to create the function
“addPerson” in Flex, which adds persons to the DataGrid.
This function takes three arguments: name, age, and sex.

public function addPerson(name:String, age:String,
sex:String):void{

(dgPeople.dataProvider as ArrayCollection).addIte
m({Name: name, Age: age, Sex: sex});}

2) JavaScript Codes. After the MXML and Aaction-
Script completed the JavaScript function grabs values
from Web3D and calls the Flex function using those
values as arguments. Then function getFlexApp ('Flex
JSApp') is used to call the Flex function from JavaScript.
The JavaScript tag is the following:

function addPerson(){
var name = document.getElementById('txtName').value;
var age = document.getElementById('txtAge').value;
var sex = document.getElementById('selSex').value;
getFlexApp('FlexJSApp').addPerson(name, age, sex);}

This getFlexApp function in the JavaScript tag actu-
ally returns the Flex application embedded in the web

page and takes into account various types of browsers.
This function returns the appropriate reference, depend-
ing on the browser.

function getFlexApp(appName){if (navigator.appNa
me.indexOf ("Microsoft") !=-1){return window[appN
ame];} else {return document[appName];}}

5.4.3 Communication between Web3D and JavaScript
There are many polular Web3D technologies such as
Unity3D, Flash 3D, and Google released O3D technol-
ogy not long ago. In the following section we will dis-
cuss O3D technology and the communication between
O3D and JavaScript.

O3D [14] is an open-source JavaScript API for creat-
ing interactive 3D graphics applications. O3D extends
application JavaScript code with an API for 3D graphics.
It uses standard JavaScript event processing and callback
methods. An O3D application is contained in an HTML
document. The main code for the O3D JavaScript appli-
cation is contained in a <script> element inside the
<head> element of the HTML document. Typically,
when the HTML page is finished loading, the O3D init()
function is called and executed automatically.

Because O3D is implemented by JavaScript and runs
in HTML browser, it is very easy for O3D to communi-
cate with Flex via JavaScript. The O3D JavaScript code
of communication with Flex is very similar to the above
code between Flex and JavaScript.

6. Conclusions

Several popular web frameworks, namely Web3D, Flex
and Struts2-Spring-Hibernate, were studied for this in-
teroperability research. The author researched how these
frameworks can work together well, and created their
integration architecture. Web3D was applied to simulate
3D shape and functions of products and interact with
customers on the client-side; Flex was used to implement
business process, rich user interfaces and data visualiza-
tion on the client-side; SSH, three popular web design
frameworks on the server-side, was adopted to realize
transaction logic and data persistence so as to develop
low-coupling codes. More importantly, the author pro-
grammed their codes of integration and communication
& interaction: Flex and Struts2 via XML, Flex and
Spring & Hibernate via BlazeDS, Flex and Web3D via
JavaScript. All research findings were applied into an
application demo named “RIA & Web3D Virtual Shop-
ping City”. The practice has shown that the architecture
based on Web3D, Flex and SSH is effective and valu-
able.

7. Acknowledgments

This research project has been sponsored by “Key Re-
search Fund Project in 2009” under China Women Uni-
versity.

Copyright © 2010 SciRes JSEA

Integrated Web Architecture Based on Web3D, Flex and SSH

Copyright © 2010 SciRes JSEA

80

REFERENCES

[1] W. J. Zhang, “Research of Web3D technology application
in e-commerce,” in the 5th China Conference on Software
Engineering, Beijing, China, Vol. 44, pp. 225–227, No-
vember 2008.

[2] M. Zhang, Z. H. Lu, and X. L. Zhang, “Research and
application of the 3D virtual community based on
WEBVR and RIA,” Computer and Information Science,
Vol. 2, No. 1, pp. 8–15, February 2009.

[3] F. Zhang and W. W. Wang, “The analyzing about Web3D
virtual reality technology,” Friend of Science Amateurs,
Vol. 5, pp. 130–131, May 2008.

[4] S. Chen, “Interaction design of Web3D based VR on
internet,” Packaging Engineering, Vol. 29, No. 4, pp.
84–86, April 2008.

[5] D. Brutzman and L. Daly, “X3D: Extensible 3D graphics
for web authors,” Elsevier Inc, 2007.

[6] J. Lott and D. Patterson, “Advanced actionscript 3 with
design patterns,” Peachpit Press, 2006.

[7] Adobe Systems Incorporated, Flex 3 help, 2009.
http://livedocs.adobe.com/flex/3/html/help.html?content
=profiler 3.html.

[8] Adobe Systems Incorporated, Flex 3 language reference,
2009. http://livedocs.adobe.com/flex/3/langref/.

[9] Adobe Systems Incorporated, Flex 3 data visualization
developer guide, 2008.
http://livedocs.adobe.com/flex/3/datavis_flex3.pdf.

[10] Adobe Systems Incorporated, Flex 3 developer’s guide,
2009. http://livedocs.adobe.com/flex/3/html/help.html?
content=Part2_DevApps_1.html.

[11] Walls. C, “Spring in action,” 2nd Edition, Greenwitch
Manning, 2008.

[12] W. J. Zhang, “Research of RIA design pattern based on
Flex, Spring and Hibernate,” in the 5th China Conference
on Software Engineering, Beijing, China, Vol. 44, pp.
126–128, November 2008.

[13] J. Grelle, “Spring BlazeDS integration reference guide,”
March, 2009.
http://static.springframework.org/spring-flex/docs/1.0.x/r
eference/html/index.html.

[14] Google, O3D developer’s guide, 2009.
http://code.google.com/intl/zh-CN/apis/o3d/docs/devguid
eintro.html.

