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ABSTRACT 

Fluidized bed superheated steam drying is one of the technologies successfully applied to drying pulp in the sugar beet 
industry. It has the technological advantages of energy efficiency and safety (inert environment) required for use in 
drying bagasse. A comparison of the particle size distribution of bagasse and beet pulp was evaluated in terms of flu-
idization. The size distribution of bagasse particles is from 2 to 10 times broader than the equivalent distribution of beet 
pulp particles. The mean particle size of the bagasse is 1/3 of the mean size of the beet pulp. Fluidization tests proved 
that bagasse fluidization is possible. It was found that beet pulp and bagasse particles clearly differ on shape and size 
distribution which in turn will affect the design of the ancillary equipment and the fluidization systems if sugarcane 
bagasse is to be dried using superheated steam technology. 
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1. Introduction 

Feasibility studies of proposed biomass processing plants 
for production of biofuels or biochemicals require serious 
consideration of energy balances, especially steam gen- 
eration. As in the cane sugar industry, biorefineries 
processing grassy biomass materials, such as energy cane 
and sweet sorghum, will extract juice as the first stage. 
The residue left from this stage—bagasse, would be ex-
pected to contain about 50% moisture and can be used as 
a fuel to satisfy power requirements of the biorefinery. 
Bagasse in surplus of energy requirements can be avail-
able for further conversion to other products. Reduction 
of bagasse moisture to a range between 10% - 40% in-
creases fiber preservation during storage, gives efficient 
and stable operation to those boilers using it as a fuel, 
lowers emission, and gives higher energy efficiency and 
higher product quality for thermochemical conversion 
technologies [1]. This moisture content cannot be at-
tained with conventional mechanical/milling methods. 
Alternative technologies for bagasse drying deserve con-
sideration prior to biorefinery construction.  

Physical properties of bagasse that are related to its 
origin make it a difficult material to process. Both the 
particle size distribution and the behavior of assemblies 
of bagasse particles are important considerations for the 
selection and design of equipment for feeding, collection, 
burning, depithing, pneumatic transportation, separation 
of dust, pelletizing and drying.  

Bagasse drying has not been widely used because of 
additional costs and fire hazards; however, it is justified 
by plants with high energy demand. Flue gas dryers such 
as the rotary and the most recently pneumatic and cyc-
lonic dryers have been the favored technologies for dry-
ing bagasse to a moisture content of 30% - 40% [2-4]. 
The fluid bed pressurized superheated steam dryer (Fig-
ure 1), which is successfully used to dry beet pulp, offers 
a high evaporation capacity, reduction of emissions from 
the dryer, reduction of fire and explosion hazards and the 
possibility of heat recovery to increase the overall energy 
efficiency of factory operations. These features and the 
possibility of final moisture between 10% - 20% show 
the advantage of a superheated steam dryer over conven-
tional bagasse dryers [3,4]. 

In a fluid bed dryer, the bagasse bed is expanded by the 
drying medium (pressurized superheated steam) which is *Corresponding author.  
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Figure 1. Pressurized superheated steam dryer and basic operation scheme showing the main components of the dryer such 
as: inlet and outlet, fluidization cells, dust separation system, heat exchanger and fan [5,6]. 

 
injected upward. Steam and bagasse are transported to-
gether (like a single phase fluid) passing through several 
fluidization cells to a collection point where the dried ba- 
gasse particles are separated from the combined streams 
of superheated steam and evaporated moisture. The re-
leased vapor still superheated, entrains fine particles (dust) 
which are separated by internal cyclones [7]. Tempera-
ture, pressure and velocity of the gas as well as particle 
size, density change (moisture content change), height 
and bed void are parameters that affect the stability of the 
fluid bed. Geometrical configuration and dimensions of 
the fluidization chambers, recirculation of coarse parti-
cles, dust separation system and design of grid plates and 
gas spargers are design details for the success of a dryer 
on a large scale. 

Particle size distribution affects handling, influences 
the retention time and causes elutriation in the fluid bed 
and at the cyclones [8]. There are several publications on 
empirical correlations, based on particle size, for han-
dling properties and fluidization parameters for wet and 
dry bagasse—in equilibrium with the relative air humid-
ity ~10% moisture content [9-14]. These empirical flu-
idization correlations are intended to establish a mini-
mum entrainment speed for pneumatic transport. The 
correlations give only proximate information for the de-
sign of a fluid bed; however the performance of the fluid 
bed cannot be predicted from these correlations. The 
quantification of bagasse characteristics and comparison 
with the materials that are successfully dried by super-
heated steam dryers (beet pulp) is important information 
that is currently missing. Comparative analysis of parti-
cle size distribution between beet pulp and bagasse can 
yield an insight for designinga pressurized superheated 
steam dryer for bagasse. 

Particle size distribution is a mathematical function 
which describes the relative frequency of a given particle 
size with respect to the whole sample [8]. Normal and 
log-normal or Weibull distribution functions are used to 
describe the relative frequency of a given particle size 
[15]. Typically, the statistical parameters which describes 
particle size distribution are mean, mode, standard devia-
tion, skewness (the symmetry or preferential spread to one 
side of the average—tail), kurtosis (concentration relative 
to the average), and several cumulative percentile values 
(the size at which a determined percentage of particles 
are larger or coarser) D10, D50, D90. Other relations are 
used also to describe the distribution such as D90/D10, 
D90-D10, D75/D25 and D75-D25; the span or width of the 
distribution can be calculated from (D90-D10)/D50 [16]. 

For a sample with a wide particle size distribution, 
sieve analysis is carried out for the coarse fraction while 
for the finer fraction another type of size measurement is 
required [8]. Sieve analysis has been the traditional siz-
ing technique applied to bagasse, but bagasse fibers on 
sieve analysis can pass through the screen with longer 
sieving times and these fibers can also interlock with 
high volume of samples. Therefore, a standardized pro-
cedure is necessary that fixes both the sample volume 
and the sieving time [12]. Particle size distribution of 
bagasse is expected to vary from each factory due to dif-
ferent knifing, shredding and milling as well as sampling 
techniques. Natural segregation of particles according to 
size and particle density is common during storage [17]. 
Particle size distribution of bagasse is in some degree 
reproducible when the feedstock is well prepared, such as 
for a preparation index ~90 (following the International 
Commission for Uniform Methods of Sugar Analy-
sis-ICUMSA procedure). The goal of this document is to  
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compare the particle size distribution of sugarcane ba-
gasse with beet pulp relative to its implications for using 
a fluidized bed superheated steam drying system. 

2. Materials and Methods  

2.1. Materials 

The Amalgamated Sugar Company LLC (season 2009/10) 
supplied two samples of dried beet pulp and several ba-
gasse samples from different locations and pretreatments 
were taken during the 2010 sugarcane season in Louisi-
ana: 
● Enterprise factory bagasse piled in 2009 with one 

year of outdoor storage (EPM09-P)—Cane Prepara-
tion: 2 sets of revolving knives, first with 30 blades at 
600 rpm and the second with 70 blades at 750 rpm, 
and one Tongaat shredder at 1200 rpm. Milling Tan-
dem of 24 rolls [18]. 

● Enterprise factory diffuser bagasse piled in 2009 with 
one year outdoor storage (EPD09-P)—Cane Prepara-
tion: one set of knives and one heavy duty shredder. 
Two set of dewatering mills with 4 rolls each [18].   

● Saint Mary factory bagasse piled in 2009 with one 
year outdoor storage (SMM09-P)—Cane Preparation: 
2 sets of knives conventional rotation, first with 63 
blades at 750 rpm and the second with 60 blades at 
750 rpm [18]. 

● LaFourche factory bagasse, piled in 2007 & 2009, 
with 3 years and 1 year of outdoor storage (LFM07-P 
& LFM09-P) and fresh bagasse taken from conveyor 
in 2010 (LFM10-C)—Cane Preparation: One single 
revolving knife set with 52 knives and a Fiberizer at 
1200 rpm [18]. 

2.2. Methods 

Bagasse samples (~5 kg) were carefully homogenized in 
sample bags and subsamples of approximately 100 g 
were taken and placed in disposable aluminum foil cups.  

Wet samples were dried in a convection oven at 75˚C for 
12 hours and then were left inside a hood for 24 hours, to 
reach the moisture in equilibrium (~10%) with the rela-
tive humidity of the air in the laboratory. Bagasse mois-
ture was determined in a Sartorius Mark 3 Moisture 
Analyzer before sieving. An absolute total weight loss 
less than 2% the weight initial sample is considered ac-
ceptable [19]. 

Sieving tests were performed on a Retsch Sieving 
Machine Type AS200, dividing each test in two consecu-
tive sections of 30 minutes (maximum number of sieves 
is 6). The first section had 5 sequential sieves with open-
ings of 9.5, 4.0, 2.8, 2.0 and 1.4 mm. The samples that 
passed through the smallest screen were further separated 
in a round of sieving with 6 sequential sieves with open-
ings of 1.0, 0.85, 0.60, 0.425, 0.250 and 0.125 mm. Sie- 
ving parameters were amplitude 2.5 mm/g, acceleration 
10 g (98.1 m/s2) and intervals 10 sec. 

The fraction of the bagasse particles with sizes below 
125 µm (0.125 mm) were dispersed in water and ana-
lyzed in the CILAS 1180 Particle Size Analyzer. The 
instrument measurement range goes from 0.04 to 2500 
µm; the measurement technique is based on the laser 
diffraction of the light source and in the wet mode, the 
results can be given in number or in volume. 

3. Results and Discussion 

A qualitative comparison (Figures 2(a) and (b)) shows 
clearly that the shape of the beet pulp particle is like a 
flake and the small particles are almost spherical. The 
shape of bagasse particles is more complex, some parti-
cles are just single strings with variable L/D, other parti-
cles are conglomerates of strings with rectangular shapes 
(rind) and some small particles that are spherical (pith). 
These different shapes are an important factor for the 
design of a feeding and collection system of a dryer. Ba-
gasse fibers tend to entangle and choke, being a chal-
lenge for the design of the feeding valves (rotary valves) 

 

 

Figure 2. Pictures of particles retained between sieves during sieve analysis. (a) Beet pulp and (b) sugarcane bagasse.  
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to keep pressure and a uniform feed to the bed. It is also 
important that rind and pith particles have different den-
sity and will behave differently during fluidization. 

The particle size distribution in sugarcane bagasse de-
pends on cane preparation and number of mills used for 
the juice extraction process. [2] states that the average 
particle size of bagasse ranges between 1 - 5 mm but can 
be as high as 25 mm when the cane preparation is poor. 
Some differences were found for the bagasse samples 
from different locations, pretreatments and sampling 
points in the relative weight of material retained by the 
sieves. The logarithmic graphs (Figures 3(a) and (b)) 

showed that the distributions are almost flat (low kurtosis) 
without a defined bell shape (no normal distribution 
shape).  

The logarithmic graph (Figure 4) for the particle size 
distribution of beet pulp is skewed (tail to the left) and 
shows higher relative frequencies for the sieves with 
openings larger than 2.0 mm. The shape of the distribu-
tion is approximately normal. 

Data in Table 1 shows that the bagasse samples have a 
very wide distribution (D90/D10 ratio from 10 to 50 and 
(D90-D10)/D50 span from 3 to 8) compared to the beet pulp 
(D90/D10ratio ~5 and D90-D10)/D50 span ~2). The range of 

 

 

Figure 3. Relative and cumulative-logarithmic graphs for particle size distribution of bagasse by sieving. Primary y axes: p3 
[%] relative frequency—bars, secondary y axes: Q3 [%] cumulative frequency—lines and x axes: x [mm] particle size in mm. 
(a) SMM09-Pred, EPM09-P blue and EPD09-P green. (b) LFM07-P red, LFM09-P blue and LFM10-C green. 
 

 

Figure 4. Relative and cumulative-logarithmic graphs for particle size distribution of beet pulp. Primary y axes: p3 [%] rela-
tive frequency—bars, secondary y axes: Q3 [%] cumulative frequency—lines and x axes: x [mm] particle size in mm. 

P09-10-S1 & S2 analysis by duplicate (red & blue). B     
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values for the statistical parameters derived from the par-
ticle size distribution of bagasse can be due to differing 
sugarcane processing for each location. The median D50 
for these bagasse samples ranged from 0.7 to 1.3 mm 
compared to beet pulp for which D50 was around 3.0 mm. 
These differences indicate that lower velocities can be 
expected for bagasse fluidization compared to beet pulp. 
Mass percentage of bagasse with size below 0.125 mm 
ranged from 4% to 10% while for beet pulp it was 0.6%. 
Amount and particle size distribution of this fraction is 
an important consideration for the design of the dust se-
paration system of a superheated steam dryer. Retained 
particles will be recycled to the fluid bed as it is desirable 
a very small amount of entrained particles leaving the 
dryer with the vapors. 

The particle fractions below 0.125 mm retained by the 
sieve were analyzed using the laser diffraction instrument. 
Figure 5 shows the particle size distribution results for 

(a) beet pulp and (b) bagasse. In general, the distributions 
show a sharp peak with a tail to the left for both the beet 
pulp and the bagasse particles. It may be expected that 
some of the particles from the left tail of the distribution 
(<10 µm) will be entrained in any vapor leaving the 
dryer. 

Table 2 summarizes the particle size distribution de-
termined by laser diffraction method. Although the sam-
ples presented to the instrument supposedly were below 
125 μm (from sieve analysis) the irregularity on the 
shape of both beet pulp and bagasse particles resulted in 
a fraction of larger particles present in the samples (D90 
percentiles were above 200 μm). Ten percent (D10) of the 
particles that are expected to be handled by dust separa-
tion systems are below 13 μm for bagasse compared to 
16 μm for beet pulp. Coefficient of variation (CV) and 
span (D90-D10)/D50 are similar for all the samples. 

Particle size distribution has a major impact on fluidi   
 
Table 1. Particle size distribution of sugarcane bagasse and beet pulp. Sieving tests with samples at equilibrium moisture 
(~10%). 

Restch Sieving Machine (0.125 - 9.5 mm) Particles 

D10 D50 D90 D90/D10 (D90-D10)/D90 ≤0.125 mm Sample Description 

mm mm mm Ratio Span mass% 

Bagasse EPD09-P 0.16 0.90 5.36 34.1 5.8 8.6 

Bagasse EPM09-P 0.12 0.71 4.90 40.8 6.7 10.4 

Bagasse SMM09-P 0.12 0.78 6.36 52.6 8.1 10.4 

Bagasse LFM07-P 0.24 0.95 6.63 28.0 6.7 4.6 

Bagasse LFM09-P 0.30 1.28 3.92 13.1 2.8 4.0 

Bagasse LFM10-C 0.21 0.80 4.45 20.8 5.3 4.0 

Beet pulp BP09-10-S1 1.42 2.89 6.75 4.8 1.8 0.6 

Beet pulp BP09-10-S2 1.55 3.00 6.86 4.4 1.8 0.5 

 

 
(a)                                                       (b) 

Figure 5. Particle size distributions by laser diffraction of the fraction below 0.125 mm. Primary y axes: Q3 [%] cumulative 
frequency, secondary y axes: q3 [ln x] relative frequency and x axes: particle size in μm. (a) Beet Pulp BP09-10 analysis by 
duplicate (red & blue) and (b) Bagasse EPM09-P red, EPD09-P green and SMM09-P blue. 
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able 2. Particle size analysis by laser diffraction for beet T

pulp and bagasse particles below 0.125 mm. 

CILAS Particle Size Analyzer (<0.125 mm)

D10 D50 D90 (D90-D10)/D90SAMPLE NAME 
CV 

µm µm µm span 

EPM09-P 0.93 13 68 201 2.8 

EPD09-P 12 44 118 0.87 2.4 

SMM09-P 14 55 131 0.79 2.1 

BP09-10-S1 16 69 204 0.92 2.7 

BP09-10-S2 17 76 211 0.88 2.6 

Note um f p ri

ation, plugging of the fluidization cells, feeding, product 
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