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Abstract 
A quantum time-dependent spectrum analysis, or simply, quantum spectral 
analysis (QSA) is presented in this work, and it’s based on Schrödinger’s equ-
ation. In the classical world, it is named frequency in time (FIT), which is used 
here as a complement of the traditional frequency-dependent spectral analysis 
based on Fourier theory. Besides, FIT is a metric which assesses the impact of 
the flanks of a signal on its frequency spectrum, not taken into account by 
Fourier theory and lets alone in real time. Even more, and unlike all derived 
tools from Fourier Theory (i.e., continuous, discrete, fast, short-time, frac-
tional and quantum Fourier Transform, as well as, Gabor) FIT has the fol-
lowing advantages, among others: 1) compact support with excellent energy 
output treatment, 2) low computational cost, O(N) for signals and O(N2) for 
images, 3) it does not have phase uncertainties (i.e., indeterminate phase for a 
magnitude = 0) as in the case of Discrete and Fast Fourier Transform (DFT, 
FFT, respectively). Finally, we can apply QSA to a quantum signal, that is, to a 
qubit stream in order to analyze it spectrally. 
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1. Introduction 

The main concepts related to Quantum Information Processing (QIP) may be 
grouped in the next topics: quantum bit (qubit, which is the elemental quantum 
information unit), Bloch’s Sphere (geometric environment for qubit representa-

How to cite this paper: Mastriani, M. 
(2018) Quantum-Classical Algorithm for 
an Instantaneous Spectral Analysis of Sig-
nals: A Complement to Fourier Theory. 
Journal of Quantum Information Science, 
8, 52-77. 
https://doi.org/10.4236/jqis.2018.82005 
 
Received: March 29, 2018 
Accepted: June 10, 2018 
Published: June 13, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jqis
https://doi.org/10.4236/jqis.2018.82005
http://www.scirp.org
https://doi.org/10.4236/jqis.2018.82005
http://creativecommons.org/licenses/by/4.0/


M. Mastriani 
 

 

DOI: 10.4236/jqis.2018.82005 53 Journal of Quantum Information Science 
 

tion), Hilbert’s Space (which generalizes the notion of Euclidean space), 
Schrödinger’s Equation (which is a partial differential equation that describes 
how the quantum state of a physical system changes with time), Unitary Opera-
tors, and Quantum Circuits. In quantum information theory, a quantum circuit 
is a model for quantum computation in which a computation is a sequence of 
quantum gates; which are reversible transformations on a quantum mechanical 
analog of an n-bit register (this analogous structure is referred to as an n-qubit 
register). Another group is Quantum Gates; a quantum logic gate is a basic 
quantum circuit operating on a small number of qubits (in quantum computing 
and specifically the quantum circuit model of computation). Finally, Quantum 
Algorithms which run on a realistic model of quantum computing, are being the 
most commonly quantum circuit used for computation [1] [2] [3] [4]. Nowa-
days, other concepts complement our knowledge about QIP. The most impor-
tant ones related to this work are: 

1.1. Quantum Signal Processing (QSP) 

The main idea is to take a classical signal, sample it, quantify it (for example, 
between 0 and 28 − 1), use a classical-to-quantum interface, give an internal re-
presentation of that signal, process that quantum signal (by denoising it, com-
pressing it, etc.), measure the result, use a quantum-to-classical interface and 
subsequently detect the classical outcome signal. Interestingly, and as we will see 
later, quantum image processing has aroused more interest than QSP, quoting 
its creator: “Many new classes of signal processing algorithms have been devel-
oped by emulating the behavior of physical systems. There are also many exam-
ples in the signal processing literature in which new classes of algorithms have 
been developed by artificially imposing physical constraints on implementations 
that are not inherently subject to these constraints” [5]. Therefore, QSP is a sig-
nal processing framework [6] that is aimed at developing new or modifying ex-
isting signal processing algorithms by borrowing from the principles of quantum 
mechanics and some of its fascinating axioms and constraints. However, in con-
trast with such fields as quantum computing and quantum information theory, 
it does not inherently depend on the physics associated with quantum mechan-
ics. Consequently, in developing the QSP framework, we are at liberty to impose 
quantum mechanical constraints that we find useful and to avoid those that are 
not. This framework provides a unifying conceptual structure for a variety of 
traditional processing techniques and a precise mathematical setting for devel-
oping generalizations and extensions of algorithms; leading to a potentially use-
ful paradigm for signal processing, with applications in areas including frame 
theory, quantization and sampling methods, detection, parameter estimation, 
covariance shaping, and multiuser wireless communication systems. The truth is 
that to date, papers on this discipline are less than half a dozen, and their prac-
tical application is in reality non-existent. Moreover, although what has been 
developed so far is an interesting idea, it does not withstand further comments. 
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1.2. Quantum Fourier Transform (QFT) 

In quantum computing, the QFT is a linear transformation on quantum bits and 
it is the quantum version of the discrete Fourier transform. The QFT is a part of 
many quantum algorithms: especially Shor’s algorithm for factoring and compu-
ting the discrete logarithm; the quantum phase estimation algorithm for esti-
mating the eigenvalues of a unitary operator; and algorithms for the hidden 
subgroup problem. 

The QFT can be performed efficiently on a quantum computer, with a partic-
ular decomposition into a product of simpler unitary matrices. Using a simple 
decomposition, the discrete Fourier transform can be implemented as a quan-
tum circuit consisting of only O(n2) Hadamard gates and controlled phase shift 
gates, where n is the number of qubits [1]. This can be compared to the classical 
discrete Fourier transform which takes O(2n2) gates (where n is the number of 
bits), which is exponentially more than O(n2). However, the quantum Fourier 
transform acts on a quantum state, whereas, the classical Fourier transform acts 
on a vector. Therefore not all the tasks that use the classical Fourier transform 
can take advantage of this exponential speedup; since, the best QFT algorithms 
known today require only O(n log n) gates to achieve an efficient approximation 
[7]. 

Finally, this work is organized as follows: Fourier Theory is outlined in Sec-
tion 2, where, we present the following concepts inside Fourier’s Theory: Fourier 
Transform, Discrete Fourier Transform, and Fast Fourier Transform. In Section 
3, we show the proposed new spectral methods with its consequences. Section 4 
provides conclusions and a proposal for future works. 

2. Fourier’s Theory 

In this section, we discuss the tools which are needed to understand the full ex-
tent QSA. These tools are: Fourier Transform, Discrete Fourier Transform 
(DFT), and Fast Fourier Transform (FFT). They were developed based on a 
main concept: the uncertainty principle, which is fundamental to understand the 
theory behind QSA-FIT. Other transforms, which are members of the Fourier 
Theory too, like Fractional Fourier Transform (FRFT), Short-Time Fourier 
Transform (STFT), and Gabor transform (GT); make a poor contribution in 
pursuit of solving the problems of the Fourier Theory described in the Abstract. 
That is to say, the need for a time-dependent spectrum analysis, undoubtedly in-
cluding the wavelet transform in general and Haar basis in particular.  

What the ubiquity of QSA in the context of a much larger modern and full 
spectral analysis should be clear at the end of this section. 

On the other hand, this section will allow us to better understand the role of 
QSA as the origin of several currently-used-today-tools in Digital Signal 
Processing (DSP), Digital Image Processing (DIP), Quantum Signal Processing 
(QSP) and Quantum Image Processing (QIP). Finally, it will be clear why we say 
that QSA crowns a set of tools insufficient to date. 
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2.1. Fourier Transform 

The Fourier Transform decomposes a function of time (a signal) into the fre-
quencies that make it up, in the same way as a musical chord can be expressed as 
the amplitude (or loudness) of its constituent notes. The Fourier transform of a 
function of time itself is a complex-valued function of frequency whose absolute 
value represents the present amount of that frequency in the original function, 
and whose complex argument is the phase offset of the basic sinusoid in that 
frequency.  

The Fourier transform is called the frequency domain representation of the 
original signal. The term Fourier transform refers to both the frequency domain 
representation and the mathematical operation that associates the frequency 
domain representation to a function of time. The Fourier transform is not li-
mited to functions of time, but in order to have a common language, the domain 
of the original function is frequently referred to as the time domain. For many 
functions of practical interest, we can define an operation that reverses this: the 
inverse Fourier transformation, also called Fourier synthesis of a frequency do-
main representation, which combines the contributions of all the different fre-
quencies to recover the original function of time [8]. 

Linear operations performed in one domain (time or frequency) have corres-
ponding operations in the other domain, which is sometimes easier to perform. 
The operation of differentiation in the time domain corresponds to multiplica-
tion by the frequency, so that some differential equations are easier to analyze in 
the frequency domain. Also, convolution in the time domain corresponds to an 
ordinary multiplication in the frequency domain. Concretely, this means that 
any linear time-invariant system, such as a filter applied to a signal, can be ex-
pressed in a relatively simple way as an operation on frequencies. After per-
forming the desired operations, the transformation of the result can be made 
backwards, towards the time domain. Harmonic analysis is the systematic study 
of the relationship between the frequency and time domains, including the kinds 
of functions or operations that are “simpler” in one or the other, and has deep 
connections to almost all areas of modern mathematics [8]. 

Functions that are localized in the time domain have Fourier transforms (FT) 
that are spread out across the frequency domain and vice versa, a phenomenon 
that is known as the Uncertainty Principle. The critical case for this principle is 
the Gaussian function, of substantial importance in probability theory and sta-
tistics as well as in the study of physical phenomena exhibiting normal distribu-
tion (e.g., diffusion). The FT of a Gaussian function is another Gaussian func-
tion. Joseph Fourier introduced the transform in his study of heat transfer where 
Gaussian functions appear as solutions of the heat equation [8]. 

2.2. Discrete Fourier Transform (DFT) 

In mathematics, the discrete Fourier transform (DFT) converts a finite list of 
equally spaced samples of a function into the list of coefficients of a finite com-
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bination of complex sinusoids, ordered according to their frequencies. The fre-
quency domain has the same number of values as the original samples of time 
domain. DFT can be said to convert the sampled function from its original do-
main (often time or position along a line) to the frequency domain [9]. 

Both, the input samples (which are complex numbers and in practice they are 
usually real ones), and the output coefficients are complex. The frequencies of 
the output sinusoids are integer multiples of a fundamental frequency whose 
corresponding period is the length of the sampling interval. The combination of 
sinusoids obtained through the DFT is therefore periodic with that same period. 
The DFT differs from the discrete-time Fourier transform (DTFT) in that their 
input and output sequences are both finite; it is therefore said to be the Fourier 
analysis of finite-domain (or periodic) discrete-time functions [9]. 

Since it deals with a finite mass of data, it can be implemented in computers 
by numerical algorithms or even dedicated hardware. These implementations 
usually employ efficient fast Fourier transform (FFT) algorithms; so much so 
that the terms “FFT” and “DFT” are often used interchangeably. Prior to its cur-
rent usage, the “FFT” acronym may have also been used for the ambiguous term 
“Finite Fourier Transform” [9]. 

No Compact Support  If DFT is the following product X = Wx, where X is a 
complex output vector, W is a matrix of complex twiddle factors, and x is the 
real input vector; therefore, we can see that each element Xk of output vector re-
sults from multiplying the kth row of the matrix by the complete input vector; 
that is to say, each element Xk of output vector contains every element of the in-
put vector. A direct consequence of this is that DFT spills the energy to its out-
put, in other words, DFT has a disastrous treatment of the output energy. 
Therefore, no compact support is equivalent to: 
• DFT has a bad treatment of energy in the output; 
• DFT is not a time-varying transform, but a frequency-varying transform. 

Time-domain vs. frequency-domain measurements As we can see in Fig-
ure 1, thanks to DFT we have a new perspective regarding the measurement of 
signals, i.e., the spectral view [10] [11]. 
 

 
Figure 1. Time-domain vs. frequency-domain measurements. 
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Both points of view allow us to make an almost complete analysis of the main 
characteristics of the signal [8]-[13]. As we can see above, DFT consists of a 
product between a complex matrix by a real vector (signal). This gives us a vec-
tor output which is also complex [10] [11]. Therefore, for practical reasons, it is 
more useful to use the Power Spectral Density (PSD) [8]-[13], and in this way, to 
work with all the values involved as real, without loss of generality or power of 
analysis. 

Spectral Analysis When the DFT is used for signal spectral analysis, the{ }nx  
sequence usually represents a finite set of uniformly spaced time-samples of 
some signal x(t), where t represents time. The conversion from continuous time 
to samples (discrete-time), changes the underlying Fourier transform of x(t) into 
a discrete-time Fourier transform (DTFT); which generally entails a type of dis-
tortion called Aliasing. The choice of an appropriate sample-rate (see Nyquist 
rate) is the key to minimizing that distortion.  

Similarly, the conversion from a very long (or infinite) sequence to a mana-
geable size entails a type of distortion called Leakage, which is manifested as a 
loss of detail (also known as Resolution) in the DTFT. The choice of an appro-
priate length for the sub-sequence is the primary key to minimize that effect. 
When the available data (and the time to process it) is more than the amount 
needed to attain the desired frequency resolution, a standard technique is to 
perform multiple DFTs; for example, to create a spectrogram. If the desired re-
sult is a power spectrum and noise or randomness is present in the data, calcu-
lating the average of the magnitude components of the multiple DFTs is a useful 
procedure to reduce the variance of the spectrum; (also called a Periodogram in 
this context). Two examples of such techniques are the Welch method, and the 
Bartlett method, the general subject of estimating the power spectrum of a noisy 
signal is called Spectral Estimation. 

DFT itself, can also lead to distortion (or perhaps illusion), because it is just a 
discrete sampling of the DTFT-which is a function of ax continuous frequency 
domain. Increasing the resolution of the DFT can mitigate the problem. That 
procedure is illustrated by sampling the DTFT [10] [11]. 
• The procedure is sometimes referred to as zero-padding, which is a particular 

implementation used in conjunction with the fast Fourier transform (FFT) 
algorithm. The inefficiency of performing multiplications and additions with 
zero-valued samples is more than offset by the inherent efficiency of the FFT. 

• As already noted, leakage imposes a limit on the inherent resolution of the 
DTFT. Therefore, benefits obtained from a fine-grained DFT are limited. 

The most important disadvantages of DFT are summarized below. 
Disadvantages: 

• DFT fails at the edges. This is the reason why in the JPEG algorithm (used in 
image compression), we use the DCT instead of the DFT [14]-[17]. What’s 
more, discrete Hartley transform outperforms DFT in DSP and DIP [14] 
[15]. 
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• As there is no compact support, and in order to arrive at the frequency do-
main, the corresponding element by element between the two domains (time 
and frequency) is lost, resulting in a poor treatment of energy.  

• As a consequence of not having compact support, DFT is not time present. In 
fact, it moves away from the time domain. For this reason, in the last dec-
ades, the scientific community has created some palliative measures with 
better performance in both domains simultaneously; i.e., time and frequency. 
Such tools are: STFT, GT, and wavelets. 

• DFT has phase uncertainties (indeterminate phase for magnitude = 0) [10] 
[11]. 

• As it arises from the product of a matrix by a vector, its computational cost is 
O(N2) for signals (1D), and O(N4) for images (2D). 

All this would seem to indicate that it is an inefficient transform; however, 
there are several advantages which justify its use in the last centuries. See [10] 
[11]. 

2.3. Fast Fourier Transform (FFT) 

Fast Fourier Transform FFT inherits all the disadvantages of the DFT, except 
the computational complexity. In fact, and unlike DFT, the computational cost 
of FFT is O(N*log2N) for signals (1D), and O((N*log2N)2) for images (2D). This 
is the reason why, it is called fast Fourier transform. 

FFT is an algorithm that computes the Discrete Fourier Transform (DFT) of a 
sequence, or its inverse. Fourier analysis converts a signal from its original do-
main (often time or space) to the frequency domain and vice versa. An FFT ra-
pidly computes such transformations by factorizing the DFT matrix into a 
product of sparse (mostly zero) factors [18]. As a result, it succeeds in reducing 
the complexity of computing the DFT from O(N2), which arises if we simply ap-
ply the definition of DFT to O(N*log2N), where N is the data size. The computa-
tional cost of this technique is never greater than the conventional approach; in 
fact, it is usually significantly less. Further, the computational cost as a function 
of n is highly continuous, so that linear convolution of sizes somewhat larger 
than a power of two. 

FFT is widely used for many applications in engineering, science, and mathe-
matics. The basic ideas were made popular in 1965, however some algorithms 
were derived as early as 1805 [19]. In 1994 Gilbert Strang described the Fast 
Fourier Transform as the most important numerical algorithm of our lifetime 
[20], and it was included in Top 10 Algorithms of the 20th Century by the IEEE 
journal on Computing in Science & Engineering [21].  

2.4. Fourier Uncertainty Principle 

In quantum mechanics, the uncertainty principle [1], also known as Heisen-
berg’s uncertainty principle; is one among a variety of mathematical inequalities 
which set a fundamental limit to the precision with which certain pairs of physi-
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cal properties of a particle, known as complementary variables, can be known 
simultaneously, such as energy E and time t, momentum p and position x, etc. 

They cannot be simultaneously and arbitrarily measured with high precision. 
There is a minimum for the product of uncertainties of these two measurements. 
First introduced in 1927 by the German physicist Werner Heisenberg, the Hei-
senberg’s uncertainty principle states that the more precisely the position of a 
particle is determined, the less precisely its momentum can be known, and vice 
versa. The formal inequality relating the uncertainty of energy E∆  and the un-
certainty of time t∆  was derived by Earle Hesse Kennard later that year and by 
Hermann Weyl in 1928: 

/2E t∆ ∆ ≥                              (1) 

where ħ is the reduced Planck constant, h/2π. The energy associated with such 
system is 

E ω=                               (2) 

where ω = 2πf, being f the frequency, and ω the angular frequency. Then, any 
uncertainty about ω, is transferred to the energy; that is to say: 

E ω∆ = ∆                            (3) 

Replacing Equation (3) into (1), we will have: 

2tω∆ ∆ ≥                             (4) 

Finally, simplifying Equation (4), we will have: 

1 2tω∆ ∆ ≥                             (5) 

Equation (5) tells us that a simultaneous decimation in time and frequency is 
impossible for FFT. Therefore, we must make do with decimation in time or 
frequency, but not both at once. Linking the last four transforms individually 
(STFT, GT, FrFT, and WT), each sample in time with its counterpart in fre-
quency in a biunivocal correspondence represents a futile effort to date. That is 
to say, they are transforms without compact support; with the exception of (WT) 
which sometimes does [22] [23] [24]. 

3. A Brief on Quantum Information Processing 

In this section, we will see the three main players of quantum information 
processing: the elemental unit of quantum information or qubit (i.e., a quantum 
bit), the Schrödinger’s equation, and the quantum measurement problem. 

3.1. Quantum Bit (Qubit) 

Since Quantum Mechanics is formulated in projective Hilbert space, then, we 
need to appeal to the Bloch’s sphere, see Figure 2, where we can see three axes 
(x, y, z), an equator, two poles or qubit basis states ( 0 North Pole≡ ,
1 South Pole≡ ), two angles ( ),θ φ , and a generic wave function ψ . 

In this context, the complete wave function will be: 
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Figure 2. Bloch sphere. 

 

( )e cos 0 e sin 1 e cos 0 cos sin sin 1
2 2 2 2

i i i iγ φ γθ θ θ θ
ψ φ φ   = + = + +   

   
 (6) 

where 0 πθ≤ ≤ , 0 2πφ≤ < . We can ignore the factor eiγ  because it has no 
observable effects [1] [2] [3], and for that reason, we can effectively write: 

cos 0 e sin 1
2 2

iφθ θ
ψ = +                    (7) 

The numbers θ  and φ  define a point on the unit three-dimensional Bloch 

sphere, as shown in Figure 2, with, cos
2
θ

α = , and e sin
2

iφ θ
β = , then, replac-

ing them into Equation (7),  

0 1ψ α β= + .                           (8) 

Besides, a column vector ψ  is called a ket vector [ ]Tα β , where (•)T means 
transpose of (•); while a row vector ψ  is called a bra vector * *α β   . The 
numbers *α  and *β  are the complex conjugate of α  and β  numbers 
respectively, although thinking of them as real numbers for many purposes does 
not hurt. In other words, the state of a qubit is a vector in a two-dimensional 
complex vector space. The special states 0  and 1  have a crucial impor-
tance in quantum computing and they are known as Computational Basis States 
(CBS) and form an orthonormal basis for this vector space, being  

Spin down 1
0

0
 

= ↓ = = = 
 

 qubit basis state = North Pole   (9) 

and 

Spin up 0
1

1
 

= ↑ = = = 
 

 qubit basis state = South Pole   (10) 

Finally, if the wave function is on the sphere, ψ  will be a pure state, with,  

2 2* * 1
α

ψ ψ α β α β
β
  = = + =    

                 (11) 
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3.2. Schrödinger Equation 

A quantum state can be transformed into another state by a unitary operator, 
symbolized as U (U: H → H on a Hilbert space H, being called a unitary operator 
if it satisfies † †U U UU I= = , where ( )†•  is the adjoin of (•), and I is the identity 
matrix), which is required to preserve inner products: If we transform χ  and 
ψ  to U χ  and U ψ , then †U Uχ ψ χ ψ= . In particular, unitary 

operators preserve lengths: 
† 1U Uψ ψ ψ ψ= = ,                     (12) 

That is to say, it is equal to Equation (11). Besides, the unitary operator satis-
fies the following differential equation known as the Schrödinger equation 
[1]-[3]: 

( ) ( )
ˆd , ,

d
iHU t t t U t t t

t
−

+ ∆ = + ∆


                 (13) 

where Ĥ  represents the Hamiltonian matrix of the Schrödinger equation, 
while 2 1i = − , and   is the reduced Planck constant; i.e.: 2πh= . Multip-
lying both sides of Equation (13) by ( )tψ  and setting  

( ) ( ) ( ),t t U t t t tψ ψ+ ∆ = + ∆                    (14) 

Being ( ) ( ) ( ),U t t t U t t t U t+ ∆ = + ∆ − = ∆  a unitary transform (operator and 
matrix), yields 

( ) ( )
ˆd

d
iHt t

t
ψ ψ

−
=


                     (15) 

The Hamiltonian operator represents the total energy of the system and con-
trols the evolution process. In the most general case, the Hamiltonian is formed 
by kinetic and potential energy. However, if the particle is stationary thus the 
kinetic energy is canceled, leaving only the potential energy which will be the 
only one that will be linked to external forces applied to this particle. Thus the 
control of the external forces is at the same time the control of the evolution of 
the states of the system [1] [2] [3] [25] [26] [27] [28]. For example, in the case of 
bosons (in particular, photons), they possess integer spin (i.e., 1sm = ± ), con-
sequently, we would have a momentum, 

z x y

x y z

P P iP
P

P iP P
σ

− 
⋅ =  + − 

,                   (16) 

being ( ), ,x y zσ σ σ σ=  Pauli’s matrices, that is to say: 

0 1 0 1 0
, , ,

1 0 0 0 1x y z

i
i

σ σ σ
−     

= = =     −     
          (17) 

while spin will be, 

( ), ,s s x y zS m mσ σ σ σ σ= = =   .                 (18) 

Then, the Hamiltonian takes the following form, 
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z x ys s
s

x y z

P P iPcm P cmcS PH m
P iP P

σ − ⋅⋅
= = = = Ω + − 

 



  

     (19) 

being c the speed of light, Ω  will result in this case: 

z x y

x y z

P P iPc
P iP P

− 
Ω =  + − 

                   (20) 

Now, if we consider a spatially isotropic and homogeneous Ω  and a polari-
zation of spin regarding the z-axis exclusively, thus,  

0 1 0
0 0 1

z
z z z z

z

Pc c cP P
P

σ
   

Ω = = =   − −    

              (21) 

with 

s z s z z s z
cH m m P mσ ωσ= Ω = =  



               (22) 

where ω  is the angular frequency. 
Finally, solving Equation (15) depending on the Hamiltonian of Equation 

(22), we will have the solution to the Schrödinger equation given by the matrix 
exponential of the Hamiltonian matrix, that is to say; 

( ) ( )
ˆ

e
iH t

t t tψ ψ
− ∆

+ ∆ =   (if Hamiltonian is not time-dependent) (23) 

or  

( ) ( )
ˆd

e
t t
t

i H t
t t tψ ψ

+∆−
∫

+ ∆ =   (if Hamiltonian is time-dependent) (24) 

Discrete versions of Equations (23) and (24) for a time-dependent (or not) 
Hamiltonian, being k the discrete time will be: 

ˆ

e e s k z

iH k
im k

k k k k
ω σψ ψ ψ

− ∆
− ∆

+∆ = =  (if Hamiltonian is not time-dependent) 
(25) 

and 

ˆ

e e
k k k k

k s z k
k k

i H im

k k k k

σ ω
ψ ψ ψ

+∆ +∆−
−

+∆

∑ ∑
= =  (if Hamiltonian is time-dependent) 

(26) 
1

1
1 0e

k
s z i

i
im

k

σ ω
ψ ψ

+

=
−

+

∑
=  (with 1k∆ =  and starting from initial state 0ψ  [1]) 

(27) 

On the other hand, replacing Equation (22) into Equation (23), we will have 
another main equation for this paper, 

( ) ( ) ( )e s zim t tt t tω σψ ψ− ∆+ ∆ = ,                  (28) 

and into Equation (24) 

( ) ( ) ( )de
t t

s z tim t tt t tσ ωψ ψ
+∆− ∫+ ∆ = .                  (29) 
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Finally, considering an incremental approximation of Equation (15) as well as 
in its discrete version, and considering the proper replacements of Equation 
(22), both versions of Schrödinger’s equation will take the following form re-
spectively, 

( )
( ) ( )s z

t t
im t t t

t
ψ

ω σ ψ
∆ + ∆

= − + ∆
∆

                 (30) 

and 

1 1

2
k k k k

k k s k z k kim
ψ ψ

ψ ω σ ψ+∆ + +∆ −
+∆ +∆

−
∆ = = −               (31) 

These last equations will be fundamental in Section 4. 

3.3. Quantum Measurement Problem 

In quantum mechanics, measurement is a non-trivial and highly coun-
ter-intuitive process [1]. In fact, it is a destructive process responsible for the 
collapse of the wave function. Firstly, because measurement outcomes are inhe-
rently probabilistic, i.e. regardless of how carefully the measurement procedure 
has been prepared, the possible outcomes of such measurement will be distri-
buted according to a certain probability distribution [1]. Secondly, once the 
measurement has been performed, a quantum system is unavoidably altered due 
to the interaction with the measurement apparatus. Consequently, for an arbi-
trary quantum system, pre-measurement and post-measurement quantum states 
are different in general [1], with one exception, which takes place when we work 
with CBS.  

Quantum measurements are described by a set of measurement operators 

{ }ˆ
mM , index m labels the different measurement outcomes, which act on the 

state space of the system being measured. That is to say, measurement outcomes 
correspond to values of observables, such as position, energy, and momentum, 
which are Hermitian operators [1] corresponding to physically measurable 
quantities. Being ψ  the state of the quantum system immediately before the 
measurement. Then, the probability that result m occurs is given by 

( ) †ˆ ˆ
m mp m M Mψ ψ=                    (32) 

and the post-measurement quantum state is 

†

ˆ

ˆ ˆ
m

pm
m m

M

M M

ψ
ψ

ψ ψ
=                    (33) 

where subscript pm means post-measurement. Besides, operators ˆ
mM  must sa-

tisfy the completeness relation of Equation (34), because that guarantees that 
probabilities will sum to one; see Equation (35) [1]: 

†ˆ ˆ
m mm M M I=∑                        (34) 

( )†ˆ ˆ 1m mm mM M p mψ ψ = =∑ ∑             (35) 

Let us illustrate with a simple example. Let’s assume we have a polarized pho-
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ton with associated polarization orientations ‘horizontal’ and ‘vertical’. The ho-
rizontal polarization direction is denoted by 0  and the vertical polarization 
direction is denoted by 1 . Therefore, an arbitrary initial state for our photon 
can be described by the quantum state 0 1ψ α β= +  (recalling Subsection 
3.1, Equation 8), where α  and β  are complex numbers constrained by the 
very famous normalization condition 

2 2 1α β+ = , and { }0 , 1  is the 
computational basis (or CBS) spanning 2Η . Then, we construct two measure-
ment operators

0
ˆ 0 0M =  and 

1
ˆ 1 1M =  with two measurement outcomes 

0 1,a a . Thus, the full observable used for measurement in this experiment will be 
the diagonal matrix 

0 1
ˆ 0 0 1 1M a a= + , i.e., the complete matrix. According 

to the postulate, the probabilities of obtaining outcome 0a  or outcome 1a  
are given by ( ) 2

0p a α=  and ( ) 2
1p a β= . Corresponding post-measurement 

quantum states are as follows: if outcome = 0a , then 0pmψ = ; if outcome 
= 1a  then 1pmψ = . 

4. Quantum Spectral Analysis: Frequency in Time (QSA-FIT) 

This tool plays a main role in the study of quantum entanglement [25]; at the 
same time, it is a key piece when applied in signal analysis -in a much more ele-
gant way than by the use of The Fourier theory in particular for the practical 
calculation of the bandwidth of any type of signal [9] [12] [13]. In fact, A quan-
tum time-dependent spectrum analysis, or simply, quantum spectral analysis: 
frequency in time (QSA-FIT), complements and completes the Fourier theory, 
especially its maximum exponent; i.e., the fast Fourier transform (FFT) [10] [11] 
[18] [19]. For all the above, QSA-FIT is the first and true temporal-spectral 
bridge [29] [30]. Finally, QSA-FIT is a metric which assesses the impact of the 
flanks of a signal on its frequency spectrum at each instant, something not taken 
into account by the Fourier theory and even less in real time. 

4.1. Application to a Quantum State 

Next, we are going to deduce this operator in its continuous and discrete forms. 
There are several versions of QSA-FIT [29] [30]; in this case, we will deduce this 
operator in its continuous and discrete versions from Equations (30) and (31), 
respectively. Therefore, if we multiply both sides of Equation (30) by ψ , we 
will have: 

( ) ( ) ( ) ( ) ( )s z
t

t im t t t
t

ψ
ψ ω ψ σ ψ

∆
= −

∆
             (36) 

then,  

( ) ( )
( ) ( )

( ) ( )1
s

z

t
t m t i t

tt t
ψ

ω ω ψ
ψ σ ψ

∆
∆ = =

∆
.        (37) 

Now, if we multiply both sides of Equation (31) by kψ , we will have: 

1 1

2
k k k

s k k z kim
ψ ψ ψ

ω ψ σ ψ+ −−
= −               (38) 
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then,  

( )1 11 1

2 2
k k k kk k k

k s k
k z k k z k

m i i
ψ ψ ψ ψψ ψ ψ

ω ω
ψ σ ψ ψ σ ψ

+ −+ −
−−

∆ = = =    (39) 

That is to say, we are going to have a Δω at each instant of the signal (conti-
nuous or discrete, classical or quantum). On the other hand, a very interesting 
attribute of this operator is that it is not affected by the quantum measurement 
problem, because its output is a classical scalar, in other words, it can be meas-
ured with complete accuracy. In fact, the operator Δω is a hybrid algorithm with 
quantum and classical parts, as we can see in Figure 3 where a single fine line 
represents a wire carrying 1 or N qubits, while a single thick line represents a 
wire carrying 1 or N classical bits. Moreover, the quantum part of the operator 
Δω must respect the concept of reversibility which is closely related to energy 
consumption, and hence to the Landauer’s Principle [1], for this reason, kψ  
also appears on the way out. Thus, 

Quantum part: 

1

1

k k k

k k k

k k z k

a

b

c

ψ ψ

ψ ψ

ψ σ ψ

+

−

=

=

=

                         (40) 

Classical part: 

( )
2

k k
k s k

k

a b
m i

c
ω ω

−
∆ = =                    (41) 

Finally, for all mentioned cases, that is to say, continuous or discrete, classical 
or quantum signals, the bandwidth BW will result from the difference between 
the maximum and the minimum frequency of such signal, 

( )max min max min
1

2π
BW f f ω ω= − = ∆ − ∆           (42) 

4.2. Application to Classical Signals 
In no other way is the application of QSA-FIT more conspicuous than in this 
case. There are several versions and ways to apply QSA-FIT to a classical signal 
 

 
Figure 3. A hybrid algorithm with quantum and classical parts. 
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[29] [30]. However, the direct classical continuous version of Equations (37) and 
(39) will be of the form: 

( ) ( )
( )d

d
s t

t
s t t
ηω = ,                        (43) 

where s(t) is the signal, and η is an adjustment factor. While the discrete version 
will be: 

( )1 1

2
k k

k
k

s s
s
ηω + −−

= .                       (44) 

The problem with Equations (43) and (44) consists in the indeterminacy of 
Δω when the signal is null at that instant. Then, we will use a modified version of 
the signal called baseline less (BLL) which consists of, 

( ) ( )d1
dBLL

s t
t

s t
ω = ,                       (45) 

with η = 1, where,  

max min

2BLL
s ss −

= ,                         (46) 

then, 

( ) ( )
max min

d1
d

2

s t
t

s s t
ω =

− 
 
 

,                       (47) 

with, 

( ) ( )( )
( )

max
max

max min max minmax

d dd1 1
2π d π

2

s t ts t
f

s s t s s
 

= = − −    
 

,            (48) 

and, 

( ) ( )( )
( )

min
min

max min max minmin

d dd1 1
2π d π

2

s t ts t
f

s s t s s
 

= = − −    
 

.            (49) 

Now, if we consider a signal like Figure 4 (in blue), 

( ) ( )coss t A t Bω ϕ= + + ,                       (50) 

where A is the amplitude, φ is the phase, and B is the baseline, with, 

( ) ( )d
sin

d
s t

A t
t

ω ω ϕ= − + ,                     (51) 

then, 

max

min

s A B
s A B

= +

= − +
                             (52) 

Now, replacing Equations (51) and (52) into (47), we will have: 
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Figure 4. Example of a cosine signal (in blue), its QSA-FIT (in green), and its |FFT| (in 
red). Five cycles of a cosine signal with a unitary modulus and without baseline of 30 
[hertz] and 1024 numbers of FFT samples is showed. The amplitude of the QSA-FIT is 
coincident with the distance between both maxima peaks of the |FFT|. Such distance or 
separation is known as bandwidth of the signal. 
 

( )
( ) ( )

( )( )

( )

1 sin

2

sin

t A t
A B A B

t

ω ω ω ϕ

ω ω ϕ

= − +
+ − − + 

 
 

= − +

,       (53) 

in green in Figure 4; then, 

max

min

2π
2π 2π

2π
2π 2π

ff f

ff f

ω

ω

= = =

− −
= = = −

                   (54) 

So, replacing Equation (54) into (42), we will have: 

( )max min 2BW f f f f f= − = − − = .                (55) 

This result can be seen in the lower part of Figure 4, between QSA-FIT and 
|FFT|, which is the total aperture of QSA-FIT (in green) and at the same time, 
the distance between the peaks of |FFT| (in red). Now, if we consider a perfect 
gate signal like Figure 5 (in blue), where perfect gate means a gate signal with 
infinite slope in its transitions from one state to another, with 

( ) ( )s t Agate t Bω ϕ= + + ,                     (56) 

where A is the amplitude, φ is the phase, and B is the baseline; with, 
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Figure 5. Example of a perfect gate signal (in blue), its QSA-FIT (in green), and its |FFT| 
(in red). One and a half cycle of a perfect gate signal with a modulus equal to ½ and a 
similar baseline of 3 [hertz] and 1024 numbers of FFT samples is showed. The thick gray 
lines represent the infinite dilation of the range of frequencies, which otherwise would 
not enter in the figure. Besides, this lines also represent the monotonous values of both 
QSA-FIT as well as the |FFT| in that frequency range, and since it does not make sense to 
graph infinitely the same thing, said rank is replaced with the aforementioned line. The 
ends of the QSA-FIT coincide with those of the |FFT| and in this way an infinite band-
width is obtained for this signal. 
 

( ) ( )d d
d d
s t gate t

A
t t

ω ϕ
ω

+
= ,                   (57) 

where the derivative of the gate can have only 3 possible values, 

( )d
0

d

A
s t

t
A

ω

ω

∞
= 
− ∞

                           (58) 

then, if, 

max

min

s A B
s A B

= +

= − +
                            (59) 

So far, we have obtained similar results to the previous case in relation to smax 
and smin, however, the true difference is in everything related to the derivative. In 
this case, the perfect gate takes values ±∞ . Now, replacing Equations (58) and 
(59) into (47), we will have: 

( )
( ) ( )

1 0 0

2

A
t

A B A B
A

ω ω
ω

ω ω

∞ ∞ 
 = = 

+ − − +   − ∞ − ∞   
 

          (60) 
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in green in Figure 5, where, we have represented with a gray thick line an infi-
nite discontinuity in the graphics of QSA-FIT (in green) and |FFT| (in red). 
Therefore, 

max

min

2π
2π 2π

2π
2π 2π

ff f

ff f

ω

ω

∞ ∞
= = = ∞ = ∞

− ∞ − ∞
= = = − ∞ = −∞

                 (61) 

Then, replacing Equation (61) into (42), we will have: 

( )max min 2BW f f= − = ∞ − −∞ = ∞ = ∞                   (62) 

4.3. Application to Entangled States 

Quantum Information Processing has two fundamental tools permanently used 
in Quantum Computing and Communications: the Principle of Superposition 
and Quantum Entanglement [25]. These tools are based on the work of Erwin 
Schrödinger [26] [27], who defined the entangled of pure states as the pure 
quantum states of composite systems that cannot be represented in the form of 
simple tensor products of subsystem state-vectors, i.e.: 

AB A Bψ ψΨ ≠ ⊗                        (63) 

where “⊗ ” indicates the Kronecker’s product (also known as a tensor product), 
while Aψ  and Bψ  are vectors providing the states of both subsystems, 
such as elementary particles [26] [27]. The product states [25] are those states of 
composite systems which can be represented as tensor products of subsystem 
states that constitute the complement in the set of pure states. In fact, states of 
the composite system that can be represented in this form are called separable 
states. Then, since not all states are separable states (and thus product states) we 
will carry out the following analysis. We will establish a pair of basis: { }Au  
for HA and { }Bv  for HB. In HA ⊗ HB, the most general state is of the form: 

,
AB xy A B

x y
r u vΨ = ⊗∑ .                      (64) 

This state is separable if there are vectors A
ur   , B

vr    so that A B
uv u vr r r=  

yielding A
A u A

u
r uψ =∑ and B

B v B
v

r vψ =∑ . It is inseparable if for any pair of 

vectors A
ur   , B

vr    at least for one pair of coordinates A
ur , B

vr  we have 
A B

uv y vr r r≠ . If a state is inseparable, it is called an entangled state. 

Moreover, in 1935 Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) 
suggested a thought experiment by which they tried to demonstrate that the 
wave function did not provide a complete description of physical reality (which 
gives rise to the famous EPR paradox); and hence that the Copenhagen inter-
pretation is unsatisfactory. Resolutions of the paradox have important implica-
tions for the interpretation of quantum mechanics [31]. The essence of the pa-
radox is that particles can interact in such a way that it is possible to measure 
both their position and their momentum more accurately than Heisenberg’s un-
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certainty principle allows [28], unless measuring one particle instantaneously 
affects the other to prevent this accuracy, which would involve information be-
ing transmitted faster than light [32] [33][34] as forbidden by the theory of rela-
tivity (spooky action at a distance) [28] [31] [35] [36] [37] [38] [39]. These con-
sequence had not been previously noticed and seemed unreasonable at the time; 
the phenomenon involved is now known as quantum entanglement [25] [28]. 

On the other hand, in 1964 John S. Bell introduces his famous theorem [35] 
associated with 4 states, i.e., 2-qubit vectors into a combined space of Hilbert 

2 2
AB A BΗ = Η ⊗Η , and relative to two subsystems A and B, 

( ) ( )1 10 ,0 1 ,1 , 0 ,1 1 ,0
2 2AB A B A B AB A B A B

± ±Φ = ± Ψ = ± . (65) 

They are called Bell’s states, and also known as EPR pairs. This theorem raises 
an inequality, which when violated by quantum mechanics establishes the 
non-locality present in the entanglement of two subsystems like A and B. Be-
sides, a posterior redefinition of this inequality due to Clauser, Horne, Shimony, 
and Holt (CHSH) leads to a more conducive way to experimental testing [40]. 

As we can see in Equation (65), Bell basis have two components. In particular, 
one of the components of AB

+Φ  is 0 ,0 00A B = , while the other one is 
1 ,1 11A B = . Applying Equation (30) to each component individually, we can 

calculate the spectral analysis thanks to the operator QSA-FIT 

( )[ ]00

d 00
. 00

d z zim
t

ω σ σ= − ⊕ .                  (66) 

We are going to need to use a new operator “ .⊕ ” (which is easy to generalize) 
on the Pauli matrix zσ  of Equation (17), this new operator is the only substan-
tial difference between Equations (30) and (66); and accounts for the dimen-
sional difference between the two equations. So that, if 

11 12

21 22

a a
A

a a
 

=  
 

, and 11 12

21 22

b b
B

b b
 

=  
 

, 

therefore,  

11 12 11 12
11 12

21 22 21 2211 12 11 12

21 22 21 22 11 12 11 12
21 22

21 22 21 22

11 11 12 11 11 12 12 12

21 11 22 11 21

. .

a a a a
b b

a a a aa a b b
A B

a a b b a a a a
b b

a a a a
a b a b a b a b
a b a b a b

    
+ +    

        ⊕ = ⊕ =             + +        
+ + + + 

 + + + = 12 22 12

11 21 12 21 11 22 12 22

21 21 22 21 21 22 22 22

11 11 12 11 11 12 12 12

21 11 22 11 21 12 22 12

11 21 12 21 11 22 12 22

21 21 22 21 21

a b

a b a b a b a b
a b a b a b a b

a b a b a b a b
a b a b a b a b
a b a b a b a b
a b a b a

  
  +  
 + + + +       + + + +     

+ + + +
+ + + +

=
+ + + +
+ + + 22 22 22b a b

 
 
 
 
 

+ 

 (67) 

Now, applying the new operator on the Pauli matrices 
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1 0 1 0
1 0

0 1 0 11 0 1 0
. .

0 1 0 1 1 0 1 0
0 1

0 1 0 1
1 1 0 1 1 0 0 0 2 1 1 0
0 1 1 1 0 0 1 0 1 0 0 1

11 0 0 0 1 1 0 1
0 0 1 0 0 1 1 1

z zσ σ

    
+ +    − −        ⊕ = ⊕ =     − −         + −   − −     

 + + + +    
    + − + + − + −    = = + + − −       + − + − − −     

0 0 1
0 1 1 2

 
 
 
 −
 

− − − 

   (68) 

Then, if we multiply both sides of the Equation (66) by 00 , 

( )0000 d00 d 00 . 00z zt im ω σ σ= − ⊕ .           (69) 

Then, if 
00 1m = +  for photons,  

max 00 00

00 d00 d
00 . 00z z

i t
mω ω ω ω

σ σ
∆ = ∆ = = =

⊕
.          (70) 

That is, Equations (37) and (70) coincide in their form, and independently of 
the term of the extreme right of Equation (70), it is clear that the spectral analy-
sis for its counterpart with 

11 1m = −  will be: 

min 11 11mω ω ω ω∆ = ∆ = = − .                      (71) 

Then, the bandwidth of the original entangled spins will be: 

( ) ( )( )original max min
1 1 2
2π 2π 2π π

BW ω ω
ω ω ω ω= ∆ − ∆ = − − = = .   (72) 

That is to say, the bandwidth of the link between the original spins is finite. 

4.4. Trade-Off between Δω and Δt  

Another important concept regarding QSA-FIT comes up from Equation (37). 
That equation shows us the trade-off between t∆  and ω∆ , through which the 
change in one produces the change in the other. That is to say, this attribute of 
functional dependence is interchangeable. This very strong dependence from the 
trade-off with the mentioned characteristics ensures the projection of QSA-FIT 
on elements as important to Quantum Physics as is Quantum Entanglement [25] 
[28] [41], in particular, its implication in Quantum Communication [42] [43] 
[44] [45] [46]. In other words, everything revolves around Equation (37), which 
allows us a deduction of the trade-off: 

( ) ( )
( ) ( )z

t t
t i

t t

ψ ψ
ω

ψ σ ψ

∆
∆ ∆ =                      (73) 

Now, if we consider the division of the derivative by 2 and take modulus on 
the right side of the equality, 

( ) ( )
( ) ( )

1
2 z

i t t
t

t t
ψ ψ

ω
ψ σ ψ

∆
∆ ∆ =                    (74) 
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Therefore, the trade-off becomes, 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ){ } ( )( ){ }
1 2 1 2*

1 1
2 2

1 1 1
2 2 2

z z

i t t t t
t i

t t t t

i i i i

ψ ψ ψ ψ
ω

ψ σ ψ ψ σ ψ

∆ ∆
∆ ∆ = =

= = − ≥

          (75) 

Although Equation (75) is similar to Equation (5) of the Fourier Uncertainty 
Principle from Subsection 2.4, the concept here is completely different; because, 
while in FFT Equation (5) tells us that a simultaneous decimation in time and 
frequency is impossible; in QSA-FIT this trade-off means that the shorter the 
change in time in the state of a signal, the higher the spectral tone that represents 
that change in time. 

4.5. Application to Quantum Signals  

Let’s see below QSA as a procedure, therefore, given a streaming (or time se-
quence) of quantum states { }0 1 2 1, , , , Nψ ψ ψ ψ − , we will do: 

1) If the time sequence is cyclic, then, we will use the modified time sequence, 

{ }1 0 1 2 1 0, , , , , ,N Nψ ψ ψ ψ ψ ψ− −  

else-if, we will use the modified time sequence based on a 0 -padding  crite-
rion, 

{ }0 1 2 10 , , , , , , 0Nψ ψ ψ ψ −  

end-if 
2) According to Figure 3, and applying Equations (40) and (41), 

{ }0 1 2 1, , , , Nω ω ω ω −∆ ∆ ∆ ∆

 

3) Finally and carrying out classical measurements (with all the required pre-
cession), we will obtain,  

{ }0 1 2 1, , , , Nω ω ω ω −∆ ∆ ∆ ∆

. 

Clearly, the sketch of Figure 3 represents a hybrid algorithm (quan-
tum-classical, with a first quantum stage, and a second classical part), which at 
the moment of measurement is not subject to or affected by the quantum mea-
surement problem [47] [48]. That is, the only limitation to obtain exact values of 
ω∆  lies in the expertise of the research team, the measurement technique em-

ployed and the quality of the instrumentation. 

5. A Pair of Practical Simulations 

In this section, we present a set of two very important simulations, which expose 
the complete potential of the new tool. If we wanted to do the same thing 
through the Quantum Fourier Transform (QFT), we would have the serious in-
convenience that it loses the direct and biunivocal relationship with the time, 
since the QFT (as we mentioned above) does not have an important attribute of 
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functional analysis called compact support. This dysfunctionality is inhereted 
from its classical counterpart, i.e., FFT. This has dire consequences when trying 
to spectrally analyze a signal formed by quantum states in a quantum streaming 
way.  

Therefore, we have prepared two simulations of very different characteristics: 
the first one has a circular temporal transition between samples (quantum 
states), as we can see on the left of Figure 6, where both components of each 
wave function ψ  can be observed, α (in red) and β (in blue). On the other 
hand, the right hand side of the same figure shows us the frequency in hertz in a 
direct relationship with the time. Besides, this quantum signal will have a band-
width equal to 3.9751 × 10−15 hertz, which is absolutely reasonable considering 
the type of signal. 

The second simulation consists of a very different type of signal regarding the 
last one. In this case, we have chosen a sequence with a completely random 
temporal transition in the orientation of the subsequent spins inside Bloch 
sphere; i.e., each quantum state which is part of the quantum signal makes a 
sudden jump in its direction with respect to its predecessor and its successor 
without the slightest commitment with a typical functional relation. In fact, both 
α (in red) and β (in blue) follow a random sequence of Gaussian distribution 
with null mean value. See the left hand side of Figure 7. While the right hand 
side of that figure shows us the frequency in hertz with a bandwidth equal to 
57.4453 hertz. 

6. Conclusions and Future Works 

This work began with an extensive tour on traditional spectral techniques based 
on Fourier’s Theory, without compact support and completely disconnected 
from the link between time and frequency (this analysis included wavelet trans-
form which sometimes has compact support), and the responsibility of each 

 

 
Figure 6. The graph to the left shows α and β for a circular evolution in terms of time. 

Actually, α is circular like a cosine, while β will be equal to 21 a− . The graph to the 

right shows to QSA in hertz (i.e., instantaneous frequency) in terms of time, where the 
peak in the middle of graph represents the spectral behavior of the wave-function ψ  

with an unmistakable characteristic of pure tone. 
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flank with respect to final spectral components of a signal, as we can see in Sec-
tion 4.2. Besides, these attributes extend to image and video [29] [30]. For that 
reason, QSA-FIT was created, i.e., to cover such space and also as a complement 
to the aforementioned Fourier’s Theory, in particular, FFT. A simple compari-
son between QSA-FIT and FFT sheds light on some initial conclusions, which 
can be seen synthesized in Table 1. 

Specifically, and as we have seen, FFT doesn’t have compact support, there-
fore, we say that FFT is a non-local process, while, FIT has compact support, so 
that, we say that FIT is a local process, with all that this implies when we apply 
this tool to the study of the quantum entanglement. It is worth mentioning that 
FIT is an important tool to assess the importance of the flanks (or edges in the 
case of images) in a compression process weighting in real time and sample by 
sample (or pixel by pixel), the importance of temporal spectral components in 
the final result [29] [30]. 

 

 
Figure 7. The graph to the left shows α (up and red) and β (down and blue) for a random 
evolution (with a normalized Gaussian distribution, and null mean value) in terms of 
time. Actually, α has a random evolution, while β is also random but as a consequence of 

arising from 21 a− . The graph to the right shows to QSA in hertz (i.e., instantaneous 

frequency) in terms of time, where the distribution of the different peaks represent the 
spectral behavior of the wave-function ψ  with a typical characteristic of random 

jumps on the Bloch sphere. 
 
Table 1. Comparison between FFT and FIT. 

Characteristics FFT FIT 

Separability Yes Yes 

Compact support No Yes 

Instantaneous spectral attributes No Yes 

1D computational cost O(N*log2(N)) O(N) 

2D computational cost O(N2*log2(N)2) O(N2) 

Energy treatment Disastrous Excellent 

Decimation In time or frequency Not required 

Parallelization No Yes 
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On the other hand, and considering that when the wave function collapses, we 
pass from QSA to FIT, it is critical to mention that the applications of FIT are 
obvious for a better understanding of the Information Theory and Quantum In-
formation Theory, in particular, Quantum Signal and Image Processing, Quan-
tum Communications, and quantum entanglement, fundamentally. In fact, a fi-
nite bandwidth for entanglement is not a trivial or accessory subject at all. If we 
take into account Equation (72), the finite bandwidth takes place from a proce-

dure based on the individual components of the Bell basis AB
+Φ , although this 

fact is absolutely concomitant with its possible values (and especially its signs) 
that can take the spin ms , i.e., positive and negative, for 

00m  and 
11m , re-

spectively. The pending task is to delve deeper into the linkage between this new 
tool, QSA and the entanglement. 
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