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Abstract 
In one-dimensional multiparticle Quantum Cellular Automaton (QCA), the 
approximation of the bosonic system by fermion (boson-fermion correspon-
dence) can be derived in a rather simple and intriguing way, where the prin-
ciple to impose zero-derivative boundary conditions of one-particle QCA is 
also analogously used in particle-exchange boundary conditions. As a clear 
cut demonstration of this approximation, we calculate the ground state of 
few-particle systems in a box using imaginary time evolution simulation in 
2nd quantization form as well as in 1st quantization form. Moreover in this 
2nd quantized form of QCA calculation, we use Time Evolving Block Deci-
mation (TEBD) algorithm. We present this demonstration to emphasize that 
the TEBD is most naturally regarded as an approximation method to the 2nd 
quantized form of QCA. 
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1. Introduction 

Quantum Cellular Automaton (QCA) [1] is a quantum version of (classical) 
cellular automaton (CA). The word QCA was introduced by Grössing and Zei-
linger [2]. But their model was not completely unitary. The QCA in the right 
meaning which has both locality and unitarity, was firstly investigated by Meyer 
[3] [4] [5] [6], then followed by Boghosian and Taylor [7] [8], though they used 
the term Quantum lattice gas automata (QLGA) for the two-component case. 
Since the middle of the 2000 s, new axiomatic approaches of QCA different from 
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previous conventional or ad hoc ones have been proposed by several researchers 
[9] [10] [11] in order to comprehend QCA in more systematic and unified way 
by clarifying the definitions and/or to cope with the difficulties for extending it 
in a form relevant to the infinite dimensional Hilbert space. In most axiomatic 
QCAs, the unitarity and the causality (namely the existence of the upper limit on 
the speed of the information propagation) are fundamental and the locality is 
derived from them [10]. In this study, however, we describe QCA in a rather 
conventional fashion. There are several frameworks for quantum lattice systems 
other than QCA, namely Quantum Walk (QW) [12], Quantum Lattice Gas Au-
tomata (QLGA) [7] [8] and Quantum Lattice Boltzmann (QLB) [13]. They are 
similar or mathematically equivalent to some QCAs [14] [15]. As QW and QLGA 
are thought to be subclasses of QCA [16], we use the term QCA if at all possible. 

QCA can be regarded as a discrete mechanical system with a simple and ele-
gant time evolution rule. Though it is simple, it is not just a toy method. It can 
simulate the real quantum system of matter. Moreover there are several ideas 
that QCA plays a key role in fundamental physics [17] [18] and extensions to 
nonlinear QCA have been studied [19] which might be clues to constructing 
some class of interacting multiparticle QCA models. 

QCA can be also regarded as one of the approximation methods for solving 
the continuous Time Dependent Schrödinger Equation (TDSE) like Finite Dif-
ference Method (FDM). However QCA is unique in that it preserves the com-
plete unitarity of quantum systems upon its time progression and it can be re-
garded as the discrete version of direct solution for quantum dynamics, not 
merely an approximation to the TDSE. TDSE emerges rather as an approxima-
tion in the zero wavenumber limit of the general QCA solution. By extending 
the one-particle QCA to many-particle QCA, we explore the possibility of the 
method in real quantum systems. 

The Time Evolving Block Decimation (TEBD) [20] [21] is one of the most 
successful methods to simulate quantum many-body systems. We however em-
phasize that it can be regarded as an approximation to the 2nd quantized form 
of QCA. In this study, we discuss the TEBD from the QCA point of view. 

Since the success of Density Matrix Renormalization Group (DMRG) [22], 
Matrix Product State (MPS) has been recognized as an efficient mathematical 
means for describing (quasi) one dimensional quantum many-body systems. 
The MPS is used both in eigenstate search by imaginary time evolution and in 
real time evolution of general states. TEBD is one of the standard algorithms in 
imaginary or real time evolution of MPS. The first part of TEBD algorism is to 
divide the Hamiltonian into even part and odd part, then the split-step or Suzu-
ki-Trotter formalism is applied, namely the exponential of the even part or that 
of the odd part is applied alternatively to the 2nd quantized wavefunction. When 
we use the usual hopping term in the Hamiltonian as the kinetic energy part, this 
first part of TEBD can be regarded as 2nd quantized form of QCA. This QCA 
form seems to be a byproduct of the 2nd order Suzuki-Trotter decomposition or 
just an approximation method to the TDSE. In this study we however emphasize 
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that it is more natural or fundamental to regard the one-particle QCA as the 
starting point of TEBD algorism in order to directly obtain the solution for gen-
eral quantum systems. 

The boson-fermion correspondence in the one dimensional quantum system 
is well known. However in studying QCA-TEBD formalism we notice that this 
can be derived in a rather simple and intriguing way. The main purpose of this 
study is to show this simple derivation and application to few body systems of 
boson. Numerical studies on applicable range of the “boson approximation” 
(approximation of the bosonic system by fermion) are also performed. 

2. First Quantized Form of QCA 
2.1. One-Particle QCA 

Consider the simplest partitioned QCA on a 1D-time 1D-space lattice of which 
time evolution rule is given by Figure 1 and Equation (1) (for TDSE-type QCA). 
This rule is governed by the 2 × 2 basic unitary matrix (which is called scattering 
unitary matrix [11]) which operates on a vector consisting of functions at adja-
cent grid points. 

( )
1

1
1
1 1 1

cos sin
sin cos

t t t
i Xix x x

t t t
x x x

i
e e

i
θθ θ θψ ψ ψ

θ θψ ψ ψ

+
−−

+
+ + +

      
= =      

      
           (1) 

Here 
0 1
1 0
 

≡  
 

X  is the x-component of Pauli matrices and 
1 0

1
0 1
 

≡  
 

. θ   

is the parameter of the TDSE-type QCA. 
Though it is not straightforward to recognize intuitively, QCA gives a solution 

of the free particle TDSE in the zero wave number limit ( )0k → . 
 

 
Figure 1. Evolution rule of QCA: The unit system where grid 
spacing 1x∆ =  and time step 1t∆ =  is used. 
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2

2
1

2
i

t m x
ψ ψ∂ ∂

= −
∂ ∂

                          (2) 

The relation between mass m  and θ  (the parameter of TDSE-type QCA) is 
given by 

( )
( )2

1 tan : grid spacing, : time step of QCAt x t
m x

θ∆
= ∆ ∆

∆
　　        (3) 

This relation can be obtained by several methods as we will mention later. We 
introduce a simple derivation using FDM for small θ  as follows. 

By replacing the spatial derivative with the spatial difference, Equation (2) 
becomes 

( )
2

2
1

2
i

t m x
ψ δ ψ∂

≈ −
∂ ∆

                        (4) 

Here 2δ  is the 2nd order central difference operator defined by 

( )
21 1

2 12 2

2 1 1

1 2 1

1 2 1
2

1 2 1

1 2 1

1 1 2

S S S Sδ
− −

− 
 

− 
 −   ≡ − = − + =    −   
 −
  − 

     (5) 

where S is the one-grid shift operator  

1
1

1
1

1
1

S

 
 
 
 

≡  
 
 
  
 

                      (6) 

(Here we use 6 × 6 matrices assuming that the system consists of 6-grid points 
with periodic boundary condition. Moreover unfilled matrix elements are as-
sumed to be zero throughout this article.) 

Therefore the time evolution for the time step FDMt∆  is given by 

( ) ( ) ( )
( )

2 FDM
FDM 2

1exp where 
2

tt t i t
m x

ψ θδ ψ θ
 ∆
 + ∆ ≈ ≡
 ∆ 

          (7) 

This ( )2exp iθδ  is approximated according to individual time-discretization 
schemes of FDM. For example the simplest but less accurate scheme is Forward 
Euler method, where it is approximated as ( )2 2exp 1i iθδ θδ≈ + . In QCA how-
ever ( )2exp iθδ  is approximated in a different way. Firstly 2δ  is divided into 
two parts. 

( ) ( )2 2 2

even odd
δ δ δ= +                         (8) 

where 
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( )2

even

1 1
1 1

1 1
,

1 1
1 1

1 1

δ

− 
 − 
 −

≡  
− 

 −
  − 

 

( )2

odd

1 1
1 1

1 1
1 1

1 1
1 1

δ

− 
 − 
 −

≡  
− 

 −
  − 

 

Then ( )2exp iθδ  is approximated as a split-step form 

( ) ( )( ) ( )( )

( )

2 2 2

odd even

2

exp exp exp

where cos , sin

i

i i i

c is c is
c is is c
is c c is

e
c is is c
is c c is

is c is c
c s

θ

θδ θ δ θ δ

θ θ

−

≈

  
  
  
  

=   
  
  
    
  

≡ ≡

     (9) 

Note that as ( ) ( )2 2

even odd
,  δ δ  have a 2 × 2 block diagonal form, their expo-

nential can be explicitly calculated. In this way the time evolution for FDMt∆  is  

divided into two steps ,so we naturally define FDM
QCA 2

tt ∆
∆ ≡  as the time step of 

QCA and θ  is expressed as 
( )

QCA
2

1 t
m x

θ
∆

=
∆

 using this definition, which corres-  

ponds to Equation (3) for small θ .  
The QCA dynamics obeys such a simple rule above. However it requires more 

elaborate techniques to derive the exact relation between mass and QCA para-
meter θ  in general case Equation (3). This FDM-QCA correspondence is es-
sentially the same as the first part of TEBD algorism we discuss later. 

There are several approaches to obtain the continuous limit (namely PDE) of 
QCA. The most naive and straightforward one is to connect the discrete time to 
continuous time by the interpolation and then to take a wavenumber (k) expan-
sion around k = 0 in the spatial direction [23] [24] [25]. Although this approach 
lacks some exactness, it is sufficient to obtain right TDSE characteristics. More 
precise approach is to use a single scaling parameter ( )  on which other para-
meters ( ,x t∆ ∆  etc) are defined to depend properly such that 0→  limit ex-
ists [8]. Another approach is to use a “path integral” on a lattice to obtain a dis-
crete Green function then take an appropriate limit [3]. Using these approaches 
one dimensional Dirac equation (for mass 0m → ) can be derived in the  
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π
2

θ →  limit. Another recent study can be found in [26]. In this study we do  

not get into detailed derivation leading to the Dirac equation, as we are interest-
ed here in nonrelativistic case, though we will discuss a relevant topic in the last 
supplementary section. 

2.2. Boundary Condition for QCA 

There are basically three easily implementable boundary conditions for QCA. 
These are illustrated in Figure 2. In the cases of (2) (3), the evolution rule at a 
boundary point(x = 0 or x = N − 1) in odd time is only to multiply the phase ro-
tation factor as shown below. (We show only the case x = 0 as the case x = N − 1 
is essentially the same). 

For zero derivative boundary condition [(2)], phase rotation factor is 1 as 
 

 
Figure 2. Illustration of 3 boundary conditions. (1) Periodic boundary 
condition, (2) Zero derivative (or symmetric) boundary condition, (3) 
Zero amplitude (or anti-symmetric) boundary condition. Points from x = 
0 to N − 1 constitute the principal region and both sides of it are subsidi-
ary regions. 
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( ) ( )1 11 0 0 1

0 0 0 0

1 1i X i Xe eθ θψ ψ ψ ψ
ψ ψ ψ ψ

− −− −       
= = × = ×       

       
            (10) 

For zero amplitude boundary condition [(3)], phase rotation factor is 2ie θ−  as 

( ) ( )1 11 0 0 12 2

0 0 0 0

i X i X i ie e e eθ θ θ θψ ψ ψ ψ
ψ ψ ψ ψ

− −− −− −− −       
= = =       

       
         (11) 

Note that the unitarity is always satisfied, because the probability increase and 
decrease are balanced between left and right boundary grid points in the case of 
(1) and they are zero in the case of (2) (3). 

Boundary conditions and discontinuities (inhomogeneities) for QCA are firstly 
investigated by Meyer. He investigated more general 2-component QCA having 
two angle parameters. The scalar QCA we use is the simplest one having only one 
angle parameter, which corresponds to one of factors if his QCA is flattened 
(namely changed from 2-component to scalar by doubling the number of grid 
points) and is factorized [23] (2-step QCA of Section 6). 

2.3. Multidimensional QCA 

It is straightforward to construct multi-dimensional QCA. We have only to use 
direct product of 2 × 2 local unitary 1D matrices to generate 2D matrices. 

( )2 2 ,1 particle caseU U U D⊗ = ⊗                    (12) 

The rule is illustrated in Figure 3. Concretely 
1 1

, , 1 , , 12
1 1
1, 1, 1 1, 1, 1

t t t t
x y x y x y x yi

t t t t
x y x y x y x y

c is c is
e

is c is c
θψ ψ ψ ψ

ψ ψ ψ ψ

+ +
+ +−

+ +
+ + + + + +

       
= ⊗                 

      (13) 

(where x, y are even if t is even, and x, y are odd if t is odd.) 

As we know each U approximately corresponds to the evolution 
2

2exp i t
x

 ∂
∆ ∂ 

  

 

 
Figure 3. Two-dimensional QCA. At an even time, 4 amplitudes of 
red quadrilateral are updated by the corresponding local unitary ma-
trix 2U ⊗ , and at an odd time, those of blue quadrilateral are up-
dated. 



S. Hamada, H. Sekino 
 

13 

or 
2

2exp i t
y

 ∂
∆ ∂ 

 ( ): correspondng time stept∆  and they commute with each  

other, U U⊗  approximately corresponds to the evolution  
2 2

2 2exp i t
x y

  ∂ ∂
∆ +   ∂ ∂  

, namely it causes 2D free TDSE time evolution. We thus  

generate multidimensional QCA for general dimension. 
Applications of QCA to multidimensional cases are studied in [7] [8] [9]. In 

multidimensional QW, less straightforward (namely not direct product) models 
are mainly studied, where the number of internal states is not 2D  (D: the di-
mension of the space) but less than this (for example 2, 4) [24] [25]. 

2.4. Multiparticle QCA 

It is also straightforward to construct (non-interacting) multiparticle QCA. D- 
dimensional distinguishable M-particle system is equivalent to DM-dimensional 
1-particle system. For indistinguishable particle systems, we have to restrict this 
space to symmetric or anti-symmetric subspace according to the statistics of the 
particles. Note that MU ⊗  preserve this symmetry for the case of distinguishable 
particle systems and we can define svmm asvmmor  M MU U⊗ ⊗  for the subspace of indis-
tinguishable particle systems. (Here U means global unitary matrix, not 2 × 2 
local unitary matrix)Applications of QCA to multiparticle cases are studied in 
[3] [7] [8] [9]. 

3. Second Quantized Form of QCA 
3.1. Concrete Evolution Rule of 2nd Quantized QCA 

If the one-particle time evolution rule is given by an infinitesimal time evolution 
matrix, namely, a generator or a Hamiltonian, it is straightforward to construct a 
2nd quantized Hamiltonian Ĥ  for its free particles. 

ˆ
ij ij i jijH H H a a+→ ≡ ∑                        (14) 

(Here ijH  is the 1-particle Hamiltonian matrix elements, ,i ja a+  are the 
creation and annihilation operators for Boson).  

If the one-particle time evolution rule is given not by a generator but by a fi-
nite time evolution matrix ijU  such as in QCA, the construction of its 2nd 
quantized formalism is done in a slightly different way, which though is consis-
tent with the generator case. For example the evolution of 3-particle state 

( )U U Uψ ψ→ ⊗ ⊗  is described as follows 

( )

( )( )( )

0

0

0

ijk i j k
ijk

ii jj kk i j k i j k
ijki j k

i j k ii i jj j kk kijki j k

a a a

U U U a a a

U a U a U a

ψ

ψ

ψ

+ + +

+ + +
′ ′ ′ ′ ′ ′

′ ′ ′

+ + +
′ ′ ′ ′ ′ ′′ ′ ′

→

=

∑

∑

∑

                (15) 

Namely we can apply the substitution rule  

( )T
iii i ii

a U a U a′
+ + +

′ ′→ = ∑                       (16) 
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We now apply this substitution rule to 1D free bosonic QCA system where 
unitary transformation only between nearest neighbor grids occurs, and the one 
step evolution is given by 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

0 1 2 3

0 1 0 1

2 3 2 3

0 1 2 3

0 1 2 3
0 1 2 3

0 1 1 0
0 1 2 3

2 3 3 2

1 0
! ! ! !

1
! ! ! !

    0

where cos , sin

n n n n

n n i n n

n n i n n

n n n n

a a a a
n n n n

ca isa ca isa e
n n n n

ca isa ca isa e

c s

θ

θ

θ θ

+ + + +

− ++ + + +

− ++ + + +

=

→ + +

× + +

= =











         (17) 

The explicit local unitary evolution matrix for the grid pair ( )0,1x =  is 

( )

0 1

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

00 01 10 02 11 20
1

01
10
02

00

2

2 2

2
11
20

i i

i i

i i i

i i i

i i i

n n

ce ise
ise ce

c e i cse s e

i cse c s e i cse

s e i cse c e

θ θ

θ θ

θ θ θ

θ θ θ

θ θ θ

− −

− −

− − −

− − −

− − −

 
 
 
 
 
 
 
 
 
 
 
  
 

−

−

−







 18) 

(local unitary matrices for other grid pairs ( ) ( )2,3 , 4,5x =   have the same 
form). 

We then apply the substitution rule to 1D free fermionic QCA system. Focus-
ing on the grid pair ( )0,1x = , four states evolve as follows. 

( )
( )
( )( )

0 0 1

1 1 0

2 2
1 0 1 0 0 1 1 0

0 0

0 0

0 0

0 0 0

i

i

i i

c cc isc e

c cc isc e

c c cc isc cc isc e e c c

θ

θ

θ θ

+ + + −

+ + + −

+ + + + + + − − + +

→

→ +

→ +

→ + + =

      (19) 

Here 0c+  and 1c+  are fermion creation operators fulfilling anti-commutation 

{ }, 0i jc c+ + = . Namely, the local unitary evolution matrix is 

0 1

2

00       01       10     11
00 1
01
10
11

i i

i i

i

n n

U ce ise
ise ce

e

θ θ

θ θ

θ

− −

− −

−

 
 =  
 
 
 

                (20) 

It should be noted that if periodic boundary condition is adopted for the grid 
pair ( )1,0x N= − , the off-diagonal element iise θ−  in Equation (20) must be 
replaced with ( ) 11 Miise θ +− −  considering that  

( )1 0 1 2 0 1 20 1 1M
N N Nc n n n n n n+
− − −= −   etc. (M is the total number of particles 

in all grid points.) Essentially same equation as Equation (20) is proposed in 
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other literatures on multiparticle QCA [3] [8] [9]. 

3.2. MPS Approximation of QCA 

Now we introduce an interaction between particles. For this purpose, it is 
reasonable to introduce an additional phase rotation factor by the potential 
caused by other particles just like the external potential case.  

Note that QCA with external potential was firstly studied by Meyer [4]. 
QCA with the nearest neighbor pair interaction was studied also by Meyer [3] 
and Boghosian [8] and Schumacher and Werner [9] in the form we present 
here. 

Here we discuss the simplest case, namely the cases where the nearest 
neighbor interaction is included. We assume that interaction occurs as an ad-
ditional phase rotation only when two particles exist in the neighboring grids. 
In the context of QLGA (two-component QCA), this additional phase rota-
tion corresponds to the phase shift by the collision between the left-going and 
the right going particles [3]. Under this assumption, the 4 × 4 local unitary 
evolution matrix becomes 

( )

0 1

2 1

00      01      10      11
100

01
10
11

i i

i i

i

n n

ce iseU
ise ce

e

θ θ

θ θ

θ δ

− −

− −

− −

 
 

=  
 
  
 

                (21) 

Here 0δ >  meansattraction, and 0δ <  means repulsion. 
Note that in this simplest case, the structure of evolution scheme is kept same 

as the structure of free fermion case. After preparing this form, we can apply a 
MPS approximation and a usual TEBD algorism illustrated by Figure 4 and 
Figure 5. A general wave function for the 2nd quantized form of QCA is ap-
proximated by MPS as 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 3 5 6 71 2 4

2nd
0 1 2 3 4 5 6 7

1

0 1 2 3 4 5 6 7
0

, , , , , , ,
m n n n n nn n n

ab bc dea cd ef fg g
abcdefg

n n n n n n n n

A A A A A A A A

ψ
−

=

≈ ∑
       (22) 

(for the 8 grid points case, m is the dimension of auxiliary spaces and the shape 
of tensor iA  is (2,m) for i = 0, (m,2,m) for i = 1 to 6, (m,2) for i = 7), then upon 
the time evolution, each adjacent pair of ( ),L RA A A  are updated by applying 
the 4 × 4 unitary matrix U of Equation (21) as 

( ) ( )

( ) ( )

1 1 2 1

0 0 0

1 1

0 0

L R L R L R
L R

L R

L RL R

m m
n n n n n n

L R n n ad d dcab bc
n n b d

m m n nn n new new
ad d dc L Rad dc

d d

A A U V S V

V S V A A

′ ′ ′ ′

′ ′′ ′

− −

= = =

− −

= =

=

≈ =

∑ ∑ ∑

∑ ∑
    (23) 

Here SVD is applied then the subspace corresponding to small singular values 
is truncated in order to keep the dimension of auxiliary space to the given value 
(m in this case).  
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Figure 4. MPS approximation of wave function of 2nd quantized QCA and its time evo-
lution. This is an example of 8-grid system. A general wave function of the 2nd quantized 
QCA is represented by a rank-8 tensor. Firstly this rank-8 tensor is approximated by the 
MPS form (namely by the contraction of 8 low rank (rank-3 or rank-2) tensors). Then the 
2nd quantized QCA rule is applied upon the time evolution, namely the contraction with 
the tensors, four Us (even time) or three Us plus two 1  sU  (odd time). In this diagram 
the contraction is assumed to be performed for any connected pair of legs. 0 1 7,n n n  
represent particle numbers on the grid points. 

 

 
Figure 5. Time evolution in the TEBD algorithm. When the ten-
sor U is applied to the MPS wave function, the original MPS 
form is destroyed (Left). In order to recover the original MPS 
form, firstly SVD is applied (Right), then truncate the small sin-
gular values which constitutes the part of the contraction “d” so 
that the dimension of “d” is equal to the dimension of “d”. 

 
For zero derivative or zero amplitude boundary condition, at an odd time, the 

end points are updated by applying the 2 × 2 diagonal unitary matrix 1U . 
( ) ( ) ( )2

1diag 1,1 or 1, iU e θ−=  for zero derivative or zero amplitude boundarycon-
dition respectively.) 

Finally in this section, we compare our method with the ordinal way of 
reaching the TEBD algorithm. Basically so called hopping term representing ki-
netic energy part in evenly-spaced-grid-base (or site-base) quantum models such 
as Hubbard model or fermionized XXZ model is derived from the FDM-ap- 
proximation of kinetic energy term. The FDM-approximated Hamiltonian ma-
trix of one-particle TDSE is given by 

( )
( )1

2
1 2

2
xx x xxxx

H S S V
m x

δ−
′ ′′
= − − + +

∆
                (24) 
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(Here xV  is the external potential at the position x.) 
And, its 2nd quantized Hamiltonian for non-interacting fermions is 

( )
( )

( )
( )1

2 2

ˆ

1
2

xx x x
xx

x x x x x x xxx
xx x

H H c c

MS S c c V n n c c
m x m x

+
′ ′

′

− + +
′′

′

=

= − + + + ≡
∆ ∆

∑

∑ ∑
   (25) 

(The 1st term is so called hopping term. xxM n= ∑  is the total particle num-
ber and here we assume it constant). 

By adding neighboring interaction term and dropping external potential term 
and constant term for simplicity, we have fermionized XXZ model [27] [28], 
where only nearest neighbor grid point of occupation number 1 1x xn n += =  
have a interaction through δ .  

( )
( )1 1 1 2
1ˆ 2 where 

2
x x x x x x

i
H c c c c n n

m x
τ δ τ+ +

+ + +

 
 = − + + =
 ∆ 

∑       (26) 

If the anisotropy parameter 1δ = , this model corresponds to the XXX model 
for fermion where the interaction is two-body coulomb interaction. 

The XXZ spin model and its equivalent fermionized version are well studied 
[27]. The phase diagram of the XXZ spin model in extended systems with the 
external magnetic field consists of 3 phases, ferromagnetic, paramagnetic and 
antiferromagnetic phases. When the magnetic field is zero,  

1,  1 and 1δ δ δ> < < −  correspond to ferromagnetic (gapped), paramagnetic 
(gapless) and antiferromagnetic phases respectively and in the paramagnetic 
phase, quasi particles (magnon) behave as boson-like Tomonga-Luttinger liquid 
[29] [30]. The magnetic field in the XXZ spin model becomes the chemical po-
tential when the model is fermionized. The method has been used for grand ca-
nonical systems. We however focus our application in finite system where the 
number of particles fixed. 

According to the TEBD algorism, we decompose the Hamiltonian into two 
parts. 

( )
( )

even odd

even 1 1 1 1
:even

odd 1 1 1 1
:odd

2

2

x x x x x x x x
x

x x x x x x x x
x

H H H

H c c c c n n n n

H c c c c n n n n

τ δ

τ δ

+ +
+ + + +

+ +
+ + + +

= +

= − + − − +

= − + − − +

∑

∑

         (27) 

Time evolution during the small time t∆  interval is done as follows (Suzu-
ki-Trotter) 

( ) ( ) ( )odd evenexp exp expi tH i tH i tH− ∆ ≈ − ∆ − ∆             (28) 

As terms { }1 1 1 12x x x x x x x xc c c c n n n nδ+ +
+ + + ++ − − +  in evenH  or oddH  commute 

with each other, we have 

( ) ( ) ( )( )even 1 1 1:evenexp exp 2x x x x x xxi tH i t c c c c n nτ δ+ +
+ + +− ∆ = ∆ + +∏  and 

( ) ( ) ( )( )odd 1 1 1:oddexp exp 2 .x x x x x xxi tH i t c c c c n nτ δ+ +
+ + +− ∆ = ∆ + +∏  
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(This is QCA-like evolution). As each factor is finite matrix, we can obtain 
easily its matrix representation using the standard matrix representation of crea-
tion and annihilation operator as follows. 

( )
01

0 1 1 0 0 1 0 1

0 1

2

00    01     10    11
00 0
01 1 1
10 1 1
11 2 2

H c c c c n n n n

n n

δ
τ

δ

+ +≡ + − − +
−

 
 = − 
 −
 

− + 

                  (29) 

( )( ) ( )( ) ( )( )

( )

01 0 1 1 0 0 1 0 1

0 1

2 1

exp exp 2

00     01     10        11
100

cos
01

sin
10
11

i i

i i

i

i t H i c c c c n n n n t

n n

cce ise
sise ce

e

θ θ

θ θ

θ δ

θ δ θ τ

θ
θ

+ +

− −

− −

− −

− ∆ = + − − + ≡ ∆

 
≡  

=    ≡  
  
 

    (30) 

We see the exact correspondence of the hopping term parameter in the model 
Hamiltonian τ  to the QCA parameter θ , and the strength of correlation in-
troduced by δ  can be interpreted as the phase factor caused by the local poten-
tial at the grid point from the other electron in QCA. When 1δ = , namely 

( )2 1 1ie θ δ − = , it corresponds to the free Boson approximation case we will address 
in the next section. 

4. Boson Approximation by Fermionic QCA 
4.1. Formalism 

As shown in Equation (18) and Equation (20), the grid pair evolution matrix for 
bosonic QCA is infinite size matrix, whereas that of fermionic QCA is reduced 
to 4 × 4. It is desirable if bosonic QCA is well approximated by a QCA with small 
degree of freedom as in the fermionic QCA. 

We propose here boson approximation by fermionic QCA (or QCA with a 
hard core condition) when occupation number per grid is small. We mean by 
the hard core condition that at most one-particle can reside in one grid point. 
(We not necessarily mean ( ) ( )1 2, , 0 for i jx x x xψ = = ). We assume that only 
the amplitudes ( )1 2, ,x xψ   at points where all { }ix  are different comprise 
the full set of independent variables and amplitudes of other points ( 1 2x x=  
etc.) needed for evolution are evaluated by interpolation from other points (set 
to the value of nearby point.) We illustrate in Figure 6 the method of the boson 
approximation we propose for two-particle case, comparing with free fermionic 
QCA case. 

In order to make it easy to understand, we compare with the free fermion case, 
where no interpolation is needed, namely we set the amplitudes where 1 2x x=  
to zero. For example, in 2-particle free fermion case, ( )1 2,x xψ  must be anti-  
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Figure 6. Fermion or “Boson approximation” in two-particle QCA. We assume 
that ( ) ( )1 2 2 1, ,x x x xψ ψ= −  for the fermion case, and ( ) ( )1 2 2 1, ,x x x xψ ψ=  

for the boson approximation case. Note that even in the boson approximation 
case, ( )1 2x xψ =  is not an independent amplitude and it is interpolated from 

other points. 
 
symmetric with respect to exchange of 1 2an d x x . And we can obtain the evolu-
tion rule at a quadrilateral on the diagonal line as follows. 

2 2

2

0 0
0 0

0
0

i i

i

c is c is a c is a c is
e e

is c is c a is c a is c

a
e

a

θ θ

θ

− −

−

          
⊗ =          − −          

 
=  − 

    (31) 

(where we set ( )1,a x xψ= + ) 
For 2-particle Boson approximation case, ( )1 2,x xψ  must be symmetric with 

respect to exchange of 1 2an d x x , but the amplitude ( ),x xψ  cannot be given 
without some assumptions. We take an approximation to assume that 

( ) ( ) ( ) ( ), 1, , 1 1, 1x x x x x x x xψ ψ ψ ψ= + = + = + +             (32) 

Under this assumption, we have the following evolution rule.  

2 2i ic is c is a a c is a a c is a a
e e

is c is c a a is c a a is c a a
θ θ− −            

⊗ = =            
            

 (33) 

This implies, the 4 by 4 Unitary matrix in 2nd quantization formalism 
changed from that of Fermion case as follows 

0 1 0 1

2

00     01     10      11 00     01     10     11
00 1 00 1
01 01
10 10
11 11 1

i i i i

i i i i

i

n n n n

ce ise ce ise
ise ce ise ce

e

θ θ θ θ

θ θ θ θ

θ

− − − −

− − − −

−

   
   →   
   
   
   

     (34) 

As mentioned before, this 4 × 4 unitary matrix is the same as that of the fer-
mion system (fermionized XXZ) with nearest neighbor attractive interaction 

1δ =  (namely fermionized XXX). This means that fermion-boson correspon-
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dence for this 1D quantum system is easily derived from the QCA-TEBD for-
mulation. 

We give another possible interpretation of Equation (34). The boson approx-
imation Equation (34) can be obtained by applying coarse graining to Equation 
(18) using the following seemingly reasonable weight matrix for the adjacent 
grid pair subspace. Namely the 11 - 11 component of Equation (34) (=1) is ob-
tained also by  

( ) ( )

( ) ( )

2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

1 2 1
11,    where   2 2 2 ,
4

1 2 1

2
2 2

2

ij ij ij
ij

i i i

i i i
ij

i i i

U w U w

c e i cse s e
U i cse c s e i cse

s e i cse c e

θ θ θ

θ θ θ

θ θ θ

− − −

− − −

− − −

 
 

≡ = =  
 
 

 −
 

= − 
 
− 

∑

         (35) 

Here, coarse graining means that three states of the adjacent grid pair, namely 
( ) ( ) ( ) ( )0 1 0, 2 , 1,1 , 2,0n n = , are joined into one state (1,1) so that the occupation 
number per grid is kept less than 2 upon time evolution. Note that the original 
bosonic QCA Equation (18) does not conserve hard core condition due to the 
transition from ( ) ( )0 1 1,1n n =  to (0,2) or (2,0). 

4.2. Sample Simulation 

Here we show examples of the QCA-TEBD application with the boson approxi-
mation. In our simulations, we adopt the minimal auxiliary space dimension for 
MPS which can describe any 1-slater wavefunction (namely 2M  for M particle 
system). 2nd-quantized MPS-form wave function describing 1st-quantized 1- 
slater wave function ( )1st

0 1 1, , Mx x xψ −  for M particle N grid point system can 
be given as follows using representation matrices of creation and annihilation 
operators { } { }( ),i ic c+  and orthonormal orbitals ( ){ }( )i xψ  (i = 0 to 1M − : 
occupied orbital number). 

( ) ( )
1

0

n M

i i
i

I
A x

c xψ
−

=

 
 =   
 
∑

                       (36) 

( ) ( ) ( ) ( )( )0 112nd
0 1 1 0 1 1, , , trace 0 1 1Nn nn

N Mn n n c c c A A A Nψ −+ + +
− −= −  

   (37) 

We can verify that 

( )
( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )

0 1 1

0 1 1 0 1 1
0 1 1

1st
0 1 1

2nd

1

0 1 1 0 1 1
, 0

0 0 0 1 0 1

1 11 0 1 1 1

0
1 0 1 1 1 1

, ,

0 0, 1,0 0, 1,0 0, 1,0 0

trace

M

M M
M

M

x x x

M

M i i i i i i M
i i i

M

M N

x
x

M M M M

x x x

n n n

c c c c c c x x x

x x x
xx x

n M
x x x

ψ

ψ

ψ ψ ψ

ψ ψ ψ
ψψ ψ

ψ ψ ψ

−

− −
−

−

−
+ + +

− −
=

−

− −

=
− − − −

= = = = =

=

 
∝ = 

 

∑

∑





   

  



  



   (38) 
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For example, in 2-particle case, using the standard representation of Fermion 
creation and annihilation operators  

0

0 1 0 0
1 0 0 1 0 0 0 0

,
0 1 0 0 0 0 0 1

0 0 0 0

c

 
      = ⊗ =          
 

 

1

0 0 1 0
0 1 1 0 0 0 0 1
0 0 0 1 0 0 0 0

0 0 0 0

c

 
 −     = ⊗ =     −     
 

 

we have 

( )
( ) ( )

( )
( )

0 1

1

0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0
0 0 0
0 0 0
0 0 0 0

nA x
x x

x
x

ψ ψ
ψ
ψ

  
  
  
  
  
  

=      −         

             (39) 

We simulated 2-particles in a one-dimensional box using imaginary time 
evolution. 

At t = 0 we set 2-particles at adjacent two grid points near the center position. 
In Figure 7 we show converged density distributions for N = 64,256 and 

0,0.95,1δ =  cases. For 0δ =  (free fermion), it converges to the state where 
the two particles occupy the ground and the 1st-exited (1-particle) states.  

( ) 2 22 π 2πsin sinx xn x
N N N
 = + 
 

                 (40) 

For 1δ =  (free boson approximation), it converges to the state where the 
two-particle reside in the same (1-particle) ground state. 

( ) 24 πsin xn x
N N

=                       (41) 

Similarly we computed MPS wave function for the three particle system and 
the results are shown in Figure 8. 

In general the parameter of the interaction must be scaled properly when the 
grid spacing is changed in order to obtain the same continuum limit waveform. 
It is reasonable that when 0δ =  the ground state waveform does not depend 
on N, and when 0.95δ =  it depends on N. The case of 1δ =  is exceptional in 
that the waveform does not depend on N as if the particles were not interacting 
despite the fact that interaction is taken into account by non-zero parameter. 
This reflects the validity of the boson approximation. 

In Figure 9 we show the ratio of sum of the truncated norms of singular val-
ues to that of all singular values for N = 64,256 and 0,0.95,1δ =  cases. Ratios  
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Figure 7. Converged density distribution of two-particle system ( iπ / 4θ = , zero ampli-
tude boundary condition). Upper: N = 64 (t = 1500), Lower: N = 256 (t = 20000). 
 
are sufficiently small and MPS approximation must be good for the case. Theo-
retically the ratio should be zero for the free fermion case θ iπ / 4= , but small 
numerical error is observed. 

In Figure 10, we show the converged density distribution ( ) 2
1 2,x xψ  of 

two-particle system.For the 1.0δ =  case, the discontinuity of the wave funcion 
can be seen at 1 2x x= . In general the boson approximation wavefuncion  

( )1 2 3, ,B x x xψ   and the real fermionic wavefunction ( )1 2 3, ,F x x xψ   are 
thought to be related by Equation (42) [31]. 

( ) ( ) ( )1 2 3 1 2 3 1 2 3, , , , , ,F Bx x x x x x x x xψ ψ≈               (42) 

where ( ) ( )1 2 3, , sign .i ji jx x x x x
>

≡ −∏  

Finally we provide here more detailed information about simulation methods  
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Figure 8. Converged density distribution of three-particle system ( iπ / 4θ = , zero am-
plitude boundary condition). Upper: N = 64 (t = 1500), Lower: N = 256 (t =2 0000). 
 
we adopted, though this is not the main purpose of this study. To perform im-
aginary time simulation, we set simply ( )( )tθ τ= ∆  in the unitary matrix Equa-
tion (30) to the imaginary value. We performed a canonicalization of MPS state 
proposed by Vidal [21] at each simulation step, and in addition to this we per-
formed an appropriate gauge transformation of MPS state corresponding to an 
additional evolution by the spatially constant chemical potential. In a MPS si-
mulation of systems of fixed particle numbers, the chemical potential is theoret-
ically irrelevant to the result, but it affects the robustness of the simulation and a 
small numerical error causes violation of particle number conservation leading 
to the grand canonical ground state. 

5. Simulation by 1st Quantized Form of QCA 

In this section we explain how to perform the equivalent simulation by the 1st  
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Figure 9. The ratio of sum of the truncated norms of singular values to 
that of all singular values in the two-particle system. Upper: N = 64 (t = 0 
to 10,000), Lower: N = 256 (t = 0 to 20,000). 

 
quantized form of QCA. Of course in contrast to the above QCA-TEBD simula-
tion, this can be performed only when the number of grids or particles is small 
(notorious exponential wall for large number problems) . But as it is simple and 
free from the particle number conservation problem, the result can be used as a 
reference to the QCA-TEBD simulation. Moreover there are no fundamental 
difficulties, in simulating bosonic or higher dimensional systems by the 1st 
quantized form. We already explained the relation between the 1st quantized 
QCA and the 2nd quantized QCA in the free particles case, we here explain how 
to treat the additional phase rotation caused by interactions in the 1st quantized 
QCA. Firstly we explain the 1D-2 particle case. One step evolution is given by 
Equation (43). 
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Figure 10. Converged density distribution ( ) 2

1 2,x xψ  of two-particle system (N = 64, π
4
iθ = , zero 

amplitude boundary condition). Top: 0δ = , Middle: 0.95δ = , Bottom: 1.0δ = . 
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( )
( )
( )

( )

( )

( )
( )
( )

( )

1
0 1 0 1

1
0 1 0 1

011
0 1 0 1

1
0 1 0 1

2 2

2 2
2

2 2

2

, ,
, 1 , 1

1, 1,
1, 1 1, 1

where  

t t

t t

t t

t t

i

x x x x
x x x x

D U U
x x x x

x x x x

c ics ics s
c is c is ics c s ics

U U e
is c is c ics s c ics

s i

θ

ψ ψ
ψ ψ
ψ ψ

ψ ψ

+

+

+

+

−

   
   

+ +   = ⊗   + +
      + + + +   

−
  −   

⊗ = ⊗ =     −    
−

( ) ( )

2

2

2

01 0 12

1 0 0 0 1 0 0 0
0 0 0 0 1 0 0

if , otherwise
0 0 0 0 0 1 0
0 0 0 1 0 0 0 1

i

i

i

e

cs ics c

e
D x x

e

θ

θδ

θδ

−

 
 
 
 
  
 

   
   
   = =
   
   
   

  (43) 

At an even or odd time the evolution rule Equation (43) is applied to each 
even or odd quadrilateral (namely red or blue quadrilateral in Figure 6) respec-
tively. Precisely the rule Equation (43) is for the bulk. At the zero boundaries the 
application of U in U U⊗  are (partially) replaced by the simple phase rotation 
of Equation (11) at an odd time.  

The algorithm of the 1st quantized form of QCA is basically independent of 
particle statistics. The only procedural difference between boson and fermion is 
in symmetrization or anti-symmetrization at each simulation step. Without this 
anti-symmetrization however a decay from a fermionic state to a bosonic state 
occurs occasionally. 

In more general 1D M-particle case, ( )01D U U⊗  in Equation (43) becomes 

( ) ( )iji j D U U U
<

⊗ ⊗ ⊗∏ 
. For example, at the point  

( ) ( )0 1 2 3, , , 6,7,3, 2x x x x =  in 1D 4-particle case, the additional phase rotation at 
an even time is ( )2 2ie θδ ×  which comes from ( )01 0 16, 7D x x= =  and  

( )23 2 33, 2D x x= = . 
In higher dimensional case, the free evolution part ( )U U U⊗ ⊗ ⊗  is the 

same as in 1D case, and only the paring condition for the additional phase rota-
tion need to be modified except for the obvious (anti)-symmetrization proce-
dure. 

In a case of higher dimension or many particles, the requirement for the mag-
nitude of  or θ δ  becomes severe. If we set upper bound of phase rotation per  

one simulation step to 
π
2

, then 
π2
2

Dθ ≤  is required for the zero boundary 

condition and ( ) max
π2 1
2

Pθ δ − ≤  is required. (Here D is the dimension of the  

space and maxP  is the maximum number of nearest neighbor pairs, especially  

max 2
MP =  for 1D fermion case.)For the more practical programing, we reserve  

the memory only for the simplex region 0 1 1Mx x x −≥ ≥ ≥  taking advantage of 
the (anti-) symmetry of the wave function though it requires a little bit care. 

In the following, we show two imaginary time 1st quantized QCA simulations, 
one is 1D 4 particle fermionic and corresponding bosonic system, the other is 
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2D 2 particle fermionic and bosonic systems. 
The Hamiltonians related to the fermionic and bosonic QCAs we simulate are 

( ) ( ) ( )  2F r r r r F r r r r r
rr

H c c c c n n n c cτ δ+ + +
′ ′ ′

′

 = − − − + = ∑          (44) 

( ) ( ) ( )2B r r r r B r r r r r
rr

H a a a a n n n a aτ δ+ + +
′ ′ ′

′

 = − − − + = ∑          (45) 

where rr′  means nearest neighbor pairs (Note that in 1D fermion case Equa-
tion (44) is the rewritten Hamiltonian of the fermionized XXZ model using 

rr′ ). 
We show the result of 1D 4 particle and 2D 2particle imaginary time simula-

tions in Figure 11 and Figure 12 respectively. We already showed in QCA-TEBD 
simulation that the fermionic 1D system with 1Fδ =  behaves approximately 
the same as the 1D free bosonic system ( )0Bδ = . More generally, by adding ex-
tra phase rotation caused by neighboring grid pair interaction, we conclude that  
 

 
Figure 11. Converged density distribution of the 1D 4 particle fermionic and bosonic 
imaginary time simulations. ( )zero amplitude boundary condition  (Upper left: the 

2-particle reduced density of the 1D 4-particle bosonic system, Upper right: that of the 
corresponding bosonic systems, Lower: the 1-particle reduced density. N = 64, 0.1Fδ =  

(weak attraction), 1 0.9B Fδ δ= − = −  (strong repulsion), t = 1000, 
π
8
iθ = ). 
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Figure 12. Converged 1-particle reduced density distribution in the 2D 2-particle 1st 
quantized QCA simulations. ( )zero amplitudeboundary condition  (Top and Middle: 

fermion, Bottom: boson) (N = 64 × 62, 2.4Fδ =  (Top), 2.5Fδ =  (Middle), 0Bδ =  
(Bottom), t = 80,000 (Top), 10,000 (Middle, Bottom), π 8iθ = ). At t = 0 we set 2-par- 
ticles at (x,y) = (32,31) and (31,30). In the process of the time evolution, the bond axis ro-
tates from the original 45  to 90  . In the fermion case, around 2.5Fδ = , there seems to 
be a transition point to the condensation. 
 
the 1D fermionic system with Fδ  behaves approximately the same as the 1D 
bosonic system with 1B Fδ δ= − . In Figure 11 we confirm that this approxima-
tion is very good for 1 0.9B Fδ δ= − = − . (Note that similar boson-fer-mion cor-
respondence for 1D continuous space quantum system is well known, namely, 
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the bosonic system with infinite repulsive delta function behaves as a free fer-
mion [31] [32]).  

By seeing Figure 12 one might expect that fermionic 2D system with 2.5Fδ ≈  
behaves approximately the same as the 2D free bosonic system ( )0Bδ = , but in 
more than 1D system, there is no such a simple correspondence between fer-
mion and boson as 1D system, because collision points are qualitatively different 
from boundary points in more than 1D system. 

In Figure 13 we show the applicable parameter range of boson approximation 
in 2/3/4 particle systems. For 1-body-reduced density distribution for bosonic 
system are well approximated by that of fermionic system when 1Fδ ≤ . But af-
ter Fδ  exceeds 1 the error becomes rapidly larger. For 2-body-(reduced) den-
sity distribution, the error increases rapidly when Fδ  reaches slightly below 1. 
In the condensation state ( )1Fδ > , the assumption used for the wave function 
interpolation seems to become inapplicable. 

6. Multi-Step QCA and Dirac Cellular Automaton 

In this supplementary section, we briefly discuss the possibility of multi-step 
QCA. Firstly we discuss QW and Dirac Cellular Automaton (DCA) [25] [33] 
[34] as special cases of multi-step QCA. The 1D simplest (namely having only 
one 2 × 2 unitary matrix as parameters) QW/DCA are mathematically equivalent  
 

 
Figure 13. Illustration of the applicable range of boson approximation in the 1D 
2/3/4-particle case (N = 64, π 8iθ = , t = 1000). Vertical axis indicates the magnitude of 
the difference between density distribution of the converged ground states for bosonic 

and fermionic systems. solid: 1 1

1

B F

B

ρ ρ

ρ

−
, dotted: 2 2

2

B F

B

ρ ρ

ρ

−
 where 1 2

B Fρ  is 1/2-reduced 

density of converged ground state for Bosonic/Fermionic system (|.| means L2 norm). 
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to the corresponding QCA. This equivalence is easily shown by using the facto-
rization form of the two-grid translationally invariant banded unitary matrix 
(namely multi-step QCA form) [9] [23]. In order to interpret QW/DCA as QCA, 
they are flattened to scalar models as shown in Figure 14. 

Namely their two components (up and down) are assigned to two amplitudes 
of adjacent grid points in the lattice of which the number of grid points are 
doubled from the original lattice. The 2 × 2-unit Z-transformation representa-
tion [23] of QCA, QW and DCA are given as 

( )
2 21 1 1

2 1
QCA

0
0

A B A B A Bs Cs Ds
U s S S

C D C D C Ds As Bs

− − −
−            

= = =                       
 (46) 

( )
2 2 2

2 2 2

0
0QW

A BA s B s s
U s

C DC s D s s− − −

′ ′   ′ ′  
= =    ′ ′′ ′     

             (47) 

( )
2

DCA 1 12

0 0
0 0
s A B sA s BU s

s C D sC D s − −−

′ ′ ′ ′    
= =     ′ ′′ ′     

          (48) 

respectively. Here ,
A B A B
C D C D

′ ′   
   ′ ′   

 are general 2 × 2 Unitary matrices,  

2s  is the parameter of the 2 × 2-unit Z-transformation which means two-grid  

shift in the flattened lattice and ( ) 2

0 1
0

S s
s
 

≡  
 

 is the 2 × 2-unit Z-transfor-  

mation representation of the one-grid shift matrix defined by Equation (6). Note 
that 2 2S s I= , therefore 2S  commute with any 2 × 2 matrix.  

Now we rewrite ( ) ( )DCA or QWU s U s  in a factorization form. 

( ) 0 1 2
n

nU s s U SU SU S SU−=                        (49) 

 

 
Figure 14. QCA interpretation of QW or DCA. QW or DCA can be interpreted as two-step ( U X′  and X ) QCA. Moreover QW 
or DCA consists of two independent systems (the cyan system and the magenta system), each of which can be interpreted as sin-
gle-step QCA. The correspondence relation between single-step QCA’s U  and QW/DCA’s U ′  is U U X′= . The only differ-
ence between QW and DCA is the definition of the two-component (up and down) state which are indicated by ellipses. 
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Considering 1
1

0 0 1
0 1 0
s

s XS X
s

−
−

    
= ≡    

    
 we have 

( ) ( )( )2 1
QWU s s XSXSU X S XS U− −′ ′= =                (50) 

( ) ( ) ( )( )2 1 1
DCAU s s XSU XS X S U S S XS− − −′ ′= =              (51) 

where 
A B

U
C D
′ ′ ′ =  ′ ′ 

. (The expressions in the parentheses of Equations (50)  

(51) are added in order to clarify the correspondence between the expressions 
and the graphs in Figure 14. 

By taking the logarithm of ( )U s  (see for example [23]) we can obtain TDSE 
or 1DDirac equation from TDSE-type QCA as its continuum limit. However in 
this case, obtained 1DDirac equation is not ideal one. In the QW case, the situa-
tion is the same. In the DCA case, the more ideal 1DDirac equation emerges. In 
the following we explain the outline of this situation. In the QCA case, we para-
metrize the basic 2 × 2 unitary matrix as follows. 

( )2 2 1iA B
e

C D
α β

α β
β α∗ ∗

   
= + =   −   

                 (52) 

The corresponding Hamiltonian is 

( ) ( )

( ) ( )

1 1

log log

π
2

i

ik

s sH s i U s i e
s s

H s s e

β α
α β

∗ − ∗ −  −
= =      

  ′= − + + = 
 





             (53) 

( ) ( )
( ) ( )

1
2real

sin real
k

k k k
k

s s
H s I

s s
β αωω

ω α β

∗ − −
′ ≡ − ∆ = ∆ =  

 
         (54) 

where 

( )( ) ( )
( )

1real1arccos imag ,    
sin realk k

k

s s
s

s s
β α

ω β
ω α β

∗ − −−
≡ ∆ ≡   

 
       (55) 

The case ( )Real 0β =  (where kω  has the form ( ) ( ) ( )0 2 2 4
k k o kω ω ω= + + ) 

is particularly simple and important and we restrict our argument to this case. 
cos sin cos sin

 or 
sin cos sin cos

i i i
i i i

α β θ θ θ θ
β α θ θ θ θ∗ ∗

     
=     − −     

 are the typical cases of  

( )real 0β = . 
In order to be able to connect this QCA with the Dirac equation, in the wave 

number ( )k  expansion 

( ) ( )2 3
0 1 2

ikH e H H k H k o k′ = + + +                   (56) 

0 1,H H  must be traceless (namely their squares are scalar multiples of I) and

0 1 1 0 0H H H H+ =  which are indeed satisfied. Moreover it would be ideal if 

2 0H = . Although actually 2 0H ≠  in all cases by similar calculations, only in  

the DCA case 2 0H ≈  when k-dependence of 
sin

k

k

ω
ω

 is ignored, which makes  
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DCA more suitable in connecting to Dirac equation. 
As we explained above (Equations (50) (51) and Figure 14), the TDSE/Di- 

rac-type QW/DCA can be regarded as special case of two-step QCA and moreo-
ver mathematically equivalent to two sets of TDSE-type single-step QCAs. 
Therefore the same arguments about the boundary condition, the 2nd quantiza- 
tion formalism, the simplest interaction and the boson-fermion corresponding 
as in QCA apparently hold. Moreover in TDSE/Dirac type multi-step QCA the 
similar argument would be possible, though we need more investigation about 
what essentially new phenomenon could appear by extending the single-step 
QCA to the general multi-step QCA (Equation (49)). 

7. Conclusion 

In this study we show that in one-dimensional multiparticle QCA, the approxi-
mation of the bosonic system by fermion (boson-fermion correspondence) can 
be derived in rather a simple and intriguing way, where the principle to impose 
zero-derivative boundary conditions of one-particle QCA is also analogously 
used in particle-exchange boundary conditions. As a clear cut demonstration of 
this boson approximation, we calculate the ground state of 2 or 3-particle sys-
tems in a box using imaginary time QCA-TEBD simulation. Obtained ground 
states are indeed boson-like. We also perform imaginary time simulations by the 
1st quantized form of QCA not only for fermionic system but also for bosonic 
system and show the applicable range of boson approximation (boson-fermion 
correspondence ( )1B Fδ δ= − ). Another point we want to emphasize through-
out this study is that QCA, TEBD (MPS), FDM are deeply related to each other. 
The 1st quantized form of QCA can be regarded as the split step decomposition 
of FDM description for TDSE, which is essentially the same approximation used 
when TEBD algorithm is obtained from the model quantum Hamiltonian sys-
tem with nearest neighbor interaction. On the other hand, the 2nd quantized 
form of QCA has the TEBD form from the beginning. 
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