
Journal of Quantum Information Science, 2014, 4, 173-193 
Published Online September 2014 in SciRes. http://www.scirp.org/journal/jqis 
http://dx.doi.org/10.4236/jqis.2014.43017  

How to cite this paper: Amiri, F. and Moradi, S. (2014) Tripartite Entanglement and Lorentz Transformation. Journal of 
Quantum Information Science, 4, 173-193. http://dx.doi.org/10.4236/jqis.2014.43017  

 
 

Tripartite Entanglement and Lorentz  
Transformation 
Firouz Amiri1,2, Shahpoor Moradi1* 

1Department of Physics, Razi University, Kermanshah, Iran 
2Department of Physics, Islamic Azad University, Khorram Abad Branch, Khorramabad, Iran 
Email: *shahpoor.moradi@gmail.com  
 
Received 15 July 2014; revised 18 August 2014; accepted 4 September 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Entanglement of tripartite spin states under Lorentz transformations is studied in the context of 
Bell’s inequality and positive partial transpose criterion. First the relativistic analogue of Bell’s 
inequality is discussed for three qubit states by explicit calculation of the Wigner rotation. We use 
the relativistic invariant spin operator which is related to the Pauli-Lubanski pseudo vector. For 
observers at rest the Bell’s inequality is speed-independent and maximally violated. For moving 
observers it’s shown that Bell’s inequality is violated and the amount of violation depends on the 
boost speed. We show that in ultrarelativistic limit Bell’s inequality is still maximally violated. We 
also obtained the critical value for satisfying Bell’s inequality. The critical value of boost speed for 
violation of inequality for particles moving in the center of mass frame is greater than that for 
particles moving with the same momentum. Second we investigate the entanglement distillability 
of tripartite mixed spin states under Lorentz transformations in the context of Werner states. We 
show that there are states that will change from distillable (entangled) into separable for a certain 
value of rapidity. 
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1. Introduction 
Relativistic entanglement and quantum nonlocality are investigated by many authors [1]-[32]. Lorentz boosts 
entangle the spin and momentum degrees of freedom, so the entanglement between the spins changes if viewed 
from a moving frame. M. Czachor [7], investigated Einstein-Podolsky-Rosen experiments with relativistic mas-
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sive spin-1 2  particles. The degree of violation of the Bell’s inequality is shown to depend on the velocity of 
the pair of spin particles with respect to the laboratory. He considered the spin singlet of two spin-1 2  massive 
particles moving in the same direction. He introduced the concept of a relativistic spin observable: which is 
closely related to the spatial components of the Pauli? Lubanski vector. For two observers in the lab frame mea-
suring the spin component of each particle in the same direction, the expectation value of the joint spin mea-
surement, i.e., the expectation value of the tensor product of the relativistic spin observable of each constituent 
particle, depends on the boost velocity. Only when the boost speed reaches that of light, or when the direction of 
the spin measurements is perpendicular to the boost direction, the results seem to agree with the EPR correlation. 
Czachor considered only the changes in the spin operator part by defining a new relativistic spin operator. There, 
the state does not need to be transformed since the observer is at rest. 

Alsing and Milburn [2] studied the Lorentz transformation of maximally entangled states. By explicit calcula-
tion of the Wigner rotation they described the observation of the entangled Bell states from two inertial frames 
moving with the constant velocity with respect to each other. They concluded that entanglement is Lorentz inva-
riant. Terashima, et al. [30] [31] considered relativistic Einstein-Podolsky-Rosen correlation and Bell’s inequa-
lity. They showed that the degree of the violation of Bell’s inequality decreases with increasing the velocity of 
the observers if the directions of the measurement are fixed. They extended these considerations to the massless 
case. Ahn, et al. [1] [17] investigated the Bell observable for entangled states in the rest frame seen by the mov-
ing observer and showed that the entangled states satisfy the Bell’s inequality when the boost speed approaches 
the speed of light. In this paper we would like to study the tripartite entanglement in relativistic regime. 

The outline of the paper is as follows. In Section 2 we present a brief discussion on the Bell’s inequality for 
three qubit states. In Section 3 we calculate the Lorentz transformation of three-qubit states. After that we derive 
the relativistic spin joint measurement of transformed state. Then we derive the expectation value for three-qubit 
GHZ and W states and calculate the Bell observable for these states. In Section 4 we consider the particles with 
Gaussian momentum distributions and investigate the distillability of entanglement using the Werner states. We 
conclude with a discussion in Section 5. 

2. Bell’s Inequality 
Bell demonstrated that no local and realistic theory could ever agree with all predictions of quantum mechanics 
[33]. His theorem showed that the idea of completing quantum mechanics, so that the resulting theory would be 
deterministic, is impossible [34]. Bell’s type inequality for tripartite systems are constructed from correlation 
function   

( ) ( ) ( ) ( ), , .E ψ σ σ σ ψ= ⋅ ⊗ ⋅ ⊗ ⋅a b c a b c                            (1) 

here a , b  and c  are real three-dimensional vectors of unit length. For each measurement, one of two possi-
ble alternative measurement is performed: a  or ′a  for particle 1, b  or ′b  for particle 2, c  or ′c  for 
particle 3. One form of the inequality which is proposed by Mermin is [35]   

( ) ( ) ( ) ( ), , , , , , , , 2.E E E Eε ′ ′ ′ ′ ′ ′= + + − ≤a b c a b c a b c a b c                    (2) 

Two fundamental classes of three qubit states which violates the Bell’s inequality are Greenberger-Horne- 
Zeilinger (GHZ) and W states   

( )1 000 111 ,
2

GHZ = +                                (3) 

( )1 110 101 011 ,
3

W = + +                               (4) 

here 0 and 1 represent the spins polarized up and down along the z-axis. The GHZ and W states are fully sym-
metric, i.e. invariant under the exchange of any two qubits, and greatly differ each other in their correlations 
properties. 

For a GHZ state if measurements are made in the xy-plane the correlation function to be 

( ) ( )1 2 3, , cos ,E φ φ φ= + +a b c                               (5) 
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where we labeled the angles from the x-axis. The correlation function ( ), ,E a b c  can take the value either +1 or 
−1 under both realistic theory and quantum mechanical theory, thus the maximum value of ε  is 4. For example 
with the following suitably chosen measurement settings,  

,
,

= = =
′ ′ ′= = =

a b c y
a b c x

                                     (6) 

Bell’s inequality for GHZ state is maximally violated with 4ε = . For W state with measurement in xz-plane 
we have  

( )

( )1 2 3 1 2 3

2
3

2 1cos cos cos cos ,
3 3

x x z x z x z x x z z zW a b c W a b c a b c a b c a b c

θ θ θ θ θ θ

⊗ ⊗ = − − −

= − + + −
                (7) 

where the polar angle 1θ  specifies the measurement direction of the spin observable a , etc. With the follow-
ing suitably chosen measurement settings,  

,
,

= = =
′ ′ ′= = =

a b c x
a b c z

                                     (8) 

we have 3ε = . 

3. Relativistic Entanglement of Quantum States and Bell’s Inequality 
We consider three-particle states described by state vectors made from spinsA B Cp p p  where  

A B C A B C=p p p p p p  is a product state vector of length 1, that represents a state for the momenta of the 
three particles composed of a state where the momentum of particle A  is concentrated around a value Ap  and 
etc., and spins represents a state for the spins of the three particles. 

We assume that three particles move with the same momentums, for example in x-direction, then the GHZ 
and W-states are written as   

( )1 000 111 , , ,
2

GHZ = +p p p p                            (9) 

( )1 011 101 011 , , ,
3

W = + + p p p                          (10) 

For calculation of Bell observable, we use the relativistic spin operator defined by M. Czachor [7] 

( )
( )

2

22

1
ˆ ,

1 1
a

β σ

β

⊥− + ⋅
=

 + ⋅ − 

a a

e a





                                  (11) 

where the subscripts ⊥  and   denote the components which are perpendicular and parallel to the boost direc-
tion. First we define 

( ) ( ) ( )( )1 2
2 2 2 2 2 21 1 1 1 1 1 .x x xa b cβ β β     ∆ = + − + − + −                        (12) 

21 .xy x ya a i aβ= + −                                   (13) 

Effects of relativistic spin observable ˆˆ ˆa b c⊗ ⊗  on three-qubit states is presented in Appendix B, using them 
we obtain the expectation value of GHZ  as follows  

( ){ }1 2ˆˆ ˆ 1x x x y x y y y x x y yGHZ a b c GHZ a b c a b c a b c a b cβ−⊗ ⊗ = ∆ − − − −              (14) 

One can easily show that the expectation value (14) for set vectors (6) is boost independent and the inequality 
is maximally violated. For W  state we have  
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( ){
( )

1 2

3 22

2ˆˆ ˆ 1
3

31
2

x x z x z x z x x

y z y z y y y y z z z z

W a b c W a b c a b c a b c

a b c a b c a b c a b c

β

β

−⊗ ⊗ = ∆ − + +

 + − + + −  
 

                 (15) 

Similar to GHZ state the inequality is violated as non relativistic case. The Bell values for GHZ and W states 
are invariant because the states (9) and (10) are seen by observers at rest. If observers move with velocity re-
spect to particles we should Lorentz transform these states. So we considered the effect of Wigner rotation on 
the GHZ and W states. For applying Lorentz transformation on states we express GHZ and W states using crea-
tion operator in the rest frame 

( ) ( ) ( ) ( ) ( ) ( ){ }† † † † † †
0 1 0 2 0 3 1 1 1 2 1 3 0

1 .
2

GHZ a a a a a a= + Φp p p p p p                   (16) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }† † † † † † † † †
1 1 1 2 0 3 1 1 0 2 1 3 0 1 1 2 1 3 0

1 .
2

W a a a a a a a a a= + + Φp p p p p p p p p         (17) 

where 0Φ  is Lorentz invariant vacuum state. We consider the case in which the boost speed is perpendicular to 
momentums of particles. In our case particles move in zy-plane and observers move in x-direction. A Lorentz 
transformation Λ  changes each p  to 

Λ
p  then 

,A B C A B CΛ ΛΛ Λ
=p p p p p p                            (18) 

which describes momenta concentrated around the Lorentz transformed values ,A BΛ Λp p  and CΛp . This is 
the unitary transformation on the space of momentum states that would represent the Lorentz transformation if 
the particles had no spins. The Lorentz transformation changes the state vector for momenta and spins as follows   

( ) ( ) ( )spins spinsA B C A B C A A B B C CD D D
Λ

→p p p p p p p p p               (19) 

where ( ) ( ),A A B BD Dp p  and ( )C CD p  are operators on the spin states for particles A , B  and C , 

respectively, and ( )D p  means ( )( ),D W pΛ . 

Now we calculate the Lorentz transformation of GHZ and W states. First we introduce the general pure state 
of three qubits χ :  

000 001 010 011

100 101 110 111 ,

A B C D

E F G H

χ = + + +

+ + + +
                        (20) 

where  
2 2 2 2 2 2 2 2 1.A B C D E F G H+ + + + + + + =  

Using relations in Appendix A, Lorentz transformation of GHZ state becomes 1 2 3
1
2

GHZ χ
Λ

′ = p p p  
with  

1 2 3 1 2 3
00 00 00 01 01 01
1 2 3 1 2 3
00 00 10 01 01 11
1 2 3 1 2 3
00 10 00 01 11 01
1 2 3 1 2 3
00 10 10 01 11 11
1 2 3 1 2 3
10 00 00 11 01 01
1 2 3 1 2 3
10 00 10 11 01 11
1 2 3 1 2 3
10 10 00 11 11 01

10

,

,

,

,

,

,

A D D D D D D

B D D D D D D

C D D D D D D

D D D D D D D

E D D D D D D

F D D D D D D

G D D D D D D

H D

= +

= +

= +

= +

= +

= +

= +

= 1 2 3 1 2 3
10 10 11 11 11,D D D D D+

                             (21) 

where iD  is Wigner representation for particle i . In a similar manner for W state we have 
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1 2 3
1
3

W χ
Λ

′ = p p p  where  

1 2 3 1 2 3 1 2 3
00 01 01 01 00 01 01 01 00
1 2 3 1 2 3 1 2 3
00 01 11 01 00 11 01 01 10
1 2 3 1 2 3 1 2 3
00 11 01 01 10 01 01 11 00
1 2 3 1 2 3 1 2 3
00 11 11 01 10 11 01 11 10
1 2 3 1 2 3 1 2 3
10 01 01 11 00 01 11 01 00

A D D D D D D D D D

B D D D D D D D D D

C D D D D D D D D D

D D D D D D D D D D

E D D D D D D D D D

= + +

= + +

= + +

= + +

= + +
1 2 3 1 2 3 1 2 3
10 01 11 11 00 11 11 01 10
1 2 3 1 2 3 1 2 3
10 11 01 11 10 01 11 11 00
1 2 3 1 2 3 1 2 3
10 11 11 11 10 11 11 11 10 .

F D D D D D D D D D

G D D D D D D D D D

H D D D D D D D D D

= + +

= + +

= + +

                        (22) 

We obtain the degree of violation for two cases. 

Cass I. 1 2 3
ˆpk= = =p p p  

In this case Wigner representations of the the Lorentz group for particles are written by   

( )( ) ( )( ) ( )( ) ( ) ( )
( ) ( )1 2 3

cos 2 sin 2
, , , ,

sin 2 cos 2
D W p D W p D W p

δ δ
δ δ

 − 
Λ = Λ = Λ =  

 
           (23) 

where wigner rotation δ  is defined in Appendix A, relations (140) and (141). Then for GHZ state we have  

( ) ( )3 3cos 2 sin 2 ,A δ δ= +  

( ) ( )3 3cos 2 sin 2 ,H δ δ= −  

( ) ( ) ( ) ( )2 2cos 2 sin 2 sin 2 cos 2 ,B C E δ δ δ δ= = = −  

( ) ( ) ( ) ( )2 2cos 2 sin 2 sin 2 cos 2 ,D F G δ δ δ δ= = = +  

and for W state  

( ) ( )23sin 2 cos 2 ,A δ δ=  

( ) ( )23cos 2 sin 2 ,H δ δ=  

( ) ( ) ( )3 2sin 2 cos 2 sin 2 ,B C E δ δ δ= = = −  

( ) ( ) ( )3 2cos 2 sin 2 cos 2 ,D F G δ δ δ= = = −  

Case II. 1 2 3 0+ + =p p p  

We assume particles are emitted in a plane in a configuration in which the three momenta lie at angles of 
2π 3  to each other. In this situation particles are in the center of mass frame with the following momentums   

1 ,= −p z p                                      (24) 

2
1 3 ,
2 2

 
= +  
 

p z y p                                  (25) 

3
1 3 ,
2 2

 
= −  
 

p z y p                                  (26) 

therefore 

1 ,=n y                                        (27) 
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2
1 3 ,
2 2

= − +n y z                                    (28) 

3
1 3 .
2 2

= − −n y z                                    (29) 

Wigner representations of the the Lorentz group for particles 1, 2 and 3 respectively are written by 

( )( ) ( ) ( )
( ) ( )1

cos 2 sin 2
, ,

sin 2 cos 2
D W p

δ δ
δ δ

 
Λ =  − 

                         (30) 

( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

*
2 3

3 1cos 2 sin 2 sin 2
2 2, , .

1 3sin 2 cos 2 sin 2
2 2

i
D W p D W p

i

δ δ δ

δ δ δ

 
+ − 

 Λ = Λ =
 

− 
 

      (31) 

In this situation for GHZ state coefficients are  

( ) ( ) ( ) ( )3 3 21 3cos 2 sin 2 sin 2 cos 2 ,
4 4

A δ δ δ δ= + +  

( ) ( ) ( ) ( )3 3 21 3cos 2 sin 2 sin 2 cos 2 ,
4 4

H δ δ δ δ= − +  

( ) ( ) ( ) ( )

( ) ( ) ( )( )

* 2 2

2 3

1 1cos 2 sin 2 cos 2 sin 2
2 2

3 cos 2 sin 2 sin 2 ,
4

B C

i

δ δ δ δ

δ δ δ

= = −

+ −
 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

* 2 2

2 3

1 1cos 2 sin 2 cos 2 sin 2
2 2

3 cos 2 sin 2 sin 2 ,
4

F G

i

δ δ δ δ

δ δ δ

= = − −

− −
 

( ) ( ) ( ) ( ) ( )2 2 31 3cos 2 sin 2 cos 2 sin 2 sin 2 ,
4 4

D δ δ δ δ δ= + +  

( ) ( ) ( ) ( ) ( )2 2 31 3cos 2 sin 2 cos 2 sin 2 sin 2 ,
4 4

E δ δ δ δ δ= − −               (32)  

and for W state  

( ) ( )23 sin 2 cos 2 ,
4

A δ δ= −  

( )33 sin 2 ,
4

H δ= +  

( ) ( ) ( ) ( ) ( )* 2 3 21 3 3cos 2 sin 2 sin 2 sin 2 cos 2 ,
2 4

B C iδ δ δ δ δ= = − +  

( ) ( ) ( ) ( )

( ) ( )

* 3 3 2

2

3cos 2 sin 2 3 sin 2 cos 2
4

1 sin 2 cos 2 ,
2

F G i iδ δ δ δ

δ δ

= = + +

−
 

( ) ( ) ( )3 21cos 2 sin 2 cos 2 ,
4

D δ δ δ= +  
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( ) ( ) ( )2 31cos 2 sin 2 sin 2 .
4

E δ δ δ= − −                           (33) 

Now the spin joint measurement for the state χ  for measurement in xy plane is given by  

( )1 * * * * * * * *2 .xy xy xy xy xy xy xy xy xy xy xy xya b c E Da b c F Ca b c G Ba b c H Aa b cχ χ −⊗ ⊗ = ∆ ℜ + + +         (34) 

In ultra relativistic limit as 1β →  we get   

{ }* * * *2 ,x x x

x x x

a b c
a b c AH G B F C E D

a b c
χ χ⊗ ⊗ → ℜ + + +              (35) 

which is not correlated. In non-relativistic limit  

( ) ( )1 2 32 2cos .x x x x x y y y x x y ya b c a b c a yb c a b c a b cχ χ φ φ φ⊗ ⊗ → − − − = + +           (36) 

here we consider to the vector set inducing the maximal violation of Bell’s inequality for GHZ state in non rela-
tivistic case. With set vector (6) we have  

* * * *ˆ ˆ ˆ 2x x x E D F C G B H Aχ χ  ⊗ ⊗ = ℜ + + +   

* * * *ˆ ˆ ˆ 2y y x E D F C G B H Aχ χ  ⊗ ⊗ = ℜ + − −   

* * * *ˆ ˆ ˆ 2y x y E D F C G B H Aχ χ  ⊗ ⊗ = ℜ − + −   

* * * *ˆ ˆ ˆ 2x y y E D F C G B H Aχ χ  ⊗ ⊗ = ℜ − + + −   

Then for GHZ and W state we have 
( ) ( )1 *4 ,G AHε = ℜ                                   (37) 

( ) ( )1 *8 3,W AHε = ℜ                                  (38) 

For case I the Bell observable for GHZ state takes the form   
( )1 3cos 3cos .Gε δ δ= +                                 (39) 

In ultrarelativistic limit as 1β → , (39) reduces to 
( )1 3sech 3sech 4.Gε χ χ→ + ≤                              (40) 

In this limit amount of violation for very high energy particles goes to zero, but for low energy particles ap-
proaches to 4, similar to non-relativistic limit 0β → . When particles are in the center of mass frame (case II) 
Bell observable for GHZ state to be 

( )2 3 21 3 33 3cos cos cos .
16 8 16 2Gε δ δ δ= + + +                         (41) 

which for ultrarelativistic limit as 1→β  reduces to   

( )2 3 21 3 33 3sech sech sech .
16 8 16 2Gε χ χ χ→ + + +                        (42) 

For very high energy particles amount of violation is ( )2 1.5Gε = , but for low energy particles ( )2 4Gε =  which 
is maximally violation of Bell’s inequality. In order function of β  for ultrarelativistic particles   

( ) ( ) 1 2
2cos 2 1 1 2 ,δ β ≈ + −  

                             (43) 

( ) ( ) 1 2
2sin 2 1 1 2 ,δ β ≈ − −  

                             (44) 

then the amount of violation takes the form   



F. Amiri, S. Moradi 
 

 
180 

( ) ( )2 2 21 4 .Gε β β≈ − −                                (45) 

It’s obvious that critical value cβ  for satisfying Bell’s inequality in case I is 0.8, and in case II is 0.97. For W 
state and case I we arrive at 

( )1 33sin .Wε δ=                                     (46) 

Using relations (144) and (145) takes the form   

( )
3

1

2

sinh3 .
1 cosh

W
β χε
β χ

 
 =
 − + 

                              (47) 

In ultrarelativistic limit as 1β →  reduces to   
( )1 33 tanh .Wε χ=                                     (48) 

For low energy particles amount of violation goes to zero and for high energy particles ( )1 3Wε → . It is inter-
esting that in non-relativistic case ( )1 0Wε → . One can obtain the critical value for boost speed when particles are 
high energitic. In this limit ( )1 33Wε β→ , then 0.87cβ = . For measurement in xz-plane we have 

( ) ( ){
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

3 21 2 2 2 2 2 2 2 2 2

2 * * * *

2 * * * *

1 22 * * * *

2 * * * *

1 22 * * * *

1 22

1

2 1

2 1

2 1

2 1

2 1

2 1

z z z

z z x

z x z

z x x

x z z

x z x

a b c A D F G H C E B a b c

A B C D F E G H a b c

A C B D E G F H a b c

A D B C E H F G a b c

A E B F C G D H a b c

A F B E C H D G a b c

A

χ χ β

β

β

β

β

β

β

−⊗ ⊗ = ∆ − + + + − − − −

+ − ℜ − − +

+ − ℜ − − +

+ − ℜ + − −

+ − ℜ − − +

+ − ℜ + − −

+ − ℜ( )
( ) }

* * * *

* * * *2

x x z

x x x

G B H C E D F a b c

A H B G C F D E a b c

− + −

+ ℜ + + +

         (49) 

with the set of vectors (8) we obtain  

( ) ( )* * * *, , 2 ,E AG BH CE DF′ = ℜ − + −a b c  

( ) ( )* * * *, , 2 ,E AF BE CH DG′ = ℜ + − −a b c  

( ) ( )* * * *, , 2 ,E AD BC EH GF′ = ℜ + − −a b c  

( ) ( )2 2 2 2 2 2 2 2, , .E A D G F C B E H′ ′ ′ = + + + − − − −a b c  

For W state in the case I the Bell observable reads  

( ) ( )1 2 2 2 2 232 2 3 3 3 3 cos 9cos 5 .
4W AD BH B D A Hε δ δ= − + − − + = −            (50) 

It’s obvious that in relativistic domain Bell’s inequality is violated for W states. Bell observable in order func-
tion of β  for ultrarelativistic particles takes the form 

( ) ( )1 2 23 1 4 .
4Wε β β≈ − −                              (51)  

The critical value for violation of inequality is 0.66 , which is smaller than GHZ state case. For case II we 
have 
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( ) ( )2 3 21 25cos 53cos 155cos 55 .
96Wε δ δ δ= + + +                       (52) 

For ultrarelativistic particles the critical value is 0.73. 
Finally we consider the case in which the momentums and boost are not in the same plane. In this case Wign-

er matrices ( )D W  takes the form   

( )( )
1
2

cos sin sin sin cos
2 2 2, ,
sin cos cos sin sin

2 2 2

i
D W p

i

δ δ δ
ρ ρ

δ δ δ
ρ ρ

 
 
 

 
+ − 

 Λ =
 

− 
 

p p p

p p p

               (53) 

with 

cosh cosh sinh sinh sin cos
2 2 2 2cos ,

2 1 1 1cosh cosh sinh sinh sin cos
2 2 2

ξ χ ξ χ θ φδ

ξ χ χ ξ θ φ

+
=

+ +

p                  (54) 

sinh sinh
2 2sin ,

2 1 1 1cosh cosh sinh sinh sin cos
2 2 2

ξ χ
δ

ξ χ χ ξ θ φ

ϒ
=

+ +

p                  (55) 

and 
cos cos ,ρ θϒ =                                  (56) 

sin sin sin ,ρ θ φϒ =                                (57) 

2 2 2sin sin cos .θ φ θϒ = +                             (58) 

Assume that three particles move with the momentums p . Then the Bell observable for GHZ  state to be 

( )

( )

( )

3 4 2

2 2

4 2

4 cos 4 9 4cos 6cos
2

3 8cos sin 2
2

3 2cos 1 2cos 3cos 2 ,
2

G

δ
ε ρ ρ

δ
ρ

δ
ρ ρ


= + −



+


− − + 



p

p

p

                    (59) 

which in nonrelativistic limit gives the value 4.  

4. Distillability of Entanglement 
In the previous section for simplicity we assumed that momentum of particles are sufficiently localized around 
momentum p . Realistic situation involve the wave pockets with Gaussian form. In this section we consider the 
specific situation in which Alice (A), Bob (B) and Charlie (C) share a tripartite mixed state which is mixture of 
Greenberger-Horne-Zeilinger (GHZ) state with identity, with respect to an inertial frame S . Moreover, in order 
realize the effects of relativity on distillability, we also consider another inertial frame S ′ , where relatives A′ , 
B′  and C′  of A , B  and C  are moving with relative velocity v , with respect to S . For a composite 
system of three qubits one can consider the Werner state [36]   

8 8
1 ,

8
qq GHZ GHZ Iρ ×

−
= +                              (60) 

or in the matrix form  
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( )

( )

( )

( )

( )

( )

( )

( )

1 3 1 0 0 0 0 0 0
8 2

10 1 0 0 0 0 0 0
8

10 0 1 0 0 0 0 0
8

10 0 0 1 0 0 0 0
8 .

10 0 0 0 1 0 0 0
8

10 0 0 0 0 1 0 0
8

10 0 0 0 0 0 1 0
8

10 0 0 0 0 0 3 1
2 8

qq

q

q

q

q

q

q

q q

ρ

 + 
 
 − 
 
 −
 
 
 −
 =  
 −
 
 

− 
 
 

− 
 
 + 
 

      (61) 

The basis is { }000 , 001 , 010 , 011 , 100 , 101 , 110 , 111 . To determine whether or not this state is en-
tangled we use the partial transpose criterion [37]. We say a density matrix ρ  has a positive partial transpose if 
its partial transposition has no negative eigenvalues. The eigenvalues of partial transpose of density matrix are   

1 2 3 4
1 5 3 1, ,

8 8
q qλ λ λ λ− +

= = = =                             (62) 

5 6 7 8
1 .

8
qλ λ λ λ −

= = = =                                 (63) 

Then the state to be entangled for 
1
5

q >  and separable for 
1
5

q < . The GHZ  state is made up of three par- 

ticles, say electrons with mass m , having two types of degrees of freedom: momentum p  and spin 1 2s = . 
The former is a continuous variable while the latter is a discrete one. Each particle is assumed to be localized, as 
in a box, and its momentum p  will be described by the same Gaussian distribution. Then the GHZ  state is   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 2 2 2
1 ,
2

a b c a b c
a b c a b cGHZ = Ψ Ψ Ψ +Ψ Ψ Ψp p p p p p p             (64) 

where ap , bp  and cp  are the corresponding momentums vectors of particles A , B  and C  and   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0
0 , 1 ,

0
a aa

a a a a
a

g
g g

g
  

Ψ = = Ψ = =   
   

p
p p p p

p
             (65) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0
0 , 1 ,

0
b bb

b b b b
b

g
g g

g
  

Ψ = = Ψ = =   
   

p
p p p p

p
             (66) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0
0 , 1 ,

0
c cc

c c c c
c

g
g g

g
  

Ψ = = Ψ = =   
   

p
p p p p

p
             (67) 

with Gaussian momentum distributions   

( ) ( )3 4 3 2 2 2exp 2 .g w p wπ − −= −p                             (68) 

If we trace the momentum degrees of freedom we obtain the usual GHZ  state. The general density matrix 
for three particle systems with momentums ,a bp p  and cp  is given by   
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( ) ( ) ( ) ( ) ( ) ( ){ }†

, , 1,2
.ijklmn i a j b k c l a m b n c

i j
Fρ

=

′ ′ ′= Ψ ⊗Ψ ⊗Ψ Ψ ⊗Ψ ⊗Ψ∑ p p p p p p


          (69) 

In our case the coefficients ijklmnF  are   

000000 111111
3 1,

8
qF F +

= =                                 (70) 

111000 000111 ,
2
qF F= =                                   (71) 

001001 110110 101101 100100 011011 010010
1 .

8
qF F F F F F −

= = = = = =                  (72) 

For obtaining the Lorentz transformation of density matrix (69), we need the relativistic properties of spin en-
tropy for a single, free particle of spin-1/2. The quantum state of a spin-1/2 particle can be written in the mo-
mentum representation as follows   

( ) ( )
( )

1

2

,
a
a
 

Ψ =  
 

p
p

p
                                  (73) 

where 

( ) ( )( )2 2
1 2 d 1.a a+ =∫ p p p                               (74) 

The density matrix corresponding to state (73)  is   

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *
1 1 1 2

* *
1 2 2 2

, .
a a a a

a a a a
ρ

 ′ ′′ ′ ′′
 ′ ′′ =
 ′ ′′ ′ ′′ 

p p p p
p p

p p p p
                         (75) 

By setting ′ ′′= =p p p  and integrating over p  we obtain the reduced density matrix for spin   

11 ,
12

z x y

x y z

n n in
n in n

σ
+ − 

=  + − 
                               (76) 

where the Bloch vector n  is given by   

( ) ( )( )2 2
1 2 d ,zn a a= −∫ p p p                              (77) 

( ) ( )*1 2 d .x yn in a a− = ∫ p p p                               (78) 

Under the Lorentz transformation the states (65)-(67) transformed as [15]   

( ) ( )
( ) ( )1

1
2

cos
2 ,

sin
2

b
g

b

δ

δ

 
    Λ Ψ = =       
 
 

p

p

p
p p

p
                        (79) 

( ) ( )
( ) ( )2

2
1

sin
2 .

cos
2

b
g

b

δ

δ

 
− −   Λ Ψ = =       
 
 

p

p

p
p p

p
                       (80) 

Now under Lorentz boost density matrix (69) transformed into  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

†

, , 1,2

†
.

ijklmn a i a b j b c k c
i j

a l a b m b c n c

D D F D p D p D p

D p D p D p

ρ
=

= Ψ ⊗ Ψ ⊗ Ψ

′ ′ ′× Ψ ⊗ Ψ ⊗ Ψ

∑ p p p

p p p

               (81) 
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The reduced density matrix for spin is obtained by setting a a′=p p , b b′=p p , c c′=p p  and tracing over 
momentum  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

†

†

, , 1,2

†

†
.

a b c

a

b

c

ijklmn a i a a l a
i j

b j b b m b

c k c c n c

Tr D D

F Tr D D

Tr D D

Tr D D

τ ρ

=

 =  

 = Ψ Ψ 

 ⊗ Ψ Ψ 

 ⊗ Ψ Ψ 

∑
p p p

p

p

p

p p p p

p p p p

p p p p



                    (82) 

To leading order 1w m  we have [15]  
2

1 tanh , 0,
2 2z x y
wn n n n
m

ξ = ≈ − = ≈ 
 

                        (83) 

where ( ) 1 22cosh 1ξ β
−

= −  and β  is boost speed. Larger values of w m  are possible and mathematically  

correct, though not necessarily physically consistent. The case of w m  would produce fast wave-packet 
spreading, yielding an undesired particle delocalization. It can be appreciated in Equation (82) that the expres-
sion is decomposable in the sum of the tensor products of 2 2×  spin blocks, each corresponding to each par-
ticle. We compute now the different blocks, corresponding to the four possible tensor products of the states (79) 
and (80)   

( ) ( ) ( ) ( ){ }†
1 1

1 01 ,
0 12

n
Tr p p

n
+ 

Λ Ψ Λ Ψ =     − 
p p p                    (84) 

( ) ( ) ( ) ( ){ }†
2 2

1 01 ,
0 12

n
Tr p p

n
− 

Λ Ψ Λ Ψ =     + 
p p p                   (85) 

( ) ( ) ( ) ( ){ } ( )
†

1 2

0 11 ,
1 02

n
Tr p p

n
+ 

Λ Ψ Λ Ψ =     − − 
p p p                  (86) 

( ) ( ) ( ) ( ){ } ( )†
2 1

0 11 .
2 1 0

n
Tr p p

n
− − 

Λ Ψ Λ Ψ =     + 
p p p                  (87) 

With the help of Equations (84)-(87), it is possible to compute the effects of the Lorentz transformation, asso-
ciated with a boost in the x direction, on any density matrix of two spin-1/2 particles with factorized Gaussian 
momentum distributions. In particular density matrix (81) reduced to 

1 3

2 4

2 4

2 4

4 2

4 2

4 2

3 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 01 ,
0 0 0 0 0 08
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

ρ ρ
ρ ρ

ρ ρ
ρ ρ

τ
ρ ρ

ρ ρ
ρ ρ

ρ ρ

 
 
 
 
 
 =  
 
 
 
 
 
 

                       (88) 

where  

( ) ( )2 2 2 2
1 2 3 41 3 , 1 , 3 , 1 .qn qn qn n qn nρ ρ ρ ρ= + = − = + = −                  (89) 

To determine whether or not this state is entangled we use the partial transpose criterion [37]. We say a den-
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sity matrix ρ  has a positive partial transpose if its partial transposition has no negative eigenvalues. The par-
tial transpose criterion provides a sufficient condition for the existence of entanglement in this case: if at least 
one eigenvalue of the partial transpose is negative, the density matrix is entangled. The eigenvalues of PT den-
sity matrix are  

( ){ }3 2
1

1 1 3
8

q n n nλ = + + −  

( ){ }2 3
2

1 1 3
8

q n n nλ = + − +  

( ){ }2 3
3

1 1 3
8

q n n nλ = + + −  

( ){ }2 3
4

1 1 3
8

q n n nλ = − + +  

( ){ }2 3
5

1 1
8

q n n nλ = + − −  

( ){ }3 2
6

1 1
8

q n n nλ = + − −  

( ){ }2 3
7

1 1
8

q n n nλ = + − −  

( ){ }3 2
8

1 1
8

q n n nλ = + − −  

The eigenvalue 4λ  for ( ) 123q N n n n
−

 > = + +   always is negative. Then in the interval 1 5 q N< <  dis- 

tillability of state is possible in rest frame S  but is impossible in moving frame S ′ . Then there are states that 
will change from distillable (entangled) into separable for a certain value of n , showing the relativity of distil-
lability and separability.  

5. Summary 
In conclusion, we obtained the relativistic spin joint measurements for Lorentz transformed three-qubit states as 
momentums of particles are perpendicular to the boost speed. We show that in ultrarelativistic limit joint mea-
surements are uncorrelated. Using Bell’s inequality, we studied the nonlocal quantum properties of states in re-
lativistic formalism. Bell’s inequality is maximally violated in rest frame or in moving frame with rest particles, 
but is not always violated as seen by moving observer, because the degree of violation of Bell’s inequality de-
pends on the velocity of the particles and observer. In non-relativistic case the spin degrees of freedom and mo-
mentum degrees of freedom are independent. But in relativistic regime Lorentz transformations of spin of par-
ticle depend on its momentum. Lorentz transformations can change the entanglement of the spins of massive 
particles. 

EPR experiment for three qubits is investigated for two cases. In the first case particles move with the same 
momentum and in the second case particles move in the center of mass frame. Bell’s inequality is maximally vi-
olated in relativistic regime. In ultrarelativistic limit inequality is still maximally violated, which is not same as 
two-qubite case [1] [17]. For W state when measurement performed in xy-plan in ultrarelativistic limit inequality 
is violated, but in non-relativistic limit reaches to zero. Finally, for very high energy particles we obtained a critical 
value for satisfying Bell’s inequality. For GHZ and W states critical value for violation of Bell’s inequality when 
particles move in the center of mass is greater than the case when particles move with the same momentum. 

For particles with Gaussian momentum distributions we show that there are states that will change from dis-
tillable (entangled) into separable for a certain value of n, showing the relativity of distillability and separability.  
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Appendix A: Wigner Representation of the Poincare Group [38]-[43] 
Poincaré transformation is combination of proper Lorentz transformation with space-time translation aµ  

.x x aµ µ ν µ
ν′ = Λ +                                    (90) 

The unitary transformation in the Hilbert space of state vectors corresponding to the Poincaré transformation 
is given by 

( ) 2, e e ,
i Mia PU a

αβµ αβµ
ω−

Λ =                                (91) 

where anti-symmetric tensor M µν  is related to generators of boosts and rotations respectively as follows   

0 1, ,
2

i i i ijk
jkK M J Mε= =                               (92) 

and ω  is the anti-symmetric tensor 

0
0

.
0

0

x y z

x z y

y z x

z y x

µν

ξ ξ ξ
ξ θ θ

ω
ξ θ θ
ξ θ θ

 
 − − =  − −
  − − 

                             (93) 

Here 1tanh−= eξ β  with e  is a normal vector in the boost direction β . Finally Pµ  are the generators of 
space-time translations. The commutation relations between the generators of Poincare group are   

, 0,P Pµ ν  =                                      (94) 

( ), ,P M i g P g Pµ να µν α µα ν  = −                              (95) 

( ), .M M i g M g M g M g Mµν αβ µα νβ να µβ νβ µα µβ να  = − − + −                   (96) 

The concept of intrinsic spin and angular momentums can be generalized to relativistic situation using the 
Pauli-Lubanski tensor   

1 ,
2

W M Pµ µναβ
να βε= −                                (97) 

with components 
0 0, .W P= ⋅ = − ×p J W J p K                            (98) 

This tensor satisfies in following relations   

0, , 0,P W P Wµ µ
µ ν = =                             (99) 

( ), ,W M i g W g Wµ να µν α µα ν  = −                          (100) 

, .W W i W Pµ ν µναβ
α βε  =                               (101) 

From the algebra of the generators one finds that P Pµ
µ  and W Wµ µ  commute with all generators and 

therefore are invariants under Poincaré transformation. These operators are Casimir operators of the algebra. 
Single particle states form the unitary representation of the group of Poincaré transformation. States , ,p s λ  
labelled using of mutually commuting operators. Mass m  from eigenvalue 2m  of P Pµ

µ , three momentum 
vector p  from operator p , spin s  from eigenvalue ( )1s s +  of operator 2W W mµ

µ−  and polarization or 
spin projection λ  from eigenvalue of helicity operator   

,⋅ ⋅
=

J p S p
p p

                                 (102) 
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or z-component in rest frame 3W . The helicity is most continent since it is invariant under rotation and under 
Lorentz boosts along p . Also the helicity of a massless particle is Lorentz invariant. One can show the eigen-
values of 2W  is ( )2 1m s s + .  

2 2 0
0

10, , 0, ,
2

i
iW s m M M M M sµν

µνλ λ = = − − = 
 

p p  

( )2 2 2 21 0, , 0, , 1 = 0, , .
2

ij
ijm M M s m s m s s sλ λ λ− = = − = = − +p J p p             (103) 

Then we have 
2, , , , , .P p s p p s p p mµ µ µ

µλ λ= =                        (104) 

( )2 1 3, , 1 , , , 0, ,1, , 2, ,
2 2

p s s s p s sλ λ= + =S                    (105) 

( )
, 1, , 1,

, , , , ,
, 0 .

s s s s
p s p s

s s m
λ λ λ λ

− − + −⋅ = = − =

S p
p



                  (106) 

For a particle of nonzero mass m , one can define intrinsic spin S  and orbital angular momentum L  using   

( )0
0

0 0 ,Wm P
m P m P

⋅
= − = − × −

+ +

p J ppS W J p K                      (107) 

.= −L J S                                     (108) 

Note that 2 2W W mµ
µ= −S  is Lorentz invariant and that iS  and iL  satisfy the following relations   

, 0,Pµ  = S                                    (109) 

, ,i j ijk
kS S i Sε  =                                   (110) 

, ,i j ijk
kJ S i Sε  =                                   (111) 

, , , 0,i j ijk i j
kL L i L L Sε   = =                              (112) 

0, .ij i j
i j

PS
i S K

m P
δ ⋅ −

 − =  +

S p
                             (113) 

In the rest frame the spin vector is 
1
m

=S W . Actually S  is the spatial part the vector W  transformed to 

the rest frame of p . That is   

1 ,j p j
S W− = Λ                                   (114) 

where pΛ  is the pure Lorentz transformation which maps the time axis into the direction of the vector p  

( )1 ,0,0,0 ,p m−Λ =p                                 (115) 

the explicit form of the matrix 1
p
−Λ  is   

01 1

0
,p p

pg
m

νµ

µνµ

− −   Λ = Λ =                                 (116) 

( )
1

0
.

j kj j
p kk

p p
m m p

δ− Λ = +  +
                             (117) 

Another candidate for spin operator is based on the center of mass operator defined by  
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( )2
0 00

,
2

i
p p mp

×
= − +

+
p p sq x                              (118) 

here is  denotes finite-dimensional angular momentum matrices corresponding to the ( )2 1s + -dimensional 
representation of the rotation group. Then the spin corresponding to q  is  

( )

( )( ) ( )
0 0

2

1

1

m m
p p

β

= −
= × + − ×

 
= + − ⋅ 

 

= − − ⋅ + ⋅

S J L
x p s q p

s e s e

s e s e e s e

                        (119) 

The eigenvalues of ⋅a S  are therefore   

( )( )221 1 ,aλ λ β= + ⋅ −e a                              (120) 

where , 1, , 1,s s s sλ = − − + −  and a  is an arbitrary direction. For 1 2s =  the generators of the Lie algebra 
of three-dimensional Euclidian rotations ( )3SO  or the group ( )2SU  are pauli matrices ( ), ,x y zσ σ σ . So the 
normalized operator corresponding to the spin projection along an arbitrary direction is [7]   

( )
( )

2

22

1
ˆ ,

1 1a

a
β σ

λ β

⊥− + ⋅⋅
= =

 + ⋅ − 

a aa S

e a





                          (121) 

where the subscripts ⊥  and   denote the components which are perpendicular and parallel to the boost direc-
tion. Operator â  is related to the Pauli-Lubanski pseudo vector which is relativistic invariant operator corres-
ponding to spin. 

Irreducible representation of Poincaré group constructed from irreducible representation of little group which 
leaves the reference four momentum k  invariant. The rotation Rp  takes the three-vector initially pointing in 
the z-direction into a three-vector pointing along the direction of p  associated the four vector p . If the direc-
tion of p  is directed by polar angle θ  and an azimuthal angle φ , then   

( ) 3 2 3
e e e .i J i J i JU R φ θ φ− − −=p                              (122) 

The rotation is a sequence of three rotations: first about the z-axes by angle φ−  then about the y-axes by an-
gle θ  then again around the z-axes by angle φ . The Lorentz boost Lp  which takes an initially massive state 
at rest into a state with momentum p  is   

( ) 1

2 2
exp tanh .U L i

m
−

  
  = − ⋅

  +  
p

pp K
p p

                       123) 

The pure Lorentz boost Z p  which takes an initially massive state at rest into a state with momentum ẑp  
is 

( ) 3 1

2 2
exp tanh .U Z iK

m
−

  
  = −

  +  
p

p

p
                       (124) 

Now choose ( ),0,0,0k mµ =  as the reference momentum, then the little group is the ordinary spatial rota-
tions. The states are then constructed as follows   

( ) ( ), , , , .p s N U L U R k sλ λ= p p p                         (125) 

The normalization factor N p  is chosen to satisfy   

( ) ( ) ( )3 4, , , , 2π 2 ,ssp s p s E λλλ λ δ δ δ′ ′′ ′ ′ ′= −p p p                    (126) 
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under Poincaré transformation  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )

1 1

1 1

1

, , , e , ,

e , ,

e , , , , , ,

, e , , .

ia P

ia P

ia P

s ia P

U a p s N U U L U R k s

N U L U R U R U L U U L U R k s

N U L U R k s k s U R L L R k s

N N D W p p s
λ

λ λ
λ

λ λ

λ

λ λ λ

λ

⋅

⋅ − −
Λ Λ Λ Λ

⋅ − −
Λ Λ Λ Λ

′

⋅ Λ−
′Λ

′

Λ = Λ

= Λ

′ ′= Λ

′= Λ Λ

∑

∑

p p p

p p p p p p p

p p p p p p p

p p

        (127) 

where  

( ) 1 1, .W p R L L R− −
Λ ΛΛ = Λp p p p                              (128) 

The ( )sDλ λ′  are the conventional ( )2 1s + -dimensional unitary matrices representing the three-dimensional 
rotation group. Note that pp L k=  and p pp L k L kΛΛ = Λ = , hence 1L L k k−

Λ Λ =p p . Since it leaves k  invariant 
( ),W pΛ  should be a pure spatial rotation. It is a member of the little group. In the following discussion, we 

omit the normalization factors, such as N p  because these do not affect the result of our discussion. 
Creation and annihilation operators may be defined in terms of their effect on the normalized multi-particle 

states. The creation operator ( )†aλ p  is defined as the operator that adds a particle with quantum number 
( ),λp  

( )
1 1 2 2 1 1 2 2

†
, , , , , ,aλ λ λ λ λ λΦ = Φp p p p pp

 

                          (129) 

here λ  labels spin z-components (or helicities, for massless particles). Now the multipartite state is expressed 
by acting on the vacuum with N creation operators   

( ) ( ) ( )
1 1 2 2 1 2

† † †
, , , 1 2 0 ,

N N N Na a aλ λ λ λ λ λΦ = Φp p p p p p


                      (130) 

where 0Φ  is Lorentz invariant vacuum state. We will need the transformation properties of the creation and 
annihilation operators. We consider to inhomogeneous proper orthochronous Lorentz transformation propriety 
[40] 

( ) ( ) ( )( ) ( ) ( )( )1 2
1 1 2 2 1 1 2 21 1 2 2

1 2

0 , , 1 2 , ,, , ,s sU D W p D W pλ λ λ λλ λ λ λ
λ λ

Λ Λ
Λ Φ = Λ Λ Φ∑p p p p 



              (131) 

where 1Λp  is the three vector part of 1pΛ . Transformation of creation operator is   

( ) ( ) ( ) ( ) ( )( )† 1 ,sU a U D W pλ λ λ
λ

−
′

′
Λ Λ = Λ∑p ( )† .aλ′ Λp                        (132) 

Outline of derivation of the representation of the Wigners little group for spin-1/2 particles is as follows [43] 

( )( ) ( ) ( ) ( )1, ,D W p D L D D L−
ΛΛ = Λp p                           (133) 

where 

( ) ( )
( )( )

0

0

,
2

p m
D L

m m p
Λ

Λ

Λ + + ⋅
=

+ Λ
p

p σ
                            (134) 

( ) ( )cosh sinh ,
2 2

D ξ ξσΛ = + ⋅e                              (135) 

with 
( ) ( )00 cosh sinh ,p p ξ ξΛ = + ⋅p e                            (136) 

( ) ( )0 sinh cosh ,p ξ ξΛ = − ⋅ + + ⋅p p p e e p e e                        (137) 

here tanhξ β= . After some mathematical manipulation  

( )( ) ( )( )( ) ( ) ( )
1 2

0 00, cosh sinh sinh .
2 2 2

D W p m p m p m p iξ ξ ξ σ
−   Λ = + Λ + × + + ⋅ − ⋅ ×    

p e p e    (138) 
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which can be written in the abbreviated form 

( )( ) ( ) 00 01

10 11

, cos sin ,
2 2

D D
D W p i

D D
δ δ

σ
 

Λ = + ⋅ =  
 

p pn                   (139) 

with 

ˆcosh cosh sinh sinh
2 2 2 2cos ,

2 1 1 1 ˆcosh cosh sinh sinh
2 2 2

ξ χ ξ χ
δ

ξ χ χ ξ

+ ⋅
=

+ + ⋅

p
e p

e p
                   (140) 

ˆsinh sinh
2 2sin .

2 1 1 1 ˆcosh cosh sinh sinh
2 2 2

ξ χ
δ

ξ χ χ ξ

×
=

+ + ⋅

p
e p

n
e p

                    (141) 

here 0cosh p mχ = , ˆ =p p p . We consider the case in which the boost speed is perpendicular to momen-
tums of particles. In this case we have  

( )
( )( )

( )

1 2
2

2

1 1 cosh 1
cos 2 ,

2 1 cosh

β χ
δ

β χ

 + − + =  
− +  

                      (142) 

( )
( )( )

( )

1 2
2

2

1 1 cosh 1
sin 2 ,

2 1 cosh

β χ
δ

β χ

 − − − =  
− +  

                       (143) 

where in ultrarelativistic limit as 1β →  take the forms 

( )
1 21 sechcos 2 ,

2
χδ + →   

                             (144)  

( )
1 21 sechsin 2 .

2
χδ − →   

                             (145)  

Appendix B 
Effects of relativistic spin observable ˆˆ ˆa b c⊗ ⊗  with the boost in x-direction on three-qubit states are 

( ) ( )
( ) ( )

2 2

2 2 2

3 22 2

ˆˆ ˆ 000

111 1 110 1 101

1 100 1 011 1 010

1 001 1 000 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a b c a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= + − + −

+ − + − + −

+ − + −

 

( ) ( )
( ) ( )

* 2 2 *

2 2 * 2

3 22 * 2

ˆˆ ˆ 001

110 1 111 1 100

1 101 1 010 1 011

1 000 1 001 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a b c a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= − − + −

− − + − − −

+ − − −
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( ) ( )
( ) ( )

* 2 * 2

2 2 * 2 *

3 22 2

ˆˆ ˆ 010

101 1 100 1 111

1 110 1 001 1 000

1 011 1 010 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a c b a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= + − − −

− − + − + −

− − − −

 

( ) ( )
( ) ( )

* * 2 * 2 *

2 2 * * 2 *

3 22 * 2

ˆˆ ˆ 011

100 1 101 1 110

1 111 1 000 1 001

1 010 1 011 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a b c a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= − − − −

+ − + − − −

− − + −

 

( ) ( )
( ) ( )

* 2 * 2 *

2 * 2 2

3 22 2

ˆˆ ˆ 100

011 1 010 1 001

1 000 1 111 1 110

1 101 1 100 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a b c a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= + − + −

+ − − − − −

− − − −

 

( ) ( )
( ) ( )

* * 2 * 2 * *

2 * 2 * 2

3 22 * 2
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010 1 011 1 000

1 001 1 110 1 111

1 100 1 101 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a b c a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= − − + −

− − − − + −

− − + −

 

( ) ( )
( ) ( )

* * 2 * * 2 *

2 * 2 * 2 *

3 22 2

ˆˆ ˆ 110

001 1 000 1 011

1 010 1 101 1 100

1 111 1 110 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a c b a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= + − − −

− − − − − −

+ − + −

 

( ) ( )
( ) ( )

* * * 2 * * 2 * *

2 * 2 * * 2 *
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ˆˆ ˆ 111
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1 110 1 111 ,

xy xy xy xy xy z xy z xy

xy z z z xy xy z xy z

z z xy z z z

a b c

a b c a b c a b c

a b c a b c a b c

a b c a b c

β β

β β β

β β

∆ ⊗ ⊗

= − − − −

+ − − − + −
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