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Abstract 
Entropy squeezing is an important feature in performing different tasks in quantum information 
processing such as quantum cryptography and superdense coding. These quantum information 
tasks depend on finding the states in which squeezing can be created. In this article, a new feature 
on entropy squeezing for a two level system with a class of nonlinear coherent state (NCS) is ob- 
served. An interesting result on the comparison between the coherent state (CS) and NCS is ex- 
plored. The influence of the Lamb-Dick parameter in both absence and presence of the Kerr me- 
dium is examined. A rich feature of entropy squeezing in the case of NCS, which is observed to de- 
scribe the motion of the trapped ion, has been obtained. 
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1. Introduction 
It is known that quantum entangled state plays an important role in the fields of quantum information theory as 
well as quantum teleportation and computation. The entropy which automatically includes all moments of the 
density operator has been shown to be a very useful operational measure of the purity of the quantum state. The 
most important and interesting work to understand relation between entropy and information was done by Shan- 
non [1], who introduced the entropy (Shannon entropy) into communications theory. Recently it has been shown 
that nonlinear coherent states are useful in the description of the motion of a trapped ion and various non-classical 
properties of such states have also been studied [2]. We note that in Refs [2] and [3] nonlinear coherent states 

http://www.scirp.org/journal/jqis
http://dx.doi.org/10.4236/jqis.2014.41007
http://dx.doi.org/10.4236/jqis.2014.41007
http://www.scirp.org
mailto:salama5laser@yahoo.com
http://creativecommons.org/licenses/by/4.0/


S. I. Ali, S. Abdel-Khalek 
 

 
72 

have been defined as the right eigenstate of a generalized annihilation operator Â  (which emerges from the 
Hamiltonian describing the dynamics) this is because in the case of nonlinear algebras the commutator †ˆ ˆ,A A 

   
is not a constant or a linear function of the generators of the algebra but nonlinear in the in the generators. As a 
consequence it is difficult to obtain an explicit form of nonlinear coherent state constructed via the displacement 
operator technique. The nonlinear coherent state (NCS) was introduced as a new state of the source of the cohe-
rent field to describe some of the non-classical properties like squeezing and Sub-Poissnian behavior [4]. There 
are some previous studies on the entropy squeezing of a two-level atom, such as one photon transition [5], the 
nonlinear Kerr medium [6] and degenerate two-photon process [7]. The authors of these papers have focused only 
on the initial coherent state of the field. 

Recently, much attention has been drawn to squeezing in an ensemble of atoms illuminated with light, involv- 
ing quantum noise and atomic spin polarization measurement [8], and quantum-controlled few-photon states gen- 
erated by squeezed atoms [9]. These studies of atomic squeezing are based on the Heisenberg uncertainty relation 
(HUR), which is regarded as the standard limitation on measurements of quantum fluctuations. HUR is formu- 
lated in terms of the variances or standard deviations of the system observable. As an alternative to the HUR, 
Hirschman [10] studied quantum uncertainty by using quantum entropy theory, and obtained an entropic uncer- 
tainty relation for position and momentum which can overcome the limitations of the HUR. 

The entropy squeezing and variance squeezing for the entangled sate of a single two-level atom interacting 
with a single electromagnetic field in a squeezed vacuum a broad bandwidth are studied [11]. Also, the similari- 
ties and differences of both reservoirs for the two different models have been explained through some calcula- 
tions, such as the atomic inversion and the von Neumann entropy. It is to be noted that considering a mode 
structure plays a role like the squeezing parameter in the case of a squeezed vacuum reservoir. Also, the entropy 
squeezing of a two-level atom driven by a strong classical field and damped into a modeled reservoir with 
non-flat density of modes has been investigated [12]. On the other hand, the dynamics of a single atom entropy 
squeezing of the two-qubit system, in the presence of local squeezed reservoirs, has been discussed. Our aim in 
the present paper is to investigate the entropy squeezing of a two level atom when the initial state of the field is 
taken to be NCS and discuss different features of entropy squeezing in the case of NCS. These features are con- 
nected with the Lamb-Dick parameter. Here we also examine the influence of a nonlinear medium and the de- 
tuning parameter on the squeezing parameter of the atomic operators ˆ ˆ,x yS S  and ˆ

zS . The organization of the 
paper is arranged as follows. In Section 2, we present a brief review of the Hamiltonian model and give an exact 
expression for the density matrix ( )ˆ tρ . In Section 3, we employ the density matrix to investigate the properties 
of the entropy squeezing. Finally, we give our discussion in Section 4. 

2. Dynamics of One Photon JCM 
In this paper, we focus our attention to a quantum optical model, where a single two-level atom via one photon 
process, interacts with a single quantized cavity mode of the radiation field. Then the Hamiltonian of the above 
system of interest may be written as 

† †2 2ˆˆ ˆ ˆ ˆ ˆf A zH a a S a aω ω κ= + + ( )† ˆ ˆˆ ˆ ,a S aSγ − ++ +                            (1) 

where fω  is the field frequency, Aω  is the atomic frequency, â  and ?â  are the annihilation and the crea- 
tion operators for the mode of the cavity field satisfying †ˆ ˆ, 1a a  =   and Ŝ±  and ˆ

zS  are the atomic spin op- 
erators defined by 

( )
)

1ˆ
2

ˆ ˆ and 

zS

S S+ −

= ↑ ↑ − ↓ ↓ 

= ↑ ↓ = ↓ ↑ 

                                 (2) 

We denoted by ↑  and ↓  the upper and lower states of the atom, respectively and γ  is the effective 
coupling constant. Also, we denoted by κ  the dispersive part of the third-order nonlinearity of the Kerr-like 
medium, with the detuning parameter .A fω ω∆ = −  Therefore, we employ the unites of 1.=  The effective 
Hamiltonian can be written as 

0
ˆ ˆ ˆ

eff IH H H= +  

where, 



S. I. Ali, S. Abdel-Khalek 
 

 
73 

( )
( )

( )
( )

†
0

††

†

2 2

ˆˆ ˆ ˆ ,

ˆ ˆˆˆ ˆ ˆˆ ˆ

ˆˆ ˆ

ˆ
z

I

f z

I z

H a a S

a S aSH S a a

a a S

H

ω

γγ γκ − +

+ = +

+ += ∆ + 

                               (3) 

For convenience, we take, χ γκ= , δ γ= ∆  and assume that the atom is initially in the superposition state 
( )0A A Aψ ↑ ↓= ↑ + ↓ . Also, we assume that the field is initially in the new nonlinear coherent state (NCS), 

( )
0

,
n

B n nα
∞

=

= ∑                                  (4) 

where, ( )B n  is the distribution function of the NCS. The NCS is defined as ( )
0

0d
n

D nα
∞

=

= ∑  i.e., it is a 

coherent state (CS) corresponding to the second algebra [13]. One can write α  in the following form [4]-[7] [13] 

0
,

!

n
n

d
n

d
N n

n
α

α
∞

=

= ∑  

where N  is a normalization constant, which can be determined from the condition 1dα α =  and is given 
by 

( )
12

2

0
.

!
nn

n

d
N

n
α α

−
∞

∗

=

  =  
  
∑  

While 0 1d =  and the coefficients ( ){ } 1
! ,nd f n
−

=  it is clear that for different choices of the nonlinearity 
function, we shall get different nonlinear coherent states. In the present case we choose a nonlinearity function, 
which has been used in the description of the motion of a trapped ion [14]. 

( ) ( ) ( ) ( ) 11 2 0 21n nf n L n Lη η
−

 = +   

where η  is known as the Lamb-Dick parameter and ( )m
nL x  are generalized Lagurre polynomials given by 

( ) ( )2
2

0 !

i

m
n

i

m i
L

n i i

η
η

∞

=

−+ 
=  + 
∑                                (5) 

Clearly ( ) 1f n =  when 0η =  and in this case nonlinearity coherent states become the standard coherent 
states. However, when 1η ≠  nonlinearity starts developing with degree of depending on the magnitude of η  
[14]. Then the initial state of the atom-field coupling system reads as 

( ) ( ){ }
0

0 , ,
n

F n A n A nψ
∞

↑ ↓
=

= ↑ + ↓∑                         (6) 

where, ( ) 2

0
1

n
B n

∞

=
∑ = , ( )cos 2A θ↑ =  and ( ) ( )sin 2 exp iA θ φ↓ = − . Here [ ]0, πθ ∈  denotes the initial co- 

herence of the two-level atom and [ ]0,2πϕ ∈  is the relative phase between the upper and lower states of the 

two-level atom. Thus the initial density operator of the system is given by ( ) ( ) ( )0 0 0A Fρ ρ ρ= ⊗  where, 

( )0Fρ α α=  and ( ) ( ) ( )0 0 0A A Aρ ψ ψ= , ( )0ρ  describes the initial values for the field-atom density 
operator. 

At any time 0t >  the solution of the Schrödinger equation 

( )
( )

d
i

d I

t
H t

t
ψ

ψ=                                 (7) 

for the state vector ( )tψ  with the initial condition (6) is 

( ) ( ) ( ) ( ){ }
0

, , , ,
n

t B n n t n n t nψ ψ ψ
∞

↑ ↓
=

= ↑ + ↓∑                           (8) 
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and the density matrix of system is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

, , , , , , , ,

, , , , , , | , ,
n m

t n t m t n m n t m t n m

n t m t n m n t m t n m

ρ ψ ψ ψ ψ

ψ ψ ψ ψ

∞ ∞
∗ ∗

↑ ↑ ↑ ↓
= =

∗ ∗
↓ ↑ ↓ ↓

= ↑ ↑ + ↑ ↑

+ ↑ ↑ + ↑ ↑

∑∑
               (9) 

where the coefficient ( ),n tψ↑  and ( ),n tψ↓  are given by 

( ) ( ) ( ) ( ) ( )2 sin sin, exp i cos i i 1 1
2

n n

n n
nn t t n A B n n A n B nψ γ χ χ↑ ↑ ↓

 ϒ ϒ  ∆= − ϒ − − − + +  Ω Ω  
 

( ) ( ) ( ) ( )( ) ( )2 1
1

1 1

sin sin 1
, exp i 1 cos i 1 i 1

2
n n

n
n n

n t t n A B n n A nB nψ γ χ χ −
−↓ ↓ ↑

− −

 ϒ ϒ −  ∆ = − − ϒ + − − − −    Ω Ω  
  (10) 

where, n ntγϒ = Ω , ( )2
1

2n n nχ∆Ω = − + +  with nΩ  is the Rabi frequency which depends on the detuning 

parameter and nonlinear medium parameter. 

3. Atomic Inversion 
We mainly devote the present section to considering the atomic inversion, from which the phenomenon of col- 
lapses and revivals can be observed. However, we shall first introduce some expressions for the probability am- 
plitude. The expressions ( ) 2

,n tψ↑  and ( ) 2
,n tψ↓  represent the probabilities that at time ,t  the field has n  

photons present and the atom is in level ↑  and ↓  respectively. The probability ( ),P n t  that there is n  
photons in the field at time t  is therefore obtained by taking the trace over the atomic states, i.e., 

( ) ( ) ( )2 2
, , ,P n t n t n tψ ψ↑ ↓= +                               (11) 

where ( ),0P n  is the probability that there are n  photons present the field at time 0t = , which is given for a 
NCS for the field by 

( ) ( ) 2
,0P n B n=                                    (12) 

Another important quantity one may consider is the atomic inversion ( ) ,W t  which is related to the probability 
amplitudes ( ) 2

,n tψ↑  and ( ) 2
,n tψ↓  by the expression 

( ) ( ) ( )2 2

0

1 , ,
2 n

W t n t n tψ ψ
∞

↑ ↓
=

= −∑                          (13) 

Thus from Equation (13) and after some rearrangements, we can obtain 

( ) ( ) ( ) ( ) ( ) ( )( )

( )
( )

( )
( )

2 22 22 2 2 2 2 1
12 2

0 1

2 2

1 12 2

0

sin sin1 cos cos sin cos 1
2 2 2 22

1sin sin sin cos2 21 1 1
2 1

n n
n n

n n n

n n

n nn

W t B n n n

n n
B n B n

θ θχ χ

θ θγ γ

∞
−

−
= −

∞ + −

=

    ϒ ϒ ∆ ∆= ϒ + − − ϒ + − −    Ω Ω    

     + ϒ ϒ       + + − − ×     Ω Ω −            

−

∑

∑

( ) ( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( )

1

10

2 2
1

2 2
1

sin sinsin 1 1 1 sin 1 1
2 2 2

sin sin
1 1 cos

2

n n

n nn

n n

n n

n
B n B n n B n B n B n B n n

n n B n B n n

θ γ φ γ

δ χ χ φ

∞
−

−=

−

−

 ϒ ϒ + + − − − + +  Ω Ω 

ϒ ϒ∆ − − − − −   Ω Ω 

∑

 

(14) 
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4. Entropy Squeezing 
In this paper, we use the Heisenberg uncertainty relation (HUR) to study the squeezing information entropy. It 
has been pointed out that the Heisenberg uncertainty relation (HUR) cannot give sufficient information on the 
atomic squeezing in some cases [13]. For instance, for a two-level atom, characterized by Pauli operator ˆ ,xS ˆ

yS  
and ˆ

zS , the uncertainty relation is given by 

1ˆ ˆ ˆ
2x y zS S S∆ ∆ ≥  

where the Pauli operators ˆ ,xS  ˆ
yS  and ˆ

zS , satisfying the commutation ˆ ˆ ˆ, ix y zS S S  =   and  

22ˆ ˆ ˆS S Sα α α∆ = − . In this way, the fluctuation in the component Ŝα  of the atomic dipole is said to be 

squeezed if Ŝα  satisfies the condition 

( )
ˆ

ˆ ˆ 0,     or  
2

zS
V S S x yα α α

 
 = ∆ − < = 
 
 

                       (15) 

An optimal entropic uncertainty relation for sets of 1N +  complementary observables with non-degenerate ei- 
genvalues in an even N-dimensional Hilbert space has been recently investigated using quantum entropy theory 
[5]. It takes the form 

( )
1

1

ˆ ln 1 ln 1 ,
2 2 2 2

N N N N NH Sα
α

+

=

     ≥ + + +     
     

∑                        (16) 

where ( )ˆH Sα  represents the information entropy of the variable Ŝα . The aim of this paper is to use entropy 
uncertainty relation EUR (16) as a general criterion for the squeezing in terms of information entropy for a 
two-level atom in the Jaynes-Cumming model with one-photon process in a non-linear Kerr medium. 

The probability distribution for N possible outcomes of measurements for an arbitrary quantum state of an 
operators Ŝα  is ( )ˆ

i i iP Sα α αρ= Ψ Ψ , where iαΨ  is an eigenvector of the operator Ŝα  such that 

ˆ , , , , 1, 2, ,
ii iS x y z i N

αα α αλ αΨ = Ψ = =  . The corresponding Shannon information entropies are then de- 
fined as 

( ) ( ) ( )
1

ˆ ˆ ˆln , , , .
N

i i
i

H S P S P S x y zα α α α
=

= − =∑                        (17) 

To obtain the Shannon information entropies of the atomic operators ˆ
xS , ˆ

yS  and ˆ
zS  for a two-level atom, 

with 2N = , one can use the reduced atomic density operator ( )ˆ tρ , thus we have the following expression, 

( ) ( ) ( ) ( ) ( )1 1 1 1ˆ 1 ln 1 1 ln 1 , , ,
2 2 2 2

H S t t t t x y zα α α α αρ ρ ρ ρ α   = − + + − − − ∀ =                    
 

so that 

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1ˆ Re 1 ln Re 1 1 Re ln 1 Re ,
2 2 2 2xH S t t t tρ ρ ρ ρ↓↑ ↓↑ ↓↑ ↓↑

          = − + + − − −             
   (18) 

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1ˆ Im 1 ln Im 1 1 Im ln 1 Im ,
2 2 2 2yH S t t t tρ ρ ρ ρ↓↑ ↓↑ ↓↑ ↓↑

          = − + + − − −             
   (19) 

( ) ( ) ( )( ) ( ) ( )( )ˆ ln ln ,zH S t t t tρ ρ ρ ρ↑↑ ↑↑ ↓↓ ↓↓= − −                      (20) 

where ( ) ( ) ( ), ,Ret t tρ ρ ρ↑↑ ↓↓ ↓↑  and ( )( )Im tρ↓↑  are given by 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

2222 22 2 2
2

0 0

0

12

sin 1sin
cos cos sin 1

2 2 2

1sin sin
sin | 1 cos sin cos

2

sin cos 21
1

n n
n

nn nn

n n
n

n nn

n

n

n
t B n n B n

n
B n B n n

n
B n

θ θρ χ

θ φ χ φ

θγ

∞ ∞

↑↑
= =

∞

=

−

   ϒ + ϒ ∆ = ϒ + − + +      Ω Ω     
 
  + ϒ  ϒ  ∆ − + ϒ − −   Ω   Ω   

 ϒ
− −

Ω −

∑ ∑

∑

2 
  
 
 

  

 (21) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ) ( )

22
2 22 2 21 1

1 2
10 01

1 1
1

1 10

sin sin
sin cos 1 cos 1

2 2 2

sin sin
sin 1 cos sin 1 cos

2

n n
n

nn nn

n n
n

n nn

n
t B n n B n

n
B n B n n

θ θρ χ

θ φ χ φ

∞ ∞
− −

−↓↓
−= =−

∞
− −

−
− −=

   ϒ ϒ ∆ = ϒ + − − + −          ΩΩ     
 ϒ ϒ   ∆ + − ϒ − − −   Ω   Ω  

∑ ∑

∑

(22) 

( ) ( ) ( ){ ( ) ( ) }1 1
0

Re , cos , sinR n n v n n
n

t U n t t R R U n t t R Rρ γ γ
∞

− −↓↑
=

   = − + −   ∑           (23) 

( ) ( ) ( ){ ( ) ( ) }1 1
0

Im , sin , cosR n n v n n
n

t U n t t R R U n t t R Rρ γ γ
∞

− −↓↑
=

   = − − −   ∑           (24) 

( ) ( )( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 1

1

2 2
1 1 1

1 1

1 sin sin cossin, cos sin 1 1
2

sin sin cos 1 sin sin sin2 21 1

n n
R n n

n n

n n n n n n

n n n n

n n
U n t X Y B n B n B n

n n
B n B n B n B n

φθ φ φ

θ θδ δ

−

−

− − −

− −

+ ϒ ϒ
= + + + −

Ω Ω

ϒ ϒ + ϒ ϒ
+ − − +

Ω Ω Ω Ω

   (25) 

( ) ( )( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 1

1

2 2
1 1

1

1 sin sin sinsin, sin cos 1 1
2

sin cos cos 1sin sin sin2 21 1

n n
V n n

n n

n n n n

n n

n n
U n t X Y B n B n B n

n n
B n B n B n B n

φθ φ φ

θ θ

−

−

− −

−

+ ϒ ϒ
= − − + −

Ω Ω

ϒ ϒ + ϒ ϒ
+ − − +

Ω Ω

   (26) 

1 1 1 1 1
1

1 1

sin sin sin cos sin cos
cos cos n n n n n n n n n n

n n n n
n n n n

X Y
δ δ δ δ− − − − −

−
− −

ϒ ϒ ϒ ϒ ϒ ϒ
= ϒ ϒ − = +

Ω Ω Ω Ω
       (27) 

Since the uncertainty relation of the entropy can be used as a general criterion for the squeezing of an atom, 
therefore for a two-level atom. For 2N = , we have ( )ˆ0 ln 2,H Sα≤ ≤  and the Shannon information entropies 
of the operators ˆ ˆ ˆ, ,x y zS S S  will satisfy the inequality 

( ) ( ) ( )ˆ ˆ ˆ 2 ln 2.x y zH S H S H S+ + ≥                             (27) 

In other words, if we define ( ) ( )ˆ ˆexp ,H S H Sα αδ  =    then we can write 

( ) ( ) ( )ˆ ˆ ˆ 4.x y zH S H S H Sδ δ δ ≥                              (28) 

It is evident that ( )ˆ 1H Sαδ =  corresponds to the atom being in a pure state and ( )ˆ 2H Sαδ =  corresponds to 
the atom being in a mixed state. The EUR (16) shows the impossibility of simultaneously having complete infor- 
mation about the observables ( ) ( )ˆ ˆ,x yS t S t  and ( )ˆ ,zS t  where ( )ˆ

xH Sδ  and ( )ˆ
yH Sδ  respectively measure 
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the uncertainties of the polarization components ˆ
xS  and .

ˆ
yS  

Now, we define the squeezing of the atom using EUR (16), named squeezing entropy [5]. The fluctuation of 
the component ( )ˆ   or  S x yα α =  of the atom dipole are said to be “squeezed in entropy” if the information en- 
tropy ( )( )ˆH S tα  of Ŝα  satisfies the condition 

( ) ( )
( )

2ˆ ˆ 0, , 
ˆ

z

E S H S x y
H S

α αδ α
δ

= − < =                           (29) 

n what follows we shall consider the effect of detuning parameter and the nonlinear Kerr like medium on the 
dynamical behavior of the squeezing entropy of the system under consideration. 

5. Numerical Computation 
On the basis of the analytical solution presented in the previous section, we shall study numerically the depen-  
dence of the ( ) ( )ˆ ˆ,x yE S E S  entropy squeezing and the atomic inversion ( )W t , for various parameters of the  

one photon model. We recall that time t  has been scaled; one unit of time is given by the inverse of the coupling 
constant λ . In all our plots we take η  to represent the Lamb-Dicke parameter and the parameter α . For the  
case of 0χ∆ = =  (Figure 1), we investigate the influence of the mean photon number on the entropy squeezing  
 

 

Figure 1. The time evolution of the entropy squeezing factors ( )ˆ
xE S , ( )ˆ

yE S  and population inversion 

( )W t  of a two-level atom interacting with a single-mode in the excited state 0,θ φ= =  for parameter 

0, 0.8χ η= ∆ = =  and with different values of the parameter α  where 1α =  in Figures (a,d,g), 3α =  

in Figures (b,e,h) and 6α =  in Figures (c,f,i).                                                     
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factor ( ) ( )ˆ ˆ,x yE S E S , and population inversion ( )W t . We notice that no squeezing occurs on the atomic varia- 

ble ˆ
xS  as the parameter increased (see Figures 1(a)-(c)). 

But Figures 1(d)-(f), present that with increasing the parameter α , the entropy squeezing on the atomic va- 
riables ˆ

yS  is increased. Also the quantum revival is increased but the collapse phenomenon is decreased as 
α  increase (see Figures 1(g)-(i)). These results agree with the case of coherent field but the difference be- 

tween the coherent state and the nonlinear coherent state appear on the collapse and revival phenomena. For 
fixed values of the detuning ,∆  the detuning parameter and the case of absence the nonlinear medium parame-  
ter 0,χ =  the entropy squeezing factor ( )ˆ

xE S  and ( )ˆ
yE S  are plotted as a function of the scaled time t ,  

where we set three different values of ,∆  i.e. 1,5,10∆ = . We noticed no entropy squeezing on the atomic va- 
riable ˆ

xS  as the detuning parameter increases; see Figures 2(a), (c). Although there is great entropy squeezing 
on when 1∆ = , see Figure 2(d) and no squeezing on ˆ

yS  when 5,10∆ =  see Figures 2(c) and (f). 
This is because ( ) 0,W t >  then 

( ) ( ) ( )ˆ ˆˆ e 2ey xH S H S
yE S −
= −                                (30) 

where ( ) ˆ .zW t S=  Also one can see as the detuning parameter increased the period of evolution increased. 
Figure 3 explains the effect of the detuning parameter when the atom is initially in the superposition state of the 
upper and lower atomic states and all the other parameters are the same as Figure 2. It is observed that the situa- 
tion is completely different between the excited and superposition states (see Figures 2 and 3) First we see that 
when the detuning increases, the entropy squeezing on the atomic variables ˆ

xS  increases. 
Also there is a great entropy squeezing on the ˆ .yS  
In order to see how the entropy squeezing influenced by the nonlinear medium parameter, we set two different 

values of the Kerr-medium parameter. Figures 4(a), (d) and (g) show the absence of the nonlinear parameter but 
 

 

Figure 2. The time evolution of the entropy squeezing factors ( )ˆ ,xE S  

( )ˆ
yE S  and population inversion ( )W t  of a two-level atom interacting 

with a single-mode in the excited state 0,θ ϕ= =  for parameter 0,χ =  
6, 0.8α η= =  and with different values of the parameter ∆  where 1∆ =  in 

Figures 2(a) (d) (g), 5∆ =  in Figures 2(b) (e) (h) and 10∆ =  in Figures 2(c) 
(f) (i).                                                          
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Figure 3. The time evolution of the entropy squeezing factors 

( ) ( )ˆ ˆ,x yE S E S  and population inversion ( )W t  of a two-level atom in- 

teracting with a single-mode as Figure 2 but π 2θ =  and π 4.φ =       
 

 

Figure 4. The time evolution of the entropy squeezing factors ( ) ( )ˆ ˆ,x yE S E S  and population inversion 

( )W t  of a two-level atom interacting with a single-mode in the excited state 0,θ ϕ= =  for parameter 

6, 0, 0.6α η= ∆ = =  and with different values of the Kerr nonlinearity parameter χ  where 0χ =  in 
Figures 4(a) (d) (g), 0.3χ =  in Figures 4(b) (e) (h) and 0.5χ =  in Figures 4(c) (f) (i).                
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the other figures show the influence of the nonlinear parameter. It is remarkable that the nonlinear parameter leads 
to the following effects, no entropy squeezing occurs on ˆ

xS  when 0,χ =  but there is entropy squeezing on 
ˆ .yS  When 0.3,χ =  there is an optimal entropy squeezing on both the atomic variables ˆ

xS  and ˆ .yS  For large 
values of χ  as 0.5χ =  one can see there are more and more optimal entropy squeezing on both of the atomic 
variables ˆ

xS  and ˆ .yS   
Also the entropy squeezing factors ( )ˆ

xE S  and ( )ˆ
yE S  are periodic functions, which have a period π  and 

2π  respectively (see Figures 4(c) and (f)). 
In order to explain the difference between the sources of the radiation fields of the coherent state and the non- 

linear coherent state, we must set different values of the Lamb-Diche parameter ( )0,0.5,0.9 .η  When 0η = , 
then the field is initially in the coherent state, but when 0η ≠  the field is initially in the nonlinear coherent 
state. Figures 5(a), (d) and (g) show the entropy squeezing in the case of coherent state, which has been ex- 
amined in many papers [2] [5] [7]. But Figures 5(b), (e) and (h) show the difference between the coherent and 
new nonlinear coherent states, where we set 0.5η =  while we set 0.9η =  in Figures 5(d), (f) and (i). One 
can see there is strong entropy squeezing on the atomic variables ˆ

yS  and there is an entropy squeezing and the 
period of collapse also increases. 

6. Conclusions 
We have treated the entropy squeezing of a two-level atom when the field is initially prepared in the NCS. New 
results can be explored as follows. 

1) When the field is initially in an NCS, then rich features of the entropy squeezing can be observed, then the 
entropy squeezing is a good measurement of the information concerning the case of trapped ion. 

2) There is a great difference between the influence of the nonlinearity function f(n), which is used in the de- 
 

 

Figure 5. The time evolution of the entropy squeezing factors ( )ˆ
xE S , 

( )ˆ
yE S  and population inversion ( )W t  of a two-level atom interacting with 

a single-mode in the excited state 0,θ ϕ= =  for parameter 
0, 6χ α= ∆ = =  and with different values of the Lamb-Dicke parameter η  

where 0η =  in Figures (a,d,g), 0.5η =  in Figures 5(b) (e) (h) and 
0.9η =  in Figures 5(c) (f) (i).                                        
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scription of the motion of a trapped ion through Lamb-Dicke parameter η  and Kerr medium nonlinearity 
through parameter χ . The first decreases the entropy squeezing but the second increases entropy squeezing. 
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