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Abstract 
In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and 
marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum sys- 
tem. We obtain the expectation values of the atomic variables using specific initial conditions. We 
examine the effects of different parameters on the scaled atomic Wehrl entropy and marginal 
atomic Wehrl density. We observe an interesting monotonic relation between the different physi- 
cal quantities for different values of the initial atomic position and detuning parameter. 
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1. Introduction 
Quantum entropy, is considered the main generalization of the Boltzmann classical entropy, proposed by von 
Neumann [1]. It has been applied, as a measure to many aspects in quantum information processing such as 
quantum entanglement, photocount statistics, quantum decoherence, quantum optical correlations, purity of the 
quantum states, accessible information in quantum measurement. The quantification of entanglement is neces- 
sary to understand and develop the quantum information theory. For this reason different entanglement measures 
have been used for the mixed and pure states such as concurrence [2]-[5], entanglement of formation [6] [7], and 
negativity [2] [3]. In this way, the concurrence and negativity are used as a good entanglement measure for 
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mixed state, but the von Neumann entropy has been proposed for pure state entanglement [1], all these measures 
to test whether a given quantum state is separable or entangled. Also, some interesting physical phenomenon is 
observed as a result of entanglement measure, such as “entanglement sudden death” (ESD), entanglement sud- 
den birth (ESB) [8]-[14]. 

The Wehrl entropy (WE) is more sensitive in distinguishing states than the von Neumann entropy since WE is 
a state dependent [15]. The concept of the Wehrl phase distribution (WPD) has been developed and shown that 
it serves as a measure of both noise (phase-space uncertainty) and phase randomization [16]. Furthermore, the 
WE has been applied to some dynamical systems, too. In this respect, the time evolution of the field WE for the 
Kerr-like medium has been discussed in [17] [18] showing that the FWE gives a clear signature for the forma- 
tion of finite superposition of coherent states (cat-like states) as well as the number of coherent components tak- 
ing part in the superposition. For the trapped ion system the WE gives an information on the dynamical proper- 
ties and entanglement of the system [19] [20]. On the other hand some features of WE and WPD of a single- 
Cooper pair box placed inside a dissipative cavity have been discussed [21]. It is shown that phase damping 
leads to generating long living correlation of the system. 

Different entanglement measures and quantifiers for mixed and pure states have been proposed, such as the 
negativity and atomic Wehrl entropy. The relation between mixed state entanglement and the atomic Wehrl en- 
tropy (AWE) has not been studied widely. However, there are some attempts to quantify the pure state entan- 
glement by using AWE. In this context, the entanglement evaluation with AWE and atomic Fisher information 
has been investigated [22] [23]. It has been found that entanglement of a two-level atom can be measured by 
AWE and their marginal distribution. On the other hand, atomic Wehrl entropy was used as an entanglement 
measure for a mixed state two-level system in the presence of intrinsic decoherence [24]. It found that the in- 
formation about entanglement is obtained by comparing the results for the atomic Wehrl entropy and negativity 
with the analytical results for a simple case.  

Realistic quantum systems are not closed, which causes the rapid destruction of crucial quantum properties. 
Therefore, the unavoidable interaction between a quantum system, understanding the dynamics of entanglement 
measures and finding the correlation between different phenomenons may stimulate great interest. In the present 
article, our main interest is to investigate the evolution of the scaled atomic Wehrl entropy (AWE) of a single 
two-level atom and SU(1,1) quantum system in the presence of detuning parameter, which leads us to address 
the question: Can the AWE be used as a indicator of the entanglement and dynamical properties of the system in 
the presence of non-linear terms? 

The article is organized as follows: In Section 2, we introduce the model of the single two-level and SU(1,1) 
quantum system in the presence of detuning parameter. The definitions of the scaled atomic Wehrl entropy, 
atomic inversion and marginal atomic Wehrl density are introduced in Section 3. We conclude the main results 
with some remarks in Section 4. 

2. The System Hamiltonian 
The Hamiltonian which describe the interaction between a single two-level atom and ( )1,1SU  quantum system 
take the following form 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2
1 2 1 11 2 22 12 21 ,z zH k k S S k k S k k Sω ω λ − − + += + +Ω +Ω + +                 (1) 

where ω  is the frequency of the system, jΩ  is the energy and ijS  are elements of the ( )1,1SU  group ob- 
eying the following commutation relation 

, ,ij kl il kj kj ilS S S Sδ δ  = −                                  (2) 

while k±  and zk  satisfy the following commutation relation 

[ ] [ ] ,, , , 2  and , 0.z z ij zk k k k k k S k± ± − + ± = ± = =                        (3) 

The Heisenberg equation of motion for any operator O  is given by 

[ ] ( )i , , 1dO O H
dt

= =                               (4) 
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thus, the equations of motion for ijS  and zk  are given by 

[ ] ( ) ( ) ( ) ( ){ }1 2 1 211
11 12 21

d
i , ,

d
S S H k k S k k S
t

λ − − + += = −                       (5) 

( ) ( ) ( ) ( ){ }1 2 1 222
22, 12 21

d
i ,

d
S S H k k S k k S
t

λ − − + + = = − −                       (6) 

( )
( ) ( ) ( ) ( ) ( ){ }

1
1 1 2 1 2

12 21
d

i , ,
d

z
z

k k H k k S k k S
t

λ − − + +
 = = − −                      (7) 

( )
( ) ( ) ( ) ( ) ( ){ }

2
2 1 2 1 2

12 21
d

i , ,
d

z
z

k k H k k S k k S
t

λ − − + +
 = = − −                      (8) 

( ) ( )1 2
11 22d d d d

i i i i 0
d d d d

z zS S k k
t t t t
− + + =                           (9) 

then 

( ) ( )1 2
11 22 constant of motionz zS S k k− + + =  

In this case, we have ( )1
1 11zN k S= + , ( )2

2 22zN k S= −  are constant of motion. Therefore, the Hamiltonian 
takes the following form 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )
( ) ( )

( ) ( ) ( )

( ) ( )

1 2 1 2 1 2
1 2 1 11 2 22 12 21

1 2
0 1 2 1 11 2 22

0 1 1 11 2 2 22 1 11 2 22

0 1 1 2 2 1 1 11 2 2 22

0 1 1 2 2 1 1 11 22 11 22

2 2 11 22

,

,

( ) ,

,

1 1
2 2

1 1
2

z z

z z

H k k S S k k S k k S

H k k S S

H N S N S S S

H N N S S

H N N S S S S

S S

ω ω λ

ω ω

ω ω

ω ω ω ω

ω ω ω

ω

− − + += + +Ω +Ω + +

= + +Ω +Ω

= − + + +Ω +Ω

= + + Ω − + Ω +

 = + + Ω − − + + 
 

+ Ω + + − ( )

( ) ( )

( )

( )

11 22

1 1 2 2
0 1 1 2 2 11 22

0 1 1 2 2 11 22

1 1 2 2 11 22 int

int

,
2

,
2

,
2

,
2

  ,

S S

H N N S S

H N N S S

H N N S S H

H N C H

ω ω
ω ω

ω ω

ω ω

 − 
 

Ω − −Ω −
= + + −

∆
= + + −

∆
= + + − +

= + +

                (10) 

where ( )11 22 int2
C S S H∆
= − +  with 1 1 2 2ω ω∆ = Ω − −Ω − . We note that [ ], 0N C = , therefore  

[ ] [ ], 0 , ,N H H C= =  i.e. N  and C  are constants of motion, where 1 1 2 2N N Nω ω= +  the time evolution 
operator is defined 

( ) ( )exp i ,U t Ht= −                                     (11) 

thus 

( ) ( ) ( ) ( )1 1 2 2exp i exp i exp i ,U t N t N t Ctω ω= − − −                       (12) 

where 
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( )

( )

( )

( )

( )

( )

1
1

1 1
1

1

2
2

2 2
2

2

1exp i 0
2

exp i ,
10 exp i
2

1exp i 0
2

exp i ,
10 exp i
2

z

z

z

z

k t
N t

k t

k t
N t

k t

ω
ω

ω

ω
ω

ω

   − +      − =     − −      
   − +      − =     − −      

                 (13) 

( ) ( )

( ) ( )

1 2

1 2

2 ,

2

k k
C

k k

λ

λ

− −

+ +

∆ 
 

=  
∆ −  

                                  (14) 

2
2 1

2
2

0
,

0
C

µ
µ

 
=  
 

                                     (15) 

where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 1 2 22 2

1 1

1 1 2 22
1

2 2
1 1 2 22 2

2 2

1 1 2 22
2

,
4 4

,

,  
4 4

,

k k k k

k k k k

k k k k

k k k k

µ λ ν

ν λ

µ λ ν

ν λ

− + − +

− + − +

+ − + −

+ − + −

∆ ∆
= + = +

=

∆ ∆
= + = +

=

                          (16) 

we note that 
( ) ( ) ( ) ( )1 2 1 22 2

2 1 ,k k k kµ µ− − − −=                                     (17) 

also 
( ) ( ) ( ) ( )1 2 1 22 2

1 2 ,k k k kµ µ+ + + +=                                    (18) 

( ) ( )

( ) ( )

1 22 2
1 1

3

1 22 2
2 2

2 ,

2

k k
C

k k

µ µ λ

µ λ µ

− −

+ +

∆ 
 

=  
∆ −  

                               (19) 

4
4 1

4
2

0
,

0
C

µ
µ

 
=  
 

                                     (20) 

( ) ( ) ( )2 3 2 2 3 3i iiexp i i i i ,
1! 2! 3! 2! 3!

Ct CtCt C t C tCt I I Ct
− −−

− = + + + + = − − + +            (21) 

( )
( ) ( )

( ) ( )

1 21 1
1

1 1

1 22 2
2

2 2

sin sinicos i
2

exp i ,
sin sinii cos

2

t tt k k
Ct

t tk k t

µ µ
µ λ

µ µ
µ µ

λ µ
µ µ

− −

+ +

 ∆− − 
 − =
 ∆− +  

                     (22) 

for simplicity we can write 
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( ) 11 12

21 22

,
F F

U t
F F
 

=  
 

                                      (23) 

where 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1
11 1 2 1

1

1 2 1 21
12 1 2

1

1 2 12
21 1 2

2

sin1 1 iexp i i cos ,
2 2 2

sin1 1i exp i i ,
2 2

sin1 1i exp i i
2 2

z z

z z

z z

tF k t k t t

tF k t k t k k

tF k t k t k k

µ
ω ω µ

µ

µ
λ ω ω

µ

µ
λ ω ω

µ

− −

+ +

   ∆   = − + − + −           
    = − − + − +        
    = − − − − −        

( )

( ) ( )

2

1 2 2
22 1 2 2

2

,

sin1 1 iexp i i cos .
2 2 2z z

tF k t k t t µ
ω ω µ

µ
   ∆   = − − − − +           

                (24) 

The time evolution for the expectation value of any operator can be calculate through the following relation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )†0 0 ,O t t O t t U t O t U t= Ψ Ψ = Ψ Ψ                    (25) 

Now the initial state of the system can be written as 

( ) ( ) ( ) ( ) ( )2 1,1
0 0 0 cos sin , ,

2 2SU SU
e g m kθ θ Ψ = Ψ ⊗ Ψ = + 

 
                (26) 

where 
( ) ( )
( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )
( )

1
1 2 1 2 1 1 1 2 1 2

2
1 2 1 2 2 2 1 2 1 2

1
1 2 1 2 1 1 1 1 1 2 1 2

2
1 2 1 2 2 2 2 2 1 2 1 2

1
1 2 1 2 1 1 1 1 2 1 2

2
1 2 1 2 2

, , , , , , ,

, , , , , , ,

, , , 2 1, , , ,

, , , 2 , 1, , ,

, , , 2 1 1, , , ,

, , ,

z

z

k m m k k m k m m k k

k m m k k m k m m k k

k m m k k m k m k m m k k

k m m k k m k m k m m k k

k m m k k m m k m m k k

k m m k k m

+

+

−

−

= +

= +

= + + +

= + + +

= + − −

= ( )2 2 1 2 1 22 1 , 1, , ,m k m m k k+ − −

                  (27) 

( ) ( ) ( ) 11 12 1 2 1 2 21 22 1 2 1 20 cos sin , , cos sin , , ,
2 2 2 2

t U t F F m m k k e F F m m k k gθ θ θ θ   Ψ = Ψ = + + +   
   

 (28) 

Substituting from Equation (26) in Equation (28), then the final form of the wave function can be written as 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2
1 2

1 2
1 2

1 1i i1 2 2 21 1
1 1 2 1 2

1 1

1 1i i1 2 2 22 2
2

2 2

sin sinicos cos i sin e , , ,
2 2 2

sin sinii cos cos sin e
2 2 2

z z

z z

k t k t

k t k

tt t k k m m k k e

t tk k t

ω ω

ω ω

µ µθ θµ λ
µ µ

µ µθ θλ µ
µ µ

   − + − +   
   

− −

 − − − − 
 

+ +

  ∆ Ψ = − −  
   

  ∆ − − +  
   

1 2 1 2, , , .
t

m m k k g
 
 
 

 (29) 

Then the wave function can be written in the form 

( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , , ,t A t m m k k e B t m m k k gΨ = +                   (30) 

and consequently the density matrix ( ) ( ) ( )t t tρ = Ψ Ψ  becomes 

( ) ( ) ( ){ ( ) ( )
( ) ( ) ( ) ( )}

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

, , , , , , , , , , , ,

, , , , , , , , , , , , ,

t A t m m k k e e k k m m A t B t m m k k g g k k m m B t

B t m m k k g e k k m m A t A t m m k k e g k k m m B t

ρ ∗ ∗

∗ ∗

= +

+ +
    (31) 

where 
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( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

1 2
1 2

1 2
1 2

1 1i i 1 22 2 1 1
1

1 1

1 1i i 1 22 2 2 2
2

2 2

sin sinie cos cos i sin ,
2 2 2

sin sinie cos sin i cos ,
2 2 2

z z

z z

k t k t

k t k t

t tA t t k k

t tB t t k k

ω ω

ω ω

µ µθ θµ λ
µ µ

µ µθ θµ λ
µ µ

   − + − +   
   

− −

   − − − −   
   

+ +

  ∆ = − −  
   

  ∆= + −  
  

          (32) 

and 

( ) ( )2 2
1.A t B t+ =                                   (33) 

Thus the expectation value for any operator can be calculated through 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 ,O t O t t O t= Ψ Ψ = Ψ Ψ                    (34) 

where ( )0Ψ  and ( )tΨ  are defined by Equations (26) and (30). With the help of Equations (32), (34), the 
expectation values for the atomic operators xσ , yσ  and zσ  

( ) ( )
2

1 2 1 2 1 2
1 2 1 2

1 2 1 2

sin sin sin cos cos sini isin cos cos sin
2 4 2x

t t t t t tt t t tµ µ µ µ µ µ
σ θ µ µ ω ω

µ µ µ µ
  ∆ ∆ = − + + +  
  

 (35) 

( )

2
1 2 1 2 1 2

1 2
1 2 1 2

1 2

sin sin sin cos cos sin( ) sin cos cos
2 4 2

cos ,

y
t t t t t ti it t t

t

µ µ µ µ µ µσ θ µ µ
µ µ µ µ

ω ω

  ∆ ∆ = − + +  
   

× +    

(36)

  

 

( )( )( )( )

( ) ( )

2 22
2 2 21 1

1 1 1 1 2 2 22 2
1 1

2
2 2 1

1 1 1 2 2 22
1

sin sin( ) cos cos 1 2 1 2
2 4

sinsin 2 2 1 2 1 1 .
2

z
t tt t m m k m m k

t m m k m m k

µ µθσ µ λ
µ µ

µθ λ
µ

  ∆
= + − + + + +  

  
 

+ + − + − − 
  (37)

 

 
Where we have used the abbreviations 

( )( )

( )

2
2

1

2
2

2

1 2 ,  
4

 2 1 .
4

m m k

m m k

µ λ

µ λ

∆
= + + +

∆
= + + −

                             (38) 

3. Scaled Atomic Wehrl Entropy and Marginal Atomic Q-Function 
In this section, we will use the scaled atomic Wehrl entropy as an entanglement quantifier between single two 
level atom and SU(1,1) quantum system. 

The scaled atomic Wehrl entropy can be written in terms of the atomic Q function as [25] [26]: 

 
                  (39) 

In the above equation ( ) ( ) ( ), , , , ln , ,q A AS t Q t Q tΘ Φ = − Θ Φ Θ Φ  is the atomic Wehrl density and  
( ), ,AQ tΘ Φ  is the atomic Q -function which is defined as [27] [28] 

( ) ( )1 ˆ, , , , ,
2πA AQ t tρΘ Φ = Θ Φ Θ Φ                            (40) 

where ( ) ,
A

tρ  is the reduced density of the atom and ,Θ Φ  is the atomic coherent state which is defined in 
the following form 

( ) ( ) i, cos 2 e sin 2 e ,gΦΘ Φ = Θ + Θ                          (41) 
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where Θ  and Φ  is the atomic phase space parameters. Then the atomic Q -function can be written in terms 
of the expectation values of the atomic variables xσ , yσ  and zσ  as follows 

( ) ( ){ ( ) ( ) }1, , 1 cos cos sin sin .
2πA z x yQ t t t tσ σ σ Θ Φ = + Θ+ Φ + Φ Θ                 (42) 

It is worth noting that from the definition (39) the ( )AWSS t , cannot be negative as a result of the AQ  is a 
non-negative function. As it is generally difficult to find a closed form for the ( )AWSS t  numerical techniques 
have to be used. Nevertheless, at particular values of the interaction parameters the exact form can be obtained. 
The shifted (scaled) ( )AWS t  satisfies the following inequality 

( )0 ln 2.AWSS t≤ ≤                                       (43) 

By integrating the atomic Wehrl density ( ), ,qS tΘ Φ  over the atomic variable Φ , we obtain the marginal 
atomic Wehrl density as follows 

2π

0

sin d .qS SΦ = Θ Θ∫                                      (44) 

4. Some Statistical Aspects 
In this section, we discuss and present some statistical aspects such as the atomic inversion ( ) ( )1

2z zt tρ σ= , 
scaled atomic Wehrl entropy ( )AWSS t  and marginal atomic Wehrl density SΦ . We have considered the time 
has been scaled “one the unit of time is given be the inverse of the coupling constant λ ”. 

The atomic inversion of the atom is one of the important atomic dynamic variables of the system. This in fact 
would give us information about the behavior of the atom state during interaction time. In Figure 1, we have 
plotted the dynamical behavior for different values of the involved parameters. We concentrate on the variation of 
the initial atomic position θ  from the excited state, i.e. 0θ =  to the superposition state, i.e. π 2θ =  as well 
as on the excitation number m , which is in analogy with the usual Jaynes-Cummings model, corresponding to 
the number of photons. Firstly, we consider that the system is initially in the excited state 0θ =  and the absence 
of the detuning parameter 0δ = . It is observed that the atomic population inversion has a regular and periodic 
oscillation where the amplitude of oscillation is decreased when 5δ =  (see Figure 1(c)). Figures 1(b), (d) de- 
pict the effect of the superposition state (i.e. π 2θ = ), where the amplitude of oscillations is very small when the 
detuning parameter is taken into consideration (see Figure 1(d)). 
 

 

Figure 1. Time evolution of the atomic inversion ( )z tρ  for 0,φ =  1 2
1
4

k k= =  and the excitation number 1 2 1m m= =  

and with different values of the initial atomic position θ  and detuning parameter δ , where (a) ( ) ( ), 0,0δ θ = , (b) 

( ) π, 0,
2

δ θ  =  
 

, (c) ( ) ( ), 5,0δ θ =  and (d) ( ) π, 5,
2

δ θ  =  
 
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Figure 2 depicts the dynamical behavior of the scaled atomic Wehrl entropy AWSS  for different values of de- 
tuning parameter and initial atomic position when the phase shift between the two levels is neglected and the exci- 
tation number is taken to be the unity. From Figure 1(a), one can infer that before the interaction the scaled 
atomic Wehrl entropy is equal to zero and information about energy levels is not available. This implies that en- 
tanglement cannot be performed before the interaction is switched on. As the scaled time goes on, one see that 

AWSS  is growing and reaches a local maximum value but after a sometime interaction the difference between 
local maximum and local minimum becomes bigger. The system returns on its separable state (i.e. 0AWSS = ) at 

πgt m= , where 0,1,2,m =  . The high amount of entanglement is achieved around the half of periodic time at 
( )2 1 πgt m= + . The amplitude of AWSS  is decrees which means that the case of weak entanglement between 

the two-level atom and input field when the effect of the detuning parameter is taken into account (see Figure 
2(c)). It is observed that the dynamical behavior of AWSS  is completely changed when the two-level atom starts 
the interaction from the superposition state ( )π 4θ = . In general one can see that the high amount of entangle- 
ment is achieved during the time evolution in the comparison with the upper state case ( )0θ = . On the other 
hand 0AWSS =  is dropped to zero at ( )2 1 πgt m= + . Finally, Figure 2(d) presents the influence of the detun- 
ing parameter on the evolution of AWSS  when the initial atomic position π 4θ = . 

Now we are in a position to discuss the evolution of the marginal atomic Wehrl density SΦ  as a function of 
the time and atomic phase space parameter Φ  for different values of initial state setting and detuning parame- 
ter. It is interesting to mention here that the behavior of ( )S tΦ  for different values of the non-fluctuating com- 
ponents of Rabi frequency. It is observed that ( )S tΦ  oscillates between minimum and maximum peaks during 
the time evolution. The distribution of the marginal atomic Wehrl density peaks in depending the initial state 
setting of the two-level atom when the effect detuning parameter is neglected. The behavior of ( )S tΦ  peaks 
becomes regular and periodic when the effect of the detuning parameter is considered. In this case there the ini- 
tial state setting has weak effect on the dynamical behavior of SΦ  (Figure 3). 

5. Conclusion 
Quantum entanglement is a key resource which distinguishes quantum information theory from classical one. It 
plays a central role in quantum information and computation. In this paper, we have discussed the problem of 
the interaction between two-level atom and SU(1,1) quantum system. The model was considered when the two- 
level atom is initially in superposition state and the expectation values of the atomic variable are obtained  
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Figure 3. The surface plot of the marginal atomic Wehrl entropy ( )S tΦ  versus the scaled time tλ  and the phase space 

parameter Φ  for 0,φ =  1 2
1
4

k k= =  and the excitation number 1 2 1m m= =  and with different values of the initial 

atomic position θ  and detuning parameter δ , where (a) ( ) ( ), 0,0δ θ = , (b) ( ) π, 0,
2

δ θ  =  
 

, (c) ( ) ( ), 5,0δ θ =  and (d) 

( ) π, 5,
2

δ θ  =  
 

.                                                                                         

 
analytically. Using the scaled atomic Wehrl entropy the system entanglement has been investigated. The analy- 
sis herein has been carried out at two distinct considerations of the detuning parameter and initial atomic state 
setting. Our results show that the SU(1,1) quantum field-atom interaction considering the effect of the initial 
state setting and detuning parameter has much richer structure. The initial atomic state position and detuning 
parameter has an important role on the dynamics of the atomic inversion, scaled atomic Wehrl entropy and mar- 
ginal atomic Wehrl density. 
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