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ABSTRACT 

We present a scheme for generating entanglement between two spatially separated systems from the spatial entangle- 
ment generated by the interference effect during the evolution of a single-particle quantum walk. Any two systems 
which can interact with the spatial modes entangled during the walk evolution can be entangled using this scheme. A 
notable feature is the ability to control the quantum walk dynamics and its localization at desired pair lattice sites irre- 
spective of separation distance resulting in a substantial control and improvement in the entanglement output. Imple- 
mentation schemes to entangle spatially separated atoms using quantum walk on a single atom is also presented. 
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1. Introduction 

Entanglement is an indispensable resource for perform- 
ing various quantum tasks (see [1] for a recent review, [2] 
and reference therein for entanglement preparation). Se- 
veral schemes have been proposed [3-6] for the generation 
and distribution of entanglement between different sys- 
tems, most of which involve an initial entangling of the 
two systems followed by spatial separation. Such spa- 
tially separated and entangled states can be used for quan- 
tum communication protocols, for example, quantum cryp- 
tography [7] and quantum teleportation [8]. Amount of 
entanglement degrades with increase in spatial separa- 
tion because of physical limitations and noise effect. One 
way of circumventing this problem would be to generate 
entanglement when the two systems are spatially sepa- 
rated. 

In this article, we present a new scheme to efficiently 
generate entanglement between two spatially separated 
systems from a single particle system [9]. It has been 
shown by two of the present authors that a quantum 
walks evolution of a particle in a one-dimensional lattice 
results in the entanglement of the lattice sites after a suf- 
ficient number of walk steps [10]. Although this spatial 
entanglement by itself does not have much physical sig- 
nificance, we nevertheless make use of it in entangling 
two initially unentangled systems that are spatially sepa- 
rated. Direct control over the quantum coin operation 

makes it possible to control the dynamics of the evolu- 
tion of the quantum walk [11,12] which in turn allows us 
to optimize the entanglement output. The ability to lo- 
calize the evolution at different lattice sites simulta- 
neously, a novel phenomenon which has been discussed 
for the first time in this article, leads to a substantial im- 
provement in the entanglement generated. This is a ge- 
neric scheme that can be implemented to entangle any 
two systems that interact with the modes entangled due 
to quantum walk. Experimental implementation of quan- 
tum walk has been reported with samples in nuclear 
magnetic resonance (NMR) systems [13-15]; in the form 
of optical Galton board [16] and quantum quincunx [17]; 
in the continuous tunneling of light fields through wave- 
guide lattices [18]; in the phase space of trapped ions [19, 
20]; with single optically trapped atoms [21]; and with 
single photon [22,23]. There are various other schemes 
proposed to implement quantum walk in other systems 
[24-26]. Using our scheme, all these systems have the 
potential to generate entanglement between two spatially 
separated, uncorrelated systems. 

This article is arranged as follows. In Section 2 we 
describe a toy model which has the basic ingredients of 
our proposal: 1) Two entangled modes are generated and 
distributed to the distant locations of two uncorrelated 
systems A and B; 2) The entanglement of these modes is 
then transferred to A and B via some interaction. In Sec- 
tion 3 we describe the discrete-time quantum walk model 
and the entanglement between its spatial degrees of free- *Corresponding author. 
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dom. Section 4 discusses how to use this spatial entan- 
glement to entangle two uncorrelated, spatially separated 
systems A and B. The Hamiltonian modelling the inter- 
action of these systems with the lattice sites is motivated 
by two examples: quantum walk with single photons and 
quantum walk in a spin chain; in both cases A and B are 
taken to be two-level systems. In Section 5 we explain 
how to localize the quantum walk distribution around 
desired lattice sites, in such a way that the entanglement 
between these sites is maximized. We then show how 
this affects the entanglement transferred to systems A 
and B. In Section 6 we propose experimental implement- 
tations of our proposal to entangle two uncorrelated 
atoms in an optical lattice. We conclude in Section 7. 

2. Toy Model 

Before proceeding to our scheme, we will introduce the 
basic idea using a simple model involving a beam splitter, 
a photon, and two two-level atoms. The aim is to gene- 
rate entanglement between the uncorrelated atoms, label- 
ed by A and B, which are placed in distant locations (see 
Figure 1). First, a photon in the initial state p  is 
passed through the beam splitter. The state of the photon 
passing through the beam splitter are spatially separated 
into the horizontal(h) and vertical(v) modes and it can be 
written as 

S h    v                (1) 

such that 
2 2

1   , where 
2  and 

2  repre- 
sent the probability of finding the photon in the h and v 
modes, respectively. For convenience, we can rewrite the 
state of the photonic modes in terms of the number of 
photons in each polarization mode: 

10 01S hv hv
    .           (2) 

The state 10
hv

  01 hv
 represents one photon in 

the h(v) mode and no photon in v(h) mode. This state is 
entangled unless α or β is zero. This entanglement be- 
tween the polarization modes can be used to entangle A 
and B. This is done by placing atoms A and B initially in 
the ground state   and g g

A B
 at the two exit points 

of the photon coming from the beam splitter. The condi- 
tions are such that if the photon is in v(h) mode, atom 
A(B) will get excited, that is,  e e

A B
. The final col- 

lective state of these two atoms can be written as: 

a AB AB
ge eg    .        (3) 

This provides a very simple model of generating en-
tanglement between two distant systems from the entan-
glement between the photonic modes. Its pictorial repre-
sentation is as in Figure 1. As we commented at the end 
of the Introduction, the new scheme we propose below 
has the ingredients of the preceding toy model; which we 
now describe. 

 

Figure 1. Photon in state when Pψ passed through the 
beam splitter gets separated making h and v modes which 
are entangled. Two, initially uncorrelated, two-level atoms 
(A and B) in ground state can be entangled by interacting 
them with the two modes separately. 

3. Spatial Entanglement Using  
Single-Particle Quantum Walk 

Discrete-time quantum walk is defined on a coin Hilbert 
space Ηc and position Hilbert space ΗP. In one dimension, 
Ηc is spanned by the basis states 0  and 1  and ΗP. 
is spanned by the basis state ,j j Z  . Each step of 
the quantum walk on a particle initially in superposition 
of the coin states at origin (j = 0) given by, 

0

1
0 1

2
in i                     (4) 

is implemented by applying a conditional shift operation 
S followed by the quantum coin operation C. The opera-
tion S can be defined such that the state 0   1  
moves to the left (right), 

1 10 0 1 1j j j jj Z
S     

      . (5) 

The operation C follows the operation S and evolves 
the coin basis states [11,27,28]. It was shown in [12] that 
complete control over the dynamics of the walk can state 
at the new position into a superposition of the be accom- 
plished by choosing C as a three parameter SU(2) group 
element; here, however, we take, for simplicity, the widely 
used Hadamard operator, that is, 

1 11

1 12
C H


    


 ,             (6) 

which is an element of U(2) group. In order to show the 
analytics of spatial entanglement, we consider only three 
steps of the walk, after which the state of the particle can 
be written as: 

   

1 1

1 1

1
      0 3

2 2

                  3 1

a i

a

a

S H I S H I S

x

x i

 

 

 

  

  

  

 

  

n

      (7) 

where  
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 1 1 0 1x i       3  

and  1 0 1 1 3x i i       . Let us concentrate 
on the lattice sites −1 and +1 only, and denote its position 
states as 1 10  and 1 01  . The reduced 
density matrix, after tracing out the other lattice sites and 
the coin degrees of freedom, is: 

1, 1

1
2 00 00 3 10 10 3 01 01

8

               3 10 01 3 01 10



 

 



   

  

    (8)  

where 1 1x x    and 00  refers to the state when 
the walker is neither in the +1 nor in the −1 site. The par- 
tial transpose of the above matrix will always be non- 
positive. Therefore, the reduced density matrix 1, 1   
represents an entangled state showing that the lattice sites 
−1 and +1 are entangled (cf. [29]). The next task is to use 
this spatial entanglement to generate entanglement be- 
tween two uncorrelated systems which we will call A and 
B in the following. 

4. Generation of Entanglement between Two 
Spatially Separated Systems from  
Spatially Entangles Modes 

It was shown some years ago that two distant spins A and 
B become entangled after interacting with the spins of an 
entangled pair through a beam-splitter-like Hamiltonians 
[30]. The protocol, we propose, to generate entanglement 
between systems A and B is to: (1) evolve the desired 
number of quantum walk steps on a particle in lattice to 
generate entanglement between two spatial modes with- 
out having A and B interacting with the lattice, and (2) 
stop the quantum walk evolution and switch on the in-
teraction between A and B at the desired lattice sites 
which are spatially entangled. The interaction of systems 
A and B with the entangled lattice sites depends upon the 
nature of the system, on which quantum walk is being 
performed and the properties of the system A and B. In 
this section, we will consider entangling two distant spins, 
fermions using quantum walk on a one-dimensional lat- 
tice consisting of spin-1/2 particles and this can be ex-
tended to bosonic system as shown in Section 6. 

For a spin-1/2 system, the spin hops from one lattice 
site to another in a quantum walk evolution. By using 
Jordon-Wigner transformation [31] a spin-1/2 system can 
be mapped to a spinless fermionic system. Therefore, a 
one-dimensional spin-1/2 lattice with all spins but one, 
pointing downward can be viewed as a system consisting 
of a single spinless fermion. By attaching an extra coin 
degree of freedom with the fermion one can perform 
quantum walk. Now if systems A and B are also spin-1/2 
particles, spanned by the basis  , g e  interacting 
with the spins at ±l lattice sites, the interaction Hamilto-

nian can be written as 

 f
lH w           .        (9) 

In the preceding Hamiltonian,    and    stands 
for the lowering, g e and raising, e g  operator 
for spin respectively. After letting A interact with spatial 
mode of spin at –l and B with spatial mode of spin at –l 
for time t given by the evolution operator 

 exp f
IU iH  l t ,               (10) 

and the state of the system AB can be written as: 

 AB ij AB ijij
t A  A .               (11) 

Here ij j jA i W n  are Kraus operators and:  

 i  is an orthonormal basis in  4

1 1
1

, ,j j
j

H H n  
   

forms the set of eigenvalues and eigenvectors for 1, 1   
and ρAB is the initial state of the system AB. The unitary 
operator W, responsible for the joint evolution is: 

  T
I IW P U U P               (12) 

where P is a permutation operator such that 

 1 1 1 1A B AP H H H H H H H H          B . (13) 

More detailed description of the process of transferring 
the entanglement in spin system can be seen in Ref. [32] 
where quantum walk has been used for state transfer in a 
spin system. 

In Figure 2, we show the evolution of entanglement 
between systems and for different initial states, using 
concurrence [33] as the measure. Following the previous 
section, we have considered the interaction of and with 
the −1 and +1 lattice sites, respectively, after three steps 
of the walk. We observe that the amount of entanglement 
depends on the initial state of the system and different  

 

 

Figure 2. The evolution of generated entanglement between 
A and B, spanned by the basis  ,g e  with different 
initial states under the influence of interaction with entan-
gled lattice sites ±1 after three step of quantum walk. (a)  

00 00ABρ = , (b) 11 11ABρ =  and (c)   = 2ABρ z  

 00 + 11   00 + 11 . 
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separable states achieve maxi-mum entanglement at the 
same time. 

5. Localization of Quantum Walk at  
Different Lattice Sites 

The degree of spatial entanglement between two lattice 
sites depends largely on two points [10]: 1) the degree of 
interference during the quantum walk, and 2) the value of 
the probability amplitude at the particular lattice sites. 
Both of these can be achieved by evolving and localizing 
the quantum walk around the desired lattice sites with 
some degree of interference. To further understand the 
contribution of localization of quantum walk to increase 
the degree of spatial entanglement, we will consider the 
lattice state after t steps of quantum walk that can be 
written as 

t jjlatt
x j   ,         (14) 

j  represents a state where lattice site j is occupied 
with other sites being empty and jx represents the cor-
responding coin state. Let us say we are interested in 
particular lattice sites ±l. Then in the reduced density 
matrix 1, 1   which is of the form given by Equation 
(8), with off diagonal terms 1 1x x   and diagonal 
terms depending on the amplitude of all j  states, the 
states other than l  will also contribute to 00 00  
If the amplitude of all the j  states except for 

 is zero then the coefficient of ,j l  l 00 00  will 
be zero resulting in the maximum value of 1 1x x   
which contributes for spatial entanglement. Therefore, in 
localized states, that is, the states in which the amplitude 
is localized in a very narrow lattice space, the coefficient 
of 00 00  will be very small resulting in maximizing 

1 1x x   and hence the amount of spatial entanglement 
will be more. 

To realize this using quantum walk, we will begin by 
generalizing the previous discussions on quantum walk 
evolution by taking a more general coin operator 

   
   

cos sin

sin cos
C

 
 

 
   

 .            (15) 

During the walk evolution, if θ = 0 the amplitude of 
the two basis states move away from each other and for θ 
= π/2 the amplitude shifts between the origin (j = 0) and 
its neighboring positions (±1). In both these cases the 
walk evolves without resulting in any interference [12]. 
Even for θ close to 0 and π/2 the interference effect will 
be very small resulting in very small or zero spatial en-
tanglement. When θ = π/24 the walk evolves with good 
degree of interference but with a spread of the amplitudes 
in position space (asymptotically, the distribution is ho-
mogeneous) resulting in a very low amplitude for lattice 
sites ±l far away from each other. Therefore, to maximize 

the amount of spatial entanglement between lattice sites 
irrespective of the separation distance, one needs to con-
trol the quantum walk evolution in such a way that its 
amplitude is localized, with a good degree of interference 
for any lattice site separation distance. 

Localization of quantum walk at the origin has been 
discussed in Refs. [34-38]. Here, we briefly discuss a 
way to localize the walk around the desired lattice sites 
such that, it is scalable for site ±l far away from each 
other. This can be done by first delocalizing the walk to 
sites ±l with minimum interference resulting in large 

l lx x   and very small l lx x  followed by local-
ization around sites ±l to improve l lx x  at the cost 
of l lx x  . As discussed earlier, choosing θ very close 
to zero will result in two peaks at lattice sites ±l = 
±tcos(θ) moving away from each other with minimal 
interference, where t is the number of steps of the walk 
[12]. Therefore, even for very large t steps, of walk de-
localize at ±l position with very small l lx x . In Ref. 
[36] it was shown that choosing a value of θ randomly 
picked from the interval {π/4, π/2} at each step of the 
walk, localizes the quantum walk distribution around the 
initial position and the localization is a result of inter- 
ference. Therefore, choosing θ randomly from the inter-
val {π/4, π/2} for each step of the after the walk is delo-
calized at ±l results in some improvement of l lx x  
at the cost of l lx x   which in turn contributes for 
spatial entanglement. 

Figure 3, shows the localization of the amplitudes at 
positions −95 and +95 after 100 and 200 steps of the 
walk; for the first 95 steps we choose θ ≈ π/36 followed 
by θ ∈{π/4, π/2} for remaining steps. Note that the peaks 
do not move away even after 200 steps of the walk. This 
protocol for localization at desired sites will hold even 
for a very large spatial separation of lattice sites making 
it scalable. One should avoid using θ = 0 during the first 
part of the evolution, because as commented above, the 
walk, in this case, evolves without interference. As for 
the entanglement transferred to the uncorrelated systems 
A and B (see the previous section), in Figure 4, we show 
the evolution of their concurrence when they interact 
with lattice sites ±95 after 200 steps of the walk. Al- 
though the amount of entanglement in this case is smaller 
than that of Figure 2, qualitatively both evolutions are 
identical. The decrease in amount of entanglement is 
mainly due to the delocalization and localization of the 
walk which was not required for a 3-step walk used to 
obtain Figure 2. 

6. Implementation Scheme in a Physical 
System 

Until last year, very few experimental implementations 
of discrete-time quantum walk [14,16,17] were reported.  
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Figure 3. Localization of quantum walk around lattice sites 
±95. Localization contributes to the increase in the degree of 
spatial entanglement which can be used to entangle two 
spatially separated uncorrelated systems. 
 

 

Figure 4. The evolution of generated entanglement between 
A and B with different initial states under the influence of 
interaction with entangled lattice sites ±95. Entanglement 
was generated after the walk was localized at site ±95. (a) 

00 00ABρ =  and (b) 11 11ABρ = . 

 
However, in the last one year, many implementations of 
few steps of discrete-time quantum walk at single particle 
level, using trapped ions [19,20]; with optically trapped 
atoms [21]; and with photons [22,23] have been achieved. 
Along with experimental implementation, precise levels 
of control over the single particle quantum walk evolution 
by controlling the quantum coin parameters have been 
demonstrated. These developments suggest that our scheme 
is directly implementable in the presently available quan- 
tum walk setups. Among the experimental setups mention- 
ed above, we discuss a couple of them: quantum walk 
with atoms and photons, in detail. For bosonic systems 
like atoms and photon, the interaction Hamiltonian is: 

b
I H g a a     ,           (16) 

where  

,a a
 are the spin raising and lowering operators 

and  are the creation and annihilation operators, 
respectively. Using the time evolution operator IU  , 

 atoms A and B can be entangled as dis-
cussed for the case of the spin system. 

 b
IiH t

6.1. Entangling Atoms A and B from Spatial 
Modes of Quantum Walk with Atom 

In a recent experimental implementation of discrete-time 
quantum walk using neutral atoms, single laser cooled 
Cesium (Cs) atoms were deterministically delocalized 
over the sites of a one-dimensional spin-dependent 
optical lattice [21]. Initially, the atoms distributed 
among the axial vibrational state were prepared in the 
0 4, fF m 4    hyperfine state by optical pumping, 

where F is the total angular momentum, and mf its pro- 
jection onto the quantization axis along the dipole trap 
axis. A resonant microwave radiation, consisting of a π/2 
pulse was used to coherently couples this state to the 
1 3, fF m 3    state and initialize the system in the 

superposition,   00 1 2i    that is,  

  0

1
4, 4 3, 3

2
in f fF m i F m        . 

(17) 

The state-dependent shift operation (S) is performed 
by continuous control of the trap polarization, moving 
the spin state 0  to the left and state 1  to the right 
adiabatically along the lattice axis. After t steps of the 
quantum walk, that is, a coin operation consisting of a 
(π/2) pulse and a state-dependent shift operation (S), the 
final atomic distribution is probed by fluorescence imag-
ing. From these images, the exact lattice site of the atom 
after the walk is extracted and compared to the initial 
position of the atom. The final probability distribution to 
find an atom at position x after t steps is obtained from 
the distance each atom has walked by taking the ensem-
ble average over several hundreds of identical realiza-
tions of the sequence. 

Experimental complexity aside, the preceding protocol 
can be adapted to other species of ultracold atoms. For 
example, in Rubidium (87Rb) atoms in an optical trap, 
states 0 1, fF m 1    and 1 2, fF m   2  
can be coherently coupled to implement quantum walk. 
To observe localization at a desired lattice site as dis-
cussed in Section 5, a π/2 pulse used as quantum coin 
operation during each step of the walk in the preceding 
protocols is replaced by a pulse with a very small value 
followed by a pulse randomly picked from the range {π/4, 
π/2}. The above evolution will direct the constructive 
interference towards the desired lattice sites. 

Once the walk is localized, the optical lattice on which 
the walk is implemented is made to overlap with another 
optical lattice on which the spatially separated atoms, to 
be entangled, are placed. After overlapping the two lat- 
tices, radio frequency pulses can be used to couple states 
in the different lattices [39] and entangle atoms A and B. 
In Figure 5, we have shown the schematic picture of the 
setup. In many schemes referred in [39], to entangle two 

exp 
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atoms, A and B which cannot have any direct interaction 
between each other, they have to be made to interact via 
interaction Hamiltonian with two other entangled atoms. 
In our scheme, all we need is a single atoms in optical 
lattice and we can generate entanglement between two 
uncorrelated atoms in other system. 

6.2. Entangling Atoms from Spatial Modes of 
Quantum Walk with Photon 

All three implementations of discrete-time quantum walk 
on photons [18,22,23] known till date can be conve- 
niently used to localize the quantum walk at the desired 
lattice site and entangle spatially separated, non-inter- 
acting atoms in an optical lattice. We consider a particu-
lar implementation using a single photon [23] to illustrate 
this further. A single photon created via parametric down 
conversion was initialized to a state of left-circular po- 
larization,  

  0

1

2
in L h i v          (18) 

where h  and v  are horizontal and vertical polari- 
zation modes. Initialization leading to symmetric super- 
position state, as in Equation (4), was done using a quar- 
ter- and a half-wave plate. Shift operator (S) was realized 
using birefringent calcite beam displacer and the coin 
operations used were Hadamard operation H, realized 
using half-wave plate with axis at π/8 to the polarization 
plane. The above setup can be modified to localize the 
quantum walk at a desired lattice site by replacing the 
Hadamard coin operation by a more general coin opera- 
tion of the form Cθ discussed in Section 5. The coin ope- 
ration Cθ to localize the walk can be realized using a 
half-wave plate with axis at θ/2 to the polarization plane. 
Once the walk is configured to localize at desired posi- 
tions, the output can be directed towards spatially sepa- 
rated, non-interacting atoms in the optical lattice. When 
the photon on which the quantum walk is implemented is 
carefully chosen to match the transition energy level of 
atoms, spatially delocalized photons are absorbed by 
spatially separated atoms and generate entanglement be- 
tween the “Equation (16)”. In this paper we have only 

 

 

Figure 5. (Color online) Entangling atoms A and B from the 
spatial modes of the quantum walk with single atom. Opti-
cal lattice (OL1) on which quantum walk is implemented is 
made to overlap with optical lattice on which atoms A and B, 
to be entangled, are placed (OL2). Radio frequency pulses 
are used to couple states in the different lattices and entan-
gle A and B. 

discussed localization peaks which are symmetric in po- 
sition space of the walk. As a further extension of the 
scheme, we can use an arbitrary SU(2) coin operation 
which can introduce asymmetry in the walk distribution 
[12], and hence localization can be realized by involving 
three wave plates, a half-wave plate (H) and two quar- 
ter-wave plates (Q) in any of the three configurations 
Q1Q2H, Q1HQ2 or HQ1Q2 (concatenating the three plates) 
[40] for each coin operation. 

Similarly, delocalized photons after the quantum walk 
implementation with adjustable coin operations [22] and 
quantum walk with photons in a waveguide lattice can be 
directed towards atoms in a spatially separated optical 
lattice and entangle them. 

7. Conclusions 

We have presented a scheme for generating entanglement 
between two distantly located uncorrelated systems using 
a single particle quantum walk. Spatial modes entangled, 
due to the interference effect from the quantum walk 
evolution, were transferred to two distantly located sys- 
tems and effectively used for the purpose of entangling 
them. By controlling the amount of entanglement gene- 
rated between two spatial modes of the quantum walk 
system we have also shown that the entanglement gene- 
rated between the two initially uncorrelated systems can 
be controlled. 

The control is brought about by quantum coin opera- 
tions, localization of the walk evolution at different lattice 
sites. This scheme to entangle two systems using single 
particle quantum walk can be directly scaled to simulta-
neously entangle large systems using many particle walk. 
We have shown that all the elements of the present 
scheme are within reach of current experimental setups 
on which quantum walks have been implemented [14,15, 
18-23]. This scheme can come in handy for systems in 
which only selected sites can be accessed for inducing 
interaction with uncorrelated systems. Limitations of the 
resource and the environmental effect are an issue at this 
point of time, however, experimental progress account- 
ing for decoherence [23] is a positive thrust in the direc- 
tion of scaling the implementable steps of the walk. 
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