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Abstract 

This work presents a method of optimization of the photovoltaic generator 
(PV) based on the electrical model with a diode. The method consists of solv-
ing a second degree equation representing the derivative of the power func-
tion. The current and the maximum voltage being determined, the maximum 
power is deduced. Four popular types of photovoltaic panels from different 
manufacturers were considered for the study: BYD Model (BYD 320P6C-36), 
Atersa Grupo Model (A-320P GSE), SunPower Model (E19-320) and Model op-
erated in the 50 MW power plant of Nouakchott-Mauritania (JKM320PP-72-V) 
of JinkoSolar. A comparative study is carried out between the simulated re-
sults and the data of the manufacturer of different technologies. The results 
obtained prove the effectiveness of the proposed method and that the BYD 
320P6C-36 model is the most efficient among the four different technologies 
studied. 
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1. Introduction 

At present, we are witnessing: Rapid decline in fossil fuel reserves due to in-
creased use of thermal power plants; Increased air pollution correlated with the 
burning of fossil fuels, which generates greenhouse gases. 
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Therefore, in the current scenario, there is an urgent need to accelerate re-
search and development of renewable energy technology, especially solar energy, 
to meet global energy demand. Solar energy applications have been progressively 
increasing worldwide. This is due to the decrease in the cost of photovoltaic pa-
nels with the increasing demand, and the increase in the duration of use (life-
time). Photovoltaic is very competitive in areas far away from the conventional 
grid [1]. However, its exploitation requires a well-optimized design and dimen-
sioning. The performance and economic profitability of this type of technology 
depends on different parameters that characterize its mathematical model. A 
precise knowledge of these parameters makes it possible to predict the perfor-
mance of photovoltaic solar cells [2]. The five parameters of interest in the 
equivalent circuit are the photocurrent ( pvI ), the series resistance ( sR ), the di-
ode saturation current ( oI ), the parallel resistance ( shR ) and the ideality factor 
(n). The voltage-current relationship of a solar cell is described by a mathemati-
cal equation [3]. These various parameters make it possible to describe the beha-
vior of the module and predict its performance. The models and methods used 
to evaluate these parameters have been the subject of several studies. Soto et al. 
(2006) [4] studied a five-parameter model using only manufacturer-supplied 
data with semi-empirical equations to predict the I-V and P-V curve of the cell 
for any operating condition and compared with experimental data from a 
Building integrated photovoltaic system for four different cellular technologies 
(mono-crystalline, multi-crystalline, silicon thin film and triple junction 
amorphous). They showed that the five-parameter model can be a precise tool 
for predicting energy production for single-junction cell types. Ould Mohamed 
Yahya et al. (2008) [5] also studied a five-parameter simulation model to predict 
the performance of a photovoltaic (PV) system operating in the meteorological 
conditions of the installation site and validated the simulation model from the 
experimental data of an individual 1.2 kWp system installed in Nouakchott, 
Mauritania. R. Merahi et al. (2010) [6] used the four-parameter model to simu-
late the operation of the PV module (PW500 of PHOTOWATT) for different 
conditions of sunshine and temperature. They found that the increase in series 
resistance and the quality factor is due to the degradation of I(V) curve at the 
elbow. Dongue et al. (2012) [7] investigated the performance of the four- and 
five-parameter models used to predict the electrical response of multi-crystalline 
Shell SP75 and GES-P70 mono-crystalline PV modules for different operating 
conditions. They concluded that the four- and five-parameter models accurately 
adjust the experimental data of the two PV modules used for various operating 
conditions analyzed. Zerdoudi et al. (2015) [8] modeled a photovoltaic generator 
using the four-parameter model to simulate the operation of the PV model 
(SPR315 E) for different conditions of sunshine and temperature. The aim of 
this work is to characterize and modelisize four different commercial photovol-
taic modules technologies and to study the efficiency of the method compared to 
different photovoltaic module technologies by using the average absolute relative 
error between the values simulated by the model and those given by the manu-
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facturers. 

2. Models and Methods 

2.1. Models 

There are several commercial models of photovoltaic technologies that have cer-
tain performances depending on their location. Among these different technolo-
gies, the most exploited in Mauritania [9] are listed in Table 1. The data in Ta-
ble 1 were obtained under standard test conditions (G = 1000 W/m2 and T = 
25˚C) according to the manufacturers of each technology. 

2.2. Method 

In the literature, there are two main models of photovoltaic electric generators; 
namely one and two diode models, with three or more parameters. In this work, 
a one diode photovoltaic module with five parameters whose equivalent diagram 
is presented in Figure 1 is studied. The five parameters here are: phI , sR , shR , 

0I  and n [10] [11]. 
The current produced by the generator is obtained from Kirchhoff’s laws as 

follows: 

ph D shI I I I= − −                          (1) 

The diode current can be obtained through Shockley equation as follows [12]: 
( )

0 e 1c

q V IRs
nNkT

DI I
 +
  
 

 
 = −

 
⋅


                      (2) 

While the shunt current is given by the relation: 
 

Table 1. Electrical characteristics of photovoltaic modules used. 

Manufacturer BYD [22] Atersa Grupo [23] SunPower [24] JinkoSolar [25] 

Model BYD 320P6C-36 A-320P GSE E19-320 JKM320PP-72-V 

Peak power mP  (Wc) 320 320 320 320 

Power tolerance (%) 0 - 5% ±1.5% +5/−0% ±3% 

Maximum power voltage mpV  (V) 36.78 37 54.7 37.4 

Maximum power current mpI  (A) 8.7 8.65 5.86 8.56 

Open circuit voltage coV  (V) 46.39 45.5 64.8 46.4 

Short circuit current scI  (A) 9.15 9.17 6.24 9.05 

Module efficiency (%) 16.5 16.49 19.8 16.49 

Temperature coefficients of 
occo VV µ  (%/˚C) −0.31 −0.33 −0.176 −0.30 

Temperature coefficients of 
mm PP µ  (%/˚C) −0.39 −0.43 −0.38 −0.40 

Temperature coefficients of 
scsc II µ  (%/˚C) 0.07 0.05 0.035 0.06 

NOCT (Nominal operating cell temperature) (˚C) 45 ± 2 45 ± 2 45 ± 2 45 ± 2 

Number of cells 72 72 96 72 

Area (m2) 1.94 1.94 1.63 1.94 
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Figure 1. Electrical model of a PV generator with five parameters [4]. 

 

( )s
sh

sh

V IR
I

R
+

=                           (3) 

Replacing (2) and (3) into (1) give the photovoltaic current as: 
( ) ( )

0 e 1c

q V IRs
nNkT s

ph
sh

V IR
I I I

R

 +
  
 

  + = − − −



⋅



                (4) 

If we assume that the parallel resistance shR  is very large (case of crystalline 
silicon) [13].  

For this purpose Equation (4) becomes as follows: 
( )

0 e 1c

q V IRs
nNkT

phI I I
 +
  
 

 
 = − −

⋅


 

                     (5) 

Determination of the PV Generator Parameters 
1) Evaluation of Iph 
The light current phI  depends on both irradiance and temperature. It is giv-

en by [12] [14]: 

( )ph sc c r
r

GI I T T
G

α
 

 = + − ⋅  
 

                    (6) 

2) Evaluation of I0 
The reverse saturation current depending of cells temperature is given as fol-

lows [15] [16]: 
1 1

3

0 e
g

r c
qE

T T
c nk

on
r

TI I
T

  
−     

   
=  


⋅ ⋅


                      (7) 

At the open circuit voltage 0, ocI V V= =  and 0, ocI V V= =  

00 e 1
oc

c

qV
nNkT

sc nI I
 
  
 

 
 = −


⋅−




                       (8) 

So the nominal saturation current is obtained through: 

0

e 1
oc

c

sc
n qV

nkNT

II
 
  
 

=

−

                           (9) 
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By replacing the Equation (9) into Equation (7) one gets: 
1 1

3

0 e

e 1

g
r c

oc

c

qE
T T

sc c nk
qV

rnkNT

I TI
T

  
−     

  
 
  
 

 
= ⋅ ⋅ 

 
−

                 (10) 

3) Evaluation of Rs  
Various techniques have been used to determine the series resistance sR  [3] 

[17]. In this work the series resistance is evaluated as follows: 

d
d

oc

s
V V

VR
I =

 
= −  
 

                        (11) 

Considering the asymptotic behavior of the I-V curve under short-circuit and 
open-circuit conditions sR  can be calculated as [18]: 

ln 1 mps c
oc mp

sc
s

mp

IN nkT V V
q I

R
I

 
⋅ − + − 

 =                 (12) 

4) Evaluation of n: 
At the short circuit point, scI I= , 0V = : 

, 0, e 1
s sc

c

qR I
nNkT

sc ph ref refI I I
 
  
 

 
 = − −
 
 
⋅                    (13) 

At the maximum power point, mpI I= , mpV V= : 
( )

, 0, e 1
mp mp s

c

q V I R

nNkT
mp ph ref refI I I

 +
 
 
 

 
 

= − − 




⋅




                (14) 

The reverse saturation current Io for any diode is a very small quantity, on the 
order of 10−5 or 10−6 A [19]. This minimizes the impact of the exponential term 
in Equation (13), so it is safe to assume that the photocurrent equals the 
short-circuit current [20]. Another simplification [21] can be made regarding 
the first term in Equations (8) and (14). In both cases, regardless of the system 
size, the exponential term is much greater than the first term. For this reason the 
first term can be neglected. Then, the equation system becomes: 

,sc ph refI I≈                            (15) 

0,0 e 1
oc

r

qV
nNkT

sc refI I
 
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 

 
 = − ⋅ −
 
 

                    (16) 

( )

, 0, e
mp mp s

r

q V I R

nNkT
mp ph ref refI I I

 +
 
 
 = − ⋅                    (17) 

Combining (16) and (17), the ideality factor is evaluated as follows: 

( )2

ln

mp oc

mp sc mp
r

sc mp sc

q V V
n

I I I
NkT

I I I

−
=

 − 
+   −   

                 (18) 
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2.3. Maximum Power Point Determination  

By using the expression of the PV current defined by Equation (5), the voltage 
supplied by the generator is: 

ln 1 phc
s

o

I InNKTV R I
q I

− 
= + ⋅ 

 
                 (19) 

The electric power produced by the generator is given by: 

P V I= ⋅                            (20) 

By replacing (19) into (20) one obtain,  

2ln 1 phc
s

o

I InNKTP R I
q I

− 
= + ⋅ 

 
                 (21) 

From the function ( )P f I= , the extremum is obtained by the resolution of 
the equation 

d 0
d
P
I
=  

( )

( )

22 ln 1 2

ln 1 0

ph
s s o ph

o

ph
o ph

o

I I
R I C C R I I I

I

I I
C I I

I

 − 
− + + + + ⋅  
   

− 
+ + + = 

 

          (22) 

In the above Equation (22), 

cnNkTC
q

=                           (23) 

The limit development near of 0I = , in one order for ln 1 ph

o

I I
I
− 

+ 
 

 is  

given by: 

ln 1 ln 1ph ph

o o ph o

I I I I
I I I I
−   

+ = + −   
+   

               (24) 

By replacing Equation (24) into Equation (22), one can have: 

( )

( ) ( )

22 ln 1 2

ln 1 0

ph o
s s o ph

o ph o

o phph
o ph

o ph o

I CIR I C C R I I I
I I I

CI I II
C I I

I I I

  
− + − + + + ⋅  

+   

+ 
+ + + − = 

+ 

       (25) 

By rearranging Equation (25), one can obtain the equation of the second de-
gree (26) below: 

( )( ) ( ) ( )

( )

2

2

2 ln 1 2 2

ln 1

ph
s o ph o ph s o ph

o

ph
o ph

o

I
C R I I I I I C C R I I I

I

I
C I I

I

  
+ + − + + + + +  

   
 

+ + + 
 

 (26) 
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To solve this equation of the second degree let’s put: 

( )( )1 2 s o phX C R I I= + +                      (27) 

( ) ( )2 ln 1 2 2ph
o ph s o ph

o

I
X I I C C R I I

I
  

= + + + + +  
   

          (28) 

( )2
3 ln 1 ph

o ph
o

I
X C I I

I
 

= + + 
 

                   (29) 

The Equation (26) could be rewritten as follows: 
2

1 2 3 0X I X I X+ + =                        (30) 

The resolution of Equation (30) permits to obtain the following solutions: 
2

2 2 1 3
max

1

4
2

X X X X
I

X
− ± −

=                    (31) 

max
max maxln 1 phc

s
o

I InNKTV R I
q I

− 
= + ⋅ 

 
               (32) 

max max maxP V I= ⋅                         (33) 

maxI , maxV  and maxP  are respectively the maximum current, the maximum 
voltage and the maximum power. 

3. Results and Discussion 

The accuracy of the modeling methods described in this work is validated by 
experimental data published by the manufacturers of the selected PV modules. 
Four modules of different technologies are used for the verification. These in-
clude: the BYD model (BYD 320P6C-36), the Atersa Grupo model (A-320P 
GSE), the SunPower model (E19-320) and the model operated in the 50 MW 
Nouakchott power station (15.983˚W, 18.1553˚N) in Mauritania  
(JKM320PP-72-V) of JinkoSolar. The experimental data (I, V) are extracted 
from the data sheets [22] [23] [24] [25] for the different technologies studied. Ta-
ble 2 presents the results of these unknown parameters of these different com-
mercial technologies under standard conditions (T = 25˚C and G = 1000 W/m2). 

The values of the parameters calculated using the method proposed in this 
work are compatible with the literature [4] [5] [6] [7] [8]. 

The determination of these parameters in parallel with the exploitation of the  
 
Table 2. Unknown parameters of STC modules (T = 25˚C and G = 1000 W/m2). 

Parameters BYD 320P6C-36 A-320P GSE E19-320 JKM320PP-72-V 

( )AphI  9.15 9.17 6.24 9.05 

( )AoI  127.2298 10−×  92.6219 10−×  86.7684 10−×  104.2692 10−×  

( )sR Ω  0.5282 0.2957 0.0361 0.3866 

( )shR Ω  +∞ +∞ +∞ +∞ 

n 0.9003 1.1197 1.4331 1.0553 
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proposed method made it possible to obtain the optimal parameters of various 
technologies which are: the open circuit voltage, the maximum power, the 
short-circuit current. The results of these parameters are shown in Table 3. 

Figures 2-9 show the I-V and P-V curves for the different photovoltaic mod-
ule technologies used under the standard test conditions (T = 25˚C and G = 
1000 W/m2). 
 
Table 3. Optimal parameters of STC modules (T = 25˚C and G = 1000 W/m2). 

Parameters BYD 320P6C-36 A-320P GSE E19-320 JKM320PP-72-V 

( )AscI  9.15 9.17 6.24 9.05 

( )VocV  46.39 45.5 64.8 46.4 

( )max WP  319.9150 319.9472 320.4132 320.0529 

( )max VV  36.5999 36.7724 54.3209 37.1864 

( )max AI  8.7409 8.7007 5.8985 8.6067 

 

 
Figure 2. Characteristic I(V) for BYD 320P6C-36 at T = 25˚C and G = 
1000 W/m2. A comparison between the experimental values and the 
calculated values. 

 

 
Figure 3. Characteristic P(V) for BYD 320P6C-36 at T = 25˚C and G = 
1000 W/m2. A comparison between the experimental values and the 
calculated values. 
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Figure 4. Characteristic I(V) for A-320P GSE at T = 25˚C and G = 
1000 W/m2. A comparison between the experimental values and the 
calculated values. 

 

 
Figure 5. Characteristic P(V) for A-320P GSE at T = 25˚C and G = 
1000 W/m2. A comparison between the experimental values and the 
calculated values. 

 

 
Figure 6. Characteristic I(V) for E19-320 at T = 25˚C and G = 1000 
W/m2. A comparison between the experimental values and the calcu-
lated values. 
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Figure 7. Characteristic P(V) for E19-320 at T = 25˚C and G = 1000 
W/m2. A comparison between the experimental values and the calcu-
lated values. 

 

 
Figure 8. Characteristic I(V) for JKM320PP-72-V at T = 25˚C and G = 
1000 W/m2. A comparison between the experimental values and the 
calculated values. 

 

 
Figure 9. Characteristic P(V) for JKM320PP-72-V at T = 25˚C and G = 
1000 W/m2. A comparison between the experimental values and the 
calculated values. 
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These figures show a consistency between the experimental results and the 
expected results. We note that the calculated values are in good agreement with 
the experimental values provided by the manufacturers. 

In order to quantify the quality of the modeling procedure for the I-V charac-
teristics of different PV module technologies, the performance parameter is used 
to compare the values simulated by the method and the values given by the 
manufacturers of different technologies. This parameter is the average absolute 
relative error. It is defined as following: 

100i mi
x

mi

x xE
x
−

= ⋅                          (36) 

ix  and mix  are the theoretical value given by the method and the measured 
value given by the manufacturer, respectively. 

The results of comparisons between the simulations and the manufacturer's 
data using four photovoltaic module technologies under standard test conditions 
(T = 25˚C and G = 1000 W/m2) are shown in Table 4. 

The results obtained prove the precision of the modeling method with an av-
erage absolute relative error between the estimated power and the measured 
power is less than 0.035% and that BYD 320P6C-36 technology is the most effi-
cient among the four different PV module technologies studied with the average 
absolute relative error for the maximum point current is 0.46%, 0.51% for the 
maximum point voltage and 0.021% for the maximum point power. 
 
Table 4. Mean absolute relative error between simulated values and values provided by 
the manufacturers. 

Parameters ( )AscI  ( )VocV  ( )max AI  ( )max VV  ( )max WP  

BYD 320P6C-36      

Measured values 9.15 46.39 8.7 36.78 319.98 

Calculated values 9.15 46.39 8.74 36.59 319.91 

xE  0 0 0.46 0.51 0.021 

A-320P GSE      

Measured values 9.17 45.5 8.65 37 320.05 

Calculated values 9.17 45.5 8.7 36.77 319.94 

xE  0 0 0.57 0.62 0.034 

E19-320      

Measured values 6.24 64.8 5.86 54.7 320.524 

Calculated values 6.24 64.8 5.8985 54.3209 320.4132 

xE  0 0 0.6570 0.6931 0.0346 

JKM320PP-72-V      

Measured values 9.05 46.4 8.56 37.4 320.144 

Calculated values 9.05 46.4 8.6067 37.1864 320.0529 

xE  0 0 0.5456 0.5711 0.0285 
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4. Conclusion 

This paper focuses on the characterization and modeling of various commercial 
solar photovoltaic module technologies most used in Mauritania through an 
analytical modeling method to describe its behavior under conditions of use in 
the Sahel. The modeling data of these different technologies were taken from the 
data sheets of different manufacturers. Four types of technologies, namely: BYD 
320P6C-36, A-320P GSE, E19-320 and JKM320PP-72-V were studied and com-
pared according to the maximum power current, the maximum power voltage 
and the power maximum. The results obtained prove the precision of the mod-
eling method with an average absolute relative error between the estimated 
power and the measured power is less than 0.035%. The comparison results of 
these different technologies show that BYD 320P6C-36 technology is the most 
efficient among the four different PV module technologies studied with the av-
erage absolute relative error for maximum point current is 0.46%, 0, 51% for the 
maximum point voltage and 0.021% for the maximum point power. 
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Nomenclature 

I Cell current (A) cT  Cell Temperature (Kelvin) 

V Cell Voltage (V) rT  Cell Temperature at reference condition 

phI  Light current (I) mpI  
Current at peak power point in reference 

condition (A) 

DI  Diode current (A) mpV  
Voltage at peak power in  
reference condition (V) 

shI  Shunt current (A) ,ph refI  Reference light current (A) 

oI  
Saturation current  

of the diode (A) 
G Irradiance (W/m2) 

,o refI  
The reverse saturation  

current (A) refG  Irradiance at reference condition (W/m2) 

scI  Short circuit current (A) n Ideality factor of the diode 

ocV  Open circuit voltage (V) N Number of cells in series 

scIµ  Temperature coefficient of 
short-circuit current (A/K) 

k Boltzmann constant (1.38 × 10−23 J/K) 

q 
Electron charge  

(1.6 × 10−19 coulomb) shR  Shunt resistance (Ω) 

sR  
Series resistance of  

generator (Ω) gE  Gap Energy (for the silicon Eg = 1.12 eV) 
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