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Abstract 
In this paper, we aim to control an instable chaotic oscillation in power system that is considered 
to be small system by using a linear state feedback controller. First we will analyze the stability of 
the mentioned power system by means of modern nonlinear theory (Bifurcation and Chaos). Our 
model is based on a three bus power system that consists of multi generators containing both dy-
namic and static loads. They are considered to be in the form of an induction motor in parallel 
with a capacitor, as well as a combination of constant power along with load impedance, PQ. We 
consider the load reactive power as the control parameter. At this stage, after changing the control 
parameter, the study showed that the system is experiencing a subcritical Hopf bifurcation point. 
This leads to a chaos within the system period doubling path. We then discuss the system control-
lability and present that the all chaotic oscillations fade away through the linear controller that we 
impose on the system. 
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1. Introduction 
In the past so many researchers have used the voltage collapse case study within a power system. Here, the power 
system performs as a significant part of the sequential event that is accompanied by an unstable voltage profile [1]. 
This voltage collapse will lead to load losses that will be yielded into a tripping on the load lines and subsequently, 
a total shutdown will affect the considered area. The Kingdom of Saudi Arabia, United States of America, United 
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Kingdom, Japan, France and many other countries have had several incidents that are associated with the col-
lapse of voltage leading into a total area shutdown. There are so many reasons that contribute to these incidents. 
Some of which are focused on the loads whether it is high or low on the tap changing transformers and the reac-
tive power injected at the bus. All these will lead to a voltage level breakdown. In order to control the voltage 
collapse occurrence, several techniques may be applied such as Static Var Compensator (SVC), and Series Ca-
pacitor Bank (SCB). 

Throughout the past most of the work that was conducted would have linked the voltage collapse to a static 
bifurcation done by Kwatny et al. [2], Schlutere et al. [3], and Thomas and Tiranunchit [4]. While, the dynamic 
bifurcation was linked by Abed and Varaiya [5], Abed et al. [6], Rajagopalan et al. [7], Dobson et al. [8], and 
Nayfeh et al. [9]. 

Combining both control theories along with the applications of bifurcation theory is a challenge and great in-
terest to many researchers in the design of controllers for nonlinear systems that exhibit bifurcations models. 
Both Abed and Fu [10] [11] have detailed combination of working on feedback stabilization and bifurcation 
control simultaneously. Abed et al. [6] and Chiang et al. [12] looked at the issue of utilizing the concept of non-
linear control in power system. Subsequently, Baillieu et al. [13] have studied nonlinear feedback system while 
at a chaotic motion. In addition, Chang & Chen [14] have investigated bifurcation characteristics under PID 
controller for nonlinear systems. 

Recent studies are directed at combining control of bifurcation along with chaos in dynamical system simul-
taneously. Thus, the emphasis will be weighted on design techniques that will result into a prescribed nonlinear 
dynamic system for the controlled processes. Moreover, bifurcation control stimulates its usage by a control in-
put modifying its bifurcation characteristics for the parameterized system. The control model will be considered 
for a static or a dynamic feedback and with an open loop system. 

Our objective is to control, stabilize, and delay a given bifurcation. We also aim for reducing the bifurcation 
amplitude, getting a bifurcation solution, and finally optimizing the performance index located near the bifurca-
tion.  

In the end, we reshape the bifurcation diagram of the system [10]. Using the controlled laws derived and used 
in [10], we transform an unstable subcritical bifurcation point into a point to be considered as supercritical stable 
bifurcationized. These control laws are called “static state feedback” and have the general form of u = u(x). 
These results have a wide span of applications. These applications are not limited to subsynchronous resonance 
in power system [15], as well as the voltage collapse in electrical power system [16]. 

2. Mathematical Model 
The small power system model is known to be highly nonlinear dynamic system. It is represented by an alge-
braic along with a set of ordinary differential equations. In this paper, we followed the work done by Nayfeh et 
al. [9] considering a model that represent the load by an induction motor, a capacitor, constant power and con-
stant impedance PQ load. The three bus power system consists of two generators feeding a load, which is 
represented by an induction motor in parallel with a capacitor and combined with a PQ load. One generator is 
considered as an infinite bus while the other generator has a constant voltage magnitude of Em. After Nayfeh et 
al. [9], the following set equations governs the small power system and are written as: 
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Now, we add the linear control systems, thus the state-space equations are coupled to the previous four equa-
tions resulting into: 

( )( )5 6 51 g gx T x K x= −                                  (5) 
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( )( )6 7 61 e ex T x K x= −                                   (6) 

( ) ( )( )7 8 71 a ref a px T V x K K x= − −                             (7) 

( )( )8 5 81 r rx T x K x= −                                  (8) 

where x1 and x3 are the power angles of the machine and the load, respectively. Furthermore, x2 is the load vol-
tage, and x4 is the radian frequency of the load, while x5, x6, x7, and x8 are the exciter, amplifier, proportional 
controller, and the sensor, respectively. The above eight equations provide an equilibrium solution along with a 
dynamic solution to our model. Table 1 shows the load and generator parameters that have been used. All the 
parameters are given in per unit except for the angles, which are measured in degrees. 

3. Numerical Simulation 
The equilibrium solutions are found by setting of the system of Equations (1)-(8) to be equal to zeros. The sta-
bility of these solutions depends on the eigenvalues of the Jacobian matrix of set of Equations (2)-(8) evaluated 
each at the equilibrium point.  
 
            Table 1. Parameters for the load and generator.                                       

Parameter Value 

kpw 0.4 
kpv 0.3 
kqw −0.03 
kqv −2.8 
kqv2 2.1 
T 8.5 
Po 0.6 
Qo 1.3 
P1 0.0 
Yo 20.0 
θo −5.00 
Eo 1.0 
C 12.0 
Yo

` 8.0 
θo

` −12.00 

Eo
` 2.5 

Ym 5.0 
θm −5.00 
Em 1.0 
Pm 1.0 
dm 0.05 
Tg 1.4 
Kg 0.8 
Te 0.4 
Ke 1 
Ta 0.1 
Ka 9 
Kp 0.7 
Tr 0.05 
Kr 1 
M 0.3 
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Nayfeh et al. [9] studied a small power system using theories of bifurcation theory that are shown in Figure 1. 
They have noticed that the small power system experiences a dynamical bifurcation (Hopf bifurcation). There 
are two Hopf bifurcation points H1 and H2 at the control parameters Q1 = 6.9929 and 7.2229, respectively, and a 
saddle-node bifurcation SN at Q1 = 7.2238. They have also found that the two Hopf bifurcation points H1 and H2 
are subcritical and supercritical points respectively, as shown in the bifurcation diagram in Figure 2. They 
showed that the system experiences the limit cycle and then period-two, period-four, and so on till the behavior 
of the system became chaotic. Figure 3 shows the chaotic oscillation of the system. Hence, for values of 6.9105 
≤ Q1 ≤ 6.9449957, the system response may be constant or dynamic (limit-cycle or chaos), depending on the ini-
tial conditions. Because the chaos is very sensitive to initial condition. 

In order to control and eliminate the chaotic oscillations, a linear control via proportional controller must be 
added to the system. This linear controller will fade away the eighth order system of Equations (1)-(8). The sub-
critical Hopf bifurcation, H1 and hence control chaos and voltage collapse there, a nonlinear feedback controller 
is designed by Nayfeh et al. [9]. Their controller transforms the left Hopf bifurcation point, shown in Figure 3, 
from a subcritical into a supercritical one as indicated in Figure 3. They have also used a nonlinear controller 
that has the form of Kω3 and it is added to Equation (2). They show that by increasing the value of K, we will 
reduce the amplitude of the limit-cycle born at H1. Furthermore, by choosing a gain K larger than a critical value 
of 58.56, one can suppress the period-doubling bifurcations and hence the chaos and its associated crisis bifurca-
tion and voltage collapse as shown in Figure 3. In this paper the linear added controller, Equations (6)-(8), were 
able to eliminate all chaotic oscillations and are shown in Figures 4-6.  
 

 
                  Figure 1. Small power system dynamical bifurcation (Hopf bifurcation) circuit. 
 

 
Figure 2. Bifurcation diagram showing two Hopf bifurcation points H1 and 
H2 that are subcritical and supercritical points.                           
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Figure 3. The chaotic oscillation of the system.                                                                
 

 
                       Figure 4. Chaotic oscillations 1.                              
 

 
                       Figure 5. Chaotic oscillations 2.                              
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                      Figure 6. Chaotic oscillations 3.                                

4. Conclusion 
The modern nonlinear theories of bifurcation and chaos are applied to a small three bus power system. The re-
sults showed that the system, without any controller, has a dangerous subcritical Hopf bifurcation point. That 
means when 6.9105 ≤ Q1 ≤ 6.9449957, the system response may be constant or dynamic (limit-cycle or chaos), 
depending on the initial conditions. A comparison between the uncontrolled and controlled system was dis-
cussed and investigated. The study has revealed that the linear controller stabilizes the system by eliminating all 
chaotic oscillations. Hence, the system became completely stable over the whole range of the control parameter 
point Q1.  
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