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Abstract 

In view of the growing interest in molecular orbitals (MOs) encountered in 
certain complex oxides, we review some of their properties from the band 
theory perspective and provide detailed examples based on real materials. 
Our discussion includes some technical aspects of identifying MOs in elec-
tronic structure calculations and considers cases when MOs can be both or-
thogonal and non-orthogonal. We also describe orthonormalization of MOs, 
a procedure converting them into Wannier functions, and discuss the prob-
lem of Wannier functions possibly being rather spatially extended and how 
using MO, rather than atomic orbital, based effective Hamiltonians might be 
a better choice in describing certain strongly correlated systems as well as 
systems with strong electron-phonon coupling. Furthermore, we address the 
problem of strongly correlated MOs and how it can be treated in band theory 
calculations. 
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1. Introduction 

Ligand molecular orbitals (MOs) have been recognized as important players in 
the physics of transition-metal compounds since the introduction of the 
Zhang-Rice singlet back in 1988 [1]. They have recently gained a renewed inter-
est after the concept of oxygen MOs strongly coupled to lattice degrees of free-
dom in a polaronic way was used to describe rare-earth nickelates [2] [3] and 
superconducting bismuthates [4] [5] [6]. Ligand MOs are particularly important 
in negative charge-transfer and hole-doped charge-transfer insulators, where of-
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ten they are the orbitals that end up being occupied by the (self-)doped holes 
and therefore have a direct impact on the system’s low-energy properties [7]. 
Among this important class of materials are such vigorously discussed but still 
controversial systems as superconducting cuprates [8] [9] and bismuthates [10] 
[11] [12], rare-earth nickelates [13], and transition-metal oxide based Li-ion 
battery cathode materials [14] [15]. Since this topic is expected to generate only 
more interest in the future, the current paper will present a band theory perspective 
on some important aspects of MOs in complex oxides, including the mathematical 
construction of MO-based basis sets (Section 2), the non-orthogonality problem 
(Section 3), their usage in effective models in the presence of strong elec-
tron-phonon coupling (Section 4), as well as the problem of a proper treatment 
of strong local correlations on MOs (Section 5); conclusions will be given in Sec-
tion 6. Each part of the discussion will include a detailed example of a real ma-
terial. 

2. Projecting Electronic States onto Molecular Orbitals  
(NaNiO2 as an Example) 

Let us consider the prototypical negative charge-transfer insulator NaNiO2 as 
our first example. Its monoclinic C2/m crystal structure consists of triangular 
layers of edge-sharing cooperatively elongated NiO6 octahedra intercalated with 
Na+ ions, with one formula unit per primitive unit cell [16]. Although here Ni 
has a formal valency of 3+, spectroscopic studies clearly show the abundant 
presence of oxygen holes which suggest an actual electronic configuration of 
Ni2+L, where L is an oxygen hole [17]. This three-hole state has a net spin of ½ 
and would formally correspond to Ni3+ ( 3

ge ) with spin 1/2, which is quite con-
trary to what one would expect from Hund’s rules if it really were Ni3+. Due to 
the strong hybridization between the Ni—eg orbitals and the oxygen MOs of re-
spective symmetry, the oxygen holes select to occupy the O—(x2-y2) MOs, one 
hole per oxygen octahedron, and form a Zhang-Rice-like spin singlet state with 
the hole in the Ni—(x2-y2) orbital. This selective occupation of the (x2-y2) MOs 
by the holes, which results in the mentioned cooperative elongation of the NiO6 
octahedra, constitutes a molecular orbital (or band) Jahn-Teller effect. 

A way of verifying and visualizing this picture using band theory is to perform 
a projection of the NaNiO2 electronic structure on a MO-based basis set. We 
note, however, that band theory is unable to fully capture the multi-determinant 
character of the spin singlet state in question and will underestimate the energy  

of the singlet as 1
4 pdJ  rather than 3

4 pdJ , where Jpd is the spin exchange coupling  

between interacting atomic d and molecular p states. Still, it provides a fair de-
scription of on-site symmetries and spin densities, worth exploring with the 
projection technique. 

Figure 1(a) shows the calculated NaNiO2 density of states (DOS) projected 
onto the Ni—3d orbitals (left) and the oxygen molecular orbitals (right) for the 
majority and minority spin channels. This is a spin-polarized local density  
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Figure 1. Oxygen molecular orbitals in NaNiO2. (a) Projected densities of states (PDOS) 
per formula unit for the Ni—3d atomic orbitals and the oxygen MOs. (b) An isolated 
oxygen—(x2-y2) MO ( )Mψ R r . The primitive cell comprising a single formula unit is 

marked with black lines. The short Ni—O bonds in the elongated octahedra are colored 
in a darker grey color than the long ones. (c) The majority spin band structure with the 
oxygen—(x2-y2) character highlighted in red. (d) An oxygen—(x2-y2) Bloch function 

( )Mψ R r  at the Γ  point. In (a) and (c) the Fermi level is set to zero and marked with a 

dashed line. (e) Oxygen—pσ orbitals are in fact the xp , yp , and zp  orbitals of the 

two inequivalent oxygens O1 and O2 in a unit cell, but each coming from an oxygen be-
longing to a different unit cell. 
 
approximation + U (LDA + U) [18] [19] calculation (on-site Coulomb repulsion 
U = 6 eV, Hund’s exchange interaction JH = 1 eV for Ni—3d electrons [20]) per-
formed, like the rest of the calculations presented in this paper, using the linea-
rized augmented plane waves method implemented in the Wien2k package [21]. 
A ferromagnetic order of Ni magnetic moments, both within and between the Ni 
planes, is assumed for simplicity. The majority spin hole has a mixed character 
of the Ni—(x2-y2) atomic orbital and the oxygen—(x2-y2) molecular orbital, 
which is a result of strong hybridization between these orbitals. This hole state is 
the anti-bonding combination of the two orbitals pushed up in energy above the 
Fermi level, while the bonding combination lands at about −5 eV below the 
Fermi level. An isolated oxygen—(x2-y2) molecular orbital ( )Mψ R r  centered at a 
Ni site R is shown in Figure 1(b), but the actual projection of the DOS [Figure 
1(a)] or the k-resolved projection of the band structure [Figure 1(c)] are per-
formed onto the Bloch functions ( )Mψ k r  constructed from ( )Mψ R r : 

( ) ( )eM M iψ ψ −= ∑k
kR

RRr r ,                      (1) 

where M indicates an MO character of the wave function and k is the crystal 
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wave vector. To give a visual example, we show the oxygen—(x2-y2) MO Bloch 
function at the Γ  point [k = (0, 0, 0)] in Figure 1(d). 

Generally speaking, MO Bloch functions ( )iMψ k r  can be obtained from the 
atomic orbital Bloch functions ( )jaψ k r  via a unitary transformation U(k): 

( ) ( ) ( )ji aM
ijjUψ ψ= ∑k kr k r .                    (2) 

Allowing for the k-dependence of the transformation matrix elements Uij(k) 
reflects the fact that an MO can be built from atomic orbitals nominally belong-
ing to different unit cells. This is, for instance, the case for the oxygen—(x2-y2) 
MO shown in Figure 1(b), where the oxygen—pσ orbitals to the left of the Ni 
atom and those to its right belong to different unit cells. Figure 1(e) explains in 
further detail that the six oxygen pσ orbitals on a given NiO6 octahedron are in 
fact the xp , yp , and zp  orbitals of the two inequivalent oxygens O1 
and O2 in a unit cell, but each coming from an oxygen belonging to a different 
unit cell. In a way, using a k-dependent unitary transformation matrix U(k) 
broadens the technical definition of a unit cell as used in band-structure calcula-
tions for the purpose of setting up a Bloch basis set, where now atomic orbitals 
from the same atom can belong to different unit cells as in the case of NaNiO2. 

Let us also note that if a MO character of an electronic state shows very little 
variation with k-vector this should be regarded as a sign of the robustness of the 
molecular nature of this state in real space. As one can see in Figure 1(c), this is 
the case for our example of NaNiO2, where indeed the majority spin hole state 
has a strong oxygen—(x2-y2) character at every k-vector. 

Although in the charge- and negative charge-transfer systems it is very typical 
for the ligand holes to occupy MOs of the same symmetry as that of the cation 
atomic orbitals that they hybridize with [like the oxygen—(x2-y2) MO and the 
Ni—(x2-y2) atomic orbital in NaNiO2], there are a number of notable exceptions. 
For example, in the iron disulfide FeS2 (pyrite structure) and the recently dis-
cussed iron dioxide FeO2 [22], the ligand holes reside on the MOs formed on 
sulfur/oxygen dimers owing to strong intra-dimer hybridization between the 
sulfur/oxygen—pσ orbitals. The same is the case in the superoxides like KO2, 
where oxygen dimers have a net spin of 1/2 and which order magnetically below 
the ordering temperature.  

As a final technical remark for this section, our MO projections are performed 
using atomic-like functions ( ),

1
l

l l mu E Yα σ , which are the solutions of the 
Schrödinger equation within the muffin-tin sphere of atom α at the linearization 
energy 1lE  and where l

mY  are spherical harmonics, to construct molecular 
orbitals. This is in some contrast with the approach adopted in Wien2k, where 
atomic orbital projections are done onto the spherical harmonics l

mY  inside 
muffin-tin spheres. In practice, the two approaches give very similar results for 
the projected DOS, but having also the radial part ( ),

1 ,l lu E rα σ  means that pro-
jections are being done on a true atomic-like orbital (or molecular orbital com-
bination), which, in particular, enables their visualization in real space. 
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3. Non-Orthogonality (BaBiO3 as an Example) 

For certain lattice structures—including those of the cuprates, with their charac-
teristic two-dimensional square CuO2 planes, as well as of the bismuth and nick-
el perovskites—construction of MOs may also require their proper orthonorma-
lization performed on top of the unitary basis transformation discussed above. 
In this regard, let us consider the example of the barium bismuth perovskite 
BaBiO3. In a perovskite lattice structure of the ABO3 type [Figure 2(a)], neigh-
boring BO6 octahedra share their corners such that the O-B-O angle is equal or 
close to 180˚. As a result, the oxygen—pσ orbitals, typically involved in the for-
mation of MOs, have to be shared between neighboring B cations. In the case of 
BaBiO3, the MO of most importance is oxygen—a1g, shown in Figure 2(a), due 
to its strong hybridization with the Bi—6s atomic orbital. However, because of 
the problem of a common oxygen—pσ orbital, neighboring oxygen—a1g MOs are 
non-orthogonal to each other. If no orthonormalization is done to such MOs, 
the Bloch functions constructed out of them will have a k-vector dependent overlap 
integral, M Mψ ψk k , and may even completely vanish at certain k-points. As 
demonstrated pictorially in Figure 2(c) & Figure 2(d) and also shown in the 
LDA band structure calculation in Figure 2(b), this is the case for the oxy-
gen—a1g MO in BaBiO3 at the Γ  point. 

In order to be suitable for use in effective models, MOs of this kind need to be 
orthonormalized first. As was originally shown by Zhang and Rice [1], the 
k-vector dependent normalization factor βk , 

2 1M Mβ ψ ψ =k k k ,                     (3) 

 

 
Figure 2. Oxygen molecular orbitals in BaBiO3. (a) An idealized (e.g., without octahedra’s 
rotations or bond disproportionation) cubic perovskite crystal structure of BaBiO3, with 
one formula unit per unit cell, featuring also an isolated oxygen—a1g MO ( )Mψ R r . (b) 

Projection of the BaBiO3 electronic states onto oxygen MOs; the Fermi level is marked 
with a dashed line. (c) and (d) show oxygen—a1g MO Bloch functions at the Γ  [k = (0, 
0, 0)] and R [k = (π, π, π)] points, respectively. Note that at the Γ  point the individual 

( )Mψ R r  contributions completely cancel out due to their non-orthogonality, which re-

sults in vanishing oxygen—a1g MO weight at this k-vector in (b). 
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may be ill-defined at certain k-points. For the oxygen—a1g MO in BaBiO3, for 
example, it diverges at the Γ  point: 

( )
1 211 cos cos cos

3 x y zk k kβ
−

 = − + +  
k ,               (4) 

as obtained using the oxygen—a1g MO given by 

( ) ( ) ( )1 1 1 e 1 e 1 e
6

g yx za iakiak iakx y zp p pψ −− −= − + − + 
 

−k k k k ,  (5) 

where ypk , i = x, y, z, are the Bloch functions of orthonormal oxygen—pσ or-
bitals and a is the cubic lattice constant. Let us note that an MO with contribu-
tions from both the oxygen—a1g MO and the Bi—6s atomic orbital sk , 

( )1 1

2 2

1g gs a asψ α β ψ
α β

− = ±
+

k k k ,             (6) 

which was used by us and our co-authors in [5] for analyzing the BaBiO3 effec-
tive hopping parameters, does not have this divergence problem. 

4. Comparison with Wannier Functions and Usage in  
Effective Models 

It is important to recognize the fact that orthonormalization of a molecular or-
bital ( )Mψ R r  of any kind via multiplication of its corresponding Bloch function 

( )Mψ k r  by βk  converts this molecular orbital into a Wannier function [23]. 
The same, of course, applies to atomic orbitals. It is also a common practice to 
adjust Wannier functions such that their corresponding eigenvalues match a se-
lected set of bands obtained from an LDA(+U) calculation, which can be achieved 
through the following expansion in terms of self-consistently obtained Bloch ei-
genstates ,νΨk : 

, ,n mw ν νν ψ
< <

= Ψ Ψ∑k k k k .                 (7) 

Here, ψ k  can be either an atomic or a molecular orbital Bloch function 
and ν  is a band index running from band n to band m. On top of this con-
struction, one may also apply the maximal localization [23] and the disentan-
glement [24] procedures. This is finalized by orthonormalization [Equation (3)] 
to determine βk . The resulting Wannier functions wk  are convenient to use 
in effective models since the basis set size can be kept minimal but at the same 
time the LDA(+U) bands would remain well reproduced by the model’s eigens-
tates. This approach is, for example, often used in regard to transition metal 
oxides in order to eliminate oxygen—p orbitals and derive a transition metal—d 
only based effective model. However, depending on how large and how strongly 
k-vector dependent βk  is, such Wannier functions can be quite extended ob-
jects in real space with orbital contributions from many atomic shells. One dis-
advantage of using the Wannier functions wk  [Equation (7)] in effective 
models is that most often it is not possible to fully control the degree of their 
spatial extension, even when attempts to optimize them through “maximal loca-
lization” have been made. This is a well-known problem for strongly localized 
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atomic orbitals, like transition metal—3d, in Hubbard-type models where elec-
tron interactions are supposed to be strictly local. There, the Wannier functions 
wk  [Equation (7)] would be very different for the occupied and the unoccu-

pied states, especially for a charge-transfer gap insulator where the occupied dn-1 
state is inside the O—2p band while the unoccupied dn+1 state is very well above. 
In this situation, there would be no easy way to define properly the Hubbard in-
teraction parameter U. 

As an example of how much spatial extension a nominally maximally loca-
lized atomic Wannier function wk  can have and how strongly it can be af-
fected by covalence effects, let us consider Ni—3d orbitals in the charge-transfer 
gap insulator NiO. Figure 3 shows the NiO minority spin band structure calcu-
lated for ferromagnetically aligned Ni magnetic moments using LDA + U with JH 
= 1 eV and U = 2 eV [panel (a)], U = 12 eV [panel (b)], and U = 6 eV [panels 
(c)-(e)] applied to Ni—3d electrons. Fat bands indicate the strength of the Ni—3d 
character, while the dashed lines are the eigenvalues of an effective Hamiltonian in 
the basis of maximally localized Ni—t2g Wannier functions obtained using the 
Wannier90 package [25]. For the very small U value of 2 eV and the very large U 
value of 12 eV, the Ni—t2g bands lie either above or below the oxygen—2p 
bands, respectively, which reduces their hybridization and makes it possible to 
obtain a reasonable effective Hamiltonian with eigenvalues closely matching the 
LDA + U bands. However, the resulting Wannier functions in real space (shown 
below the corresponding band-structure plots in Figure 3) look quite different 
in the two cases and, in particular, have different degrees of spatial extension. In 
the most realistic case of U = 6 eV, the Ni—t2g and oxygen—2p bands are 
 

 
Figure 3. Maximally localized Ni—t2g Wannier functions in NiO. At the top shown are 
the NiO spin minority band structures, with fat bands indicating the Ni—3d orbital cha-
racter, as well as the eigenvalues of the Ni—t2g maximally localized Wannier functions 
based effective Hamiltonians. The Fermi level is set to zero and marked with a dashed 
black line. One of the Ni—t2g Wannier functions in real space is shown below each cor-
responding band-structure plot. The band-structure results were obtained in LDA + U 
with (a) U = 2 eV, (b) U = 12 eV, and (c)-(e) U = 6 eV. In (c)-(e), the effective Hamilto-
nian’s eigenvalues were constrained during wannierization to match (c) the lowest, (d) 
the highest, or (e) no LDA + U bands in the occupied manifold. 
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energetically very close and so get strongly hybridized. As a result, wannieriza-
tion may give even more ambiguous results in this case. Depending on whether 
certain constraints are applied [Figure 3(c) and Figure 3(d)] or not [Figure 
3(e)], one can obtain either very extended and ill-shaped or very well-localized 
Wannier functions. In the latter case, however, the effective Hamiltonian’s ei-
genvalues are a poor match to the LDA + U bands. 

The cuprates are another good example where we can define the upper Hub-
bard band very well because it is well separated from the oxygen—2p band, 
while the lower Hubbard band, involving also all kinds of multiplets spread out 
over about 8 eV, is for a large part inside the oxygen—2p band. Also, the lowest 
energy d8 state without the hybridization switched on is a triplet F state and not 
a singlet state, as one assumes in a Hubbard model. In fact, the singlet A1gd8 state 
hybridizes so strongly that it pushes out the Zhang-Rice singlet state from the 
top of the O band and this state has more oxygen—2p than Cu—3d character in 
it. This is very similar to the BaBiO3 “bound two-hole state” pushed up above the 
Fermi level that we discussed in Section 3. If the Zhang-Rice state is well enough 
pushed out of the top of the O band, then we could actually define a single site 
Wannier function for this but it would have more density on O than on Cu. 

In this case of correlated oxides where transition metal—d orbitals are 
strongly localized yet also subject to hybridization with oxygen—p orbitals, a 
way to improve on the localization of Wannier functions would be to also in-
clude oxygen—2p orbitals into the Wannier basis. This, however, may signifi-
cantly increase the size of the Hilbert space required in model calculations. On 
the other hand, the increase can be much less dramatic if only the most impor-
tant molecular combinations of oxygen—p orbitals are considered, such as the 
oxygen—(x2-y2) or oxygen—a1g in our earlier examples of NaNiO2 and BaBiO3. 
Recently, this promising MO based approach has been successfully applied to 
calculate resonant X-ray spectral responses in rare-earth nickelates [3]. Another 
useful application would be to study systems with strong electron-phonon 
coupling, especially of the kind that strongly affects hybridization between ca-
tion and oxygen orbitals. There is, for example, a strong electron-phonon 
coupling of this kind in BaBiO3 where the A1g—symmetric (so-called “breath-
ing”) oxygen phonon mode is coupled to the hybridization strength between the 
Bi-6s atomic orbital and the oxygen—a1g MO. The role of this coupling in the 
bismuthates’ superconductivity has recently been a subject of intense theoretical 
research, both at the band theory [4] [5] [6] and also model Hamiltonians levels, 
the latter including conventional atomic orbital based models [26] as well as MO 
based ones [27]. 

5. Strongly Correlated Molecular Orbitals (Na2IrO3 as an  
Example) 

Since molecular orbitals are localized objects, electrons or holes occupying them 
may be subject to strong on-site Coulomb repulsion, where a site can now be a 
molecular orbital one and technically comprise more than one atomic site. From 
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the band theory point of view, it would be very desirable to have a mean-field 
method, perhaps similar to the conventional LDA + U, in order to describe local 
correlations in systems with dominant MO character of the valence bands. Inte-
restingly, application of the conventional LDA + U method to such systems may 
have an unphysically detrimental effect on their MO nature. 

As an illustration, let us consider sodium iridium oxide Na2IrO3, a famous 
candidate Kitaev system [28], with an unusual property that its Ir—5d orbitals 
hybridize in a way such as to form MOs on Ir hexagons [29] [30]. It is worth 
emphasizing that, in contrast with our previous examples, here MOs are formed 
out of cation instead of oxygen orbitals, which makes this case rather special. 
This becomes possible thanks to the larger spatial extent of the 5d orbitals, com-
pared to that of the 3d ones, which leads to their larger nearest-neighbor hybri-
dization, and also thanks to the peculiar geometrical arrangement of the IrO6 
octahedra. Figure 4(a) shows the Na2IrO3 DOS projected onto Ir—5d MOs, as 
obtained from a generalized gradient approximation [31] (GGA) calculation. 
Here, we would like to focus on the MO aspects of the Na2IrO3 electronic struc-
ture and therefore neglect spin-orbit coupling effects, which one would other-
wise need to also take into account. In this calculation, we assume a zig-zag or-
der of Ir magnetic moments, shown in Figure 4(b), since it is experimentally 
found to be the ground magnetic state for Na2IrO3 [32]. As one can see from the 
GGA calculations, this magnetic order can be well described in terms of 
on-hexagon molecular orbitals. In particular, near the Fermi level we find a com-
pletely filled A1g + E2u MO and slightly filled A1g − E2u MO in one spin channel 
and an opposite situation in the other spin channel, with A1g ± E2u standing for 
linear combinations of MOs with the A1g and E2g symmetries. The connection 
between the zig-zag magnetic order and such peculiar MO occupations becomes  
 

 
Figure 4. Ir molecular orbitals in Na2IrO3. (a) and (e) show Ir MO projected DOS of 
Na2IrO3 calculated using GGA and GGA + U, respectively. (b) The zig-zag order of Ir 
magnetic moments within a hexagonal Ir layer. (c) and (d) show, respectively, the isolated 
A1g + E2u and A1g − E2u Ir MOs. 
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clear if one inspects the shapes of these two MOs in real space. Indeed, as shown 
in Figure 4(c) and Figure 4(d), one of these MOs is located on the right side of 
an Ir hexagon while the other MO is located on its left side, and this exactly 
produces the zig-zag order if the two MOs are occupied by holes of opposite 
spins. Now, there is one more MO at the Fermi level, namely, E2u, which is 
slightly empty in both spin channels. If a method like GGA + U but designed to 
act in the basis of MOs were applied to Na2IrO3, it would push up in energy and 
completely empty the A1g − E2u and A1g + E2u MO states and would push down 
and complete fill the E2g MO states. This is not what happens when the conven-
tional GGA + U method (U = 2.7 eV and JH = 0.7 eV on Ir-5d orbitals) is applied 
[Figure 4(e)]. Although it does open a charge gap of 0.25 eV, but in a way that 
splits and mixes the A1g − E2u, A1g + E2u, and E2u MO states, thus destroying the 
MO nature of the Na2IrO3 valence bands. Similar damage is also done to the 
lower-lying B1u and E1g MOs. 

For the local MO correlations to be treated properly (at least, in a mean-field 
sense), two approaches seem to be in place. In the first approach, one can first 
construct MOs via the unitary basis transformation of Equation (2) and then use 
the conventional LDA + U expressions for total energy and potential but written 
in the basis of MOs. We see three problems associated with this approach. First, 
it is not always obvious in which way MOs should be constructed. Second, this 
approach is intrinsically rotationally non-invariant, i.e., would produce different 
results depending on the choice of the basis. Third, calculation of the Coulomb 
and exchange interaction matrix elements 

i jM MU  and 
i jM MJ , with Mi and Mj 

denoting MOs, may pose a serious challenge. 
The second and, as we believe, more promising approach consists in extend-

ing the atomic orbital LDA + U method by additionally taking into account 
Coulomb interactions between different atomic sites. Also referred to as ex-
tended DFT + U + V, this approach was first discussed by Campo and Cococ-
cioni in [33]. It can be shown that if all important inter-site interaction terms are 
taken into account, this approach can capture the same MO physics as the more 
intuitive first approach discussed above. Whether the inter-site interaction terms 
that the authors of [33] chose to keep in their interaction Hamiltonian are suffi-
cient in doing so is an open question, and further investigations into this matter 
would be of great value. By the way, recognizing the importance of inter-site in-
teractions explains why GGA + U fails in the case of Na2IrO3. Indeed, although 
GGA suffers from the self-interaction problem, it at least treats both on-site and 
inter-site interactions on the same footing. This allows GGA to capture qualita-
tively all MO energy splittings in Na2IrO3 [Figure 4(a)]. On the other hand, in 
GGA + U the on-site interactions are unphysically exaggerated in comparison 
with the inter-site ones, which apparently must be similarly strong. 

6. Conclusion 

In summary, we presented our band theory perspective on some important as-
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pects of molecular orbitals in complex oxides. In particular, we first discussed 
technical issues related with the implementation of MO-based projection of 
electronic states, using NaNiO2 as an example. Then, this discussion was ex-
tended by considering non-orthogonal MOs, as observed in BaBiO3, and the way 
of performing their orthonormalization. This led us to the concept of atomic and 
molecular orbital Wannier functions, where we discussed the problem of the 
Wannier functions being typically rather extended in real space and how this 
property may restrict their usage as basis functions in model Hamiltonians, us-
ing NiO as an example. A suggestion was then made that MO based model Ha-
miltonians might be a good approach to describing correlated transition metal 
systems with strong cation-anion orbital hybridization and also systems with 
strong electron-phonon coupling. Our final point concerned the problem of a 
proper band theory treatment of strong correlations between electrons or holes 
occupying molecular rather than atomic orbitals. In this context, we discussed 
the failure of the conventional atomic LDA + U method to capture the MO na-
ture of the electronic states in Na2IrO3 and outlined possible pathways towards a 
more adequate band theory based description. As the interest in better under-
standing of the role of molecular orbitals in complex oxides is growing, we ex-
pect that our current review will provide a useful reference for future studies. 
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