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Abstract 

We study the ground state of an 1 2S =  anisotropic α  ( )z xyJ J≡  Hei-

senberg antiferromagnet with nearest (J1) and next-nearest (J2) neighbor ex-
change interactions on a triangular lattice using the exact diagonalization 
method. We obtain the energy, squared sublattice magnetizations, and their 
Binder ratios on finite lattices with 36N ≤  sites. We estimate the threshold 

( ) ( )2
tJ α  between the three-sublattice Néel state and the spin liquid (SL) state, 

and ( ) ( )2
sJ α  between the stripe state and the SL state. The SL state exists 

over a wide range in the α-J2 plane. For 1α > , the xy component of the 
magnetization is destroyed by quantum fluctuations, and the classical dis-
torted 120˚ structure is replaced by the collinear state. 
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1. Introduction 

Over the past three decades, the low temperature properties of low-dimensional 
quantum systems have been studied because of the exotic spin states that can 
arise from quantum fluctuations. The quantum antiferromagnetic Heisenberg 
(QAFH) model on a triangular lattice is a typical quantum frustrated system. 
This involves a generalized model with an antiferromagnetic nearest-neighbor 
(NN) interaction ( )1 0J >  and a next-nearest-neighbor (NNN) interaction 2J , 
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the model Hamiltonian of which given by 

1 2
, ,

2 2 ,x x y y z z x x y y z z
i j i j i j i j i j i j

i j i j
H J S S S S S S J S S S S S Sα α   = + + + + +   ∑ ∑

  
(1) 

where iSν  is the ν  component ( , ,x y zν = ) of the quantum spin 1 2S =  at 
lattice site i, ( )z xyJ Jα ≡  is an exchange anisotropy, and the sums ,i j  and 

,i j  run over all NN and NNN pairs of sites, respectively. Hereafter we set 

1 1J =  as the unit of energy scaling. The ground state (GS) of an isotropic 
QAFH model ( 1α = ) with 2 0J =  is the central issue of the model. Anderson 
proposed a resonating-valence-bond state or a spin liquid (SL) state as the GS of 
the model [1]. Since then, many authors have used various methods to study the 
model [2]-[16]. The GS of the model is now widely believed to have the classical 
long-range-order (LRO) in the form of the 3-sublattice structure (120˚ Néel state). 
However recent experiments on model compounds such as κ-(ET)2Cu2(CN)3 [17], 
EtMe3Sb[Pd(dmit)2]2 [18], and Ba3IrTi2O9 [19] have observed no LRO down to 
very low temperatures. Motivated by this discrepancy, the present authors [14] (he-
reafter referred to as SMFS) reexamined the GS of an anisotropic QAFH model with 
0 α≤ < ∞  on finite lattices having used an exact diagonalization technique, and 
found that the classical LRO is absent for 0.55 1.67α  . This includes the GS of 
the isotropic model ( 1α = ) with 2 0J = , i.e., it has no LRO and is the SL state. 

In the present paper, we consider the effect of the NNN interaction 2J  on 
the anisotropic QAFH model. The isotropic QAFH model with 2J  was studied 
recently using approximations such as a variational Monte Carlo (VMC) method 
[20], a many-variable VMC (mVMC) method [21], a coupled cluster method 
(CCM) [22], and a density matrix renormalization group method [23] [24]. 
These approaches showed that the 120˚ Néel state occurs for ( )

2 2
tJ J<  and that 

a four-sublattice antiferromagnetic LRO state (stripe Néel state) occurs for 
( )

2 2
sJ J> , i.e., the SL state appears between them, ( ) ( )

2 2 2
t sJ J J  . The thre-

sholds have been estimated as ( )
2 0.06tJ   and ( )

2 0.16sJ   [20] [22] [23] [24], 
although the mVMC method suggested a smaller region of the SL state, i.e., 

( )
2 0.10tJ   and ( )

2 0.135sJ   [21]. However, an exact result for finite lattices 
by SMFS [14] suggested ( )

2 0tJ < . No studies have been carried out on ( )
2
tJ  and 

( )
2

sJ  using the exact diagonalization technique. We therefore apply the same 
method used by SMFS to the model extended with 2J . We calculate exactly the 
squared sublattice magnetization of finite lattices, and we estimate ( )

2
tJ  and 

( )
2

sJ  using their Binder ratios over a wide range of α  and try to draw the 
phase diagram in theα-J2 plane. 

In Section 2, we present our method with the finite lattices. In Section 3, we 
estimate the threshold ( ) ( )2

tJ α  between the 120˚ Néel state and the SL state. In 
Section 4, we consider the stripe Néel state and its threshold ( ) ( )2

sJ α  with the 
SL state. In Section 5, we propose a phase diagram of the model. 

2. Method 

It is known that the GS of the classical model is a 120˚ Néel state when 
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( )
2 2

clasJ J< , and the stripe Néel state when ( )
2 2

clasJ J> , where ( )
2 1 8clasJ =  for 

1α ≤  and tends to zero as α →∞ . The unit cells of these states are shown in 
Figure 1. Although a similar LRO may be expected to appear in the anisotropic 
QAFH model, the classical ordered state is not a good quantum state. Therefore 
a remarkable difference may exist in the phase transition between the classical 
and quantum models. 

We first consider this problem. Hereafter we refer to the spin space of a lattice 
with 3N n=  sites with three-sublattice symmetry as the three-sublattice space 
(3SLS), where n is a natural number. Similarly, we refer to the spin space of a 
lattice with 4N n=  sites with four-sublattice symmetry as the four-sublattice 
space (4SLS). The minimum energies per site in the 3SLS and 4SLS are labeled as 

triE  and strE , respectively. The spin state is in the 3SLS when tri strE E<  and in 
the 4SLS when str triE E< . In the classical model, the threshold of ( )

2
clasJ  is one 

at which the spin space changes from one to the other, and the phase transition 
at ( )

2
clasJ  is of the first order. In the quantum model, although the spin space 

changes at some threshold ( )
2

quanJ , no phase transition will take place at ( )
2

quanJ , 
because there would be no LRO in those spin spaces at ( )

2 2
quanJ J . We must 

then consider the thresholds and natures of the phase transitions in the 3SLS and 
in the 4SLS, separately. 

For the 3SLS, we consider the lattices with 18 - 30N =  (and partly 36N = ) 
sites with periodic boundary conditions suitable for the three-sublattice struc-
ture (Figure 2(a)). 

For the 4SLS, we consider the lattices with N = 24, 28, and 32 sites with peri-
odic boundary conditions suitable for the stripe structure (Figure 2(b)). 

 

 
Figure 1. (a) Sublattices A, B, and C in the three-sublattice state; (b) Sublattices A, B, C, 
and D in the four-sublattice state. 

 

 
Figure 2. (a) The lattices with three-sublattice symmetry (3SLS). The lattices of N = 21, 
27, and 36 appear in Ref. [10]; (b) The lattices with four-sublattice symmetry (4SLS). 
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In either case, we obtain the GS eigenfunction sG Nψ  of the N sites using 
the Lanczos method, where s = tri or str for the 3SLS or 4SLS, respectively. The 
ν  component of the magnetization on the lΩ  sublattice is defined as 

2
,

l

sub
l i

i

N S
N

ν νµ
∈Ω

= ∑
                       

(2) 

where 3subN =  and ,l A B= , and C for the 3SLS, and 4subN =  and , ,l A B C= , 
and D for the 4SLS. The operators of the z, xy, and xyz components of the 
squared sublattice magnetization are defined as 

( )2

2
1 ,z z

l
lsub

m
N

µ= ∑
                      

(3) 

( ) ( )( )2 2

2
1 ,xy x y

l l
lsub

m
N

µ µ= +∑
                  

(4) 

( ) ( ) ( )( )2 2 2

2
1 .xyz x y z

l l l
lsub

m
N

µ µ µ= + +∑
               

(5) 

We calculate the ζ  component the squared sublattice magnetization, 

2,s N
mζ , as 

2, 2 s N sG sG NN
m mζ ζψ ψ=

                    
(6) 

where zζ = , xy, or xyz. 
We study the Binder ratios [25] that are used by SMFS [14] to estimate the 

threshold α  of the model with 2 0J = . At the critical point, the Binder ratio is 
size invariant. If there is a LRO, the Binder ratio is expected to increase with the 
system size. In contrast, in the paramagnetic or SL state, the Binder ratio de-
creases with the system size. This means that the size dependence of the Binder 
ratio is different from each other with and without a LRO. The z, xy, and xyz 
components of the Binder ratio can be defined as 

( ) ( )2 2

2, 2,3 2,z z z
s s s NN

B N m m = − 
                 

(7) 

( ) ( )2 2

2, 2,2 ,xy xy xy
s s s NN

B N m m= −
                

(8) 

( ) ( )2 2

2, 2,5 3 2.xyz xyz xyz
s s s NN

B N m m = − 
               

(9) 

Before estimating ( )
2
tJ  and ( )

2
sJ , we should examine that no phase transi-

tion will take place at ( )
2

quanJ . Figure 3 shows triE  and strE  together with 

2,
xy

tri N
m  and 2,

xy
str N

m  for the case of 0.4α = . As mentioned above, the spin 
space changes at ( ) ( )2 2 0.065quanJ J=  , whereas no signal of a change in the 
magnetic state is seen at this point. We consider the 3SLS for ( )

2 2
quanJ J<  and 

the 4SLS for ( )
2 2

quanJ J> . A remarkable point is that 2,
xy

tri N
m  ( 2,

xy
str N

m ) 
changes markedly around 2

peakJ , at which triE  ( strE ) has its maximum value. 
In the 3SLS, a bending of triE  accompanied by a discontinuous drop of 

2,
xy

tri N
m  indicates exchange in the GS between the lowest and next-lowest 

energy eigenstates at 2
peakJ . However, we reason that this says nothing about the  
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Figure 3. The GS energies sE  and the squared sublattice magnetizations 2,
xy

s N
m  of 

the 3SLS ( s tri= ) and the 4SLS ( s str= ). The data of the 4SLS for 30N =  are averages 

of those of 28N =  and 32N = . The solid and open symbols are sE  and 2,
xy

s N
m , 

respectively. An arrow represents the positions of ( )
2

quanJ . 
 

phase transition between the 120˚ Néel state and the SL state because ( )
2 2

quanpeakJ J> . 
The phase boundary should be estimated by a different method. In contrast, we 
expect ( )

2
sJ  to be near 2

peakJ , because ( )
2 2

quan peakJ J< . In Section 4, we consider 

2
peakJ  together with the Binder ratio strBζ  in order to estimate ( )

2
sJ . 

3. Three-Sublattice Néel State 

In this section, we estimate the threshold ( )
2
tJ . We consider 2,tri N

mζ  in the GS 
of the 3SLS. Special attention should be paid to the ( )z z

iiM S=∑  subspace in 
which the GS belongs. For 1α ≤ , the GS is in the minimum zM  subspace. 
For 1α > , however, the GS may not be restricted to the minimum zM  sub-
space depending on 2J . We then consider the cases 1α ≤  and 1α >  sepa-
rately. 

3.1. XY-Like Case (α ≤ 1) 

For 1α ≤ , the LRO has the 120˚ Néel state symmetry, and 2,
xy

tri N
m  and 

2,
xyz

tri N
m  are calculated for various α . For 1α < , because the spins lie in the 

xy plane, we consider the xyζ =  component, whereas the xyzζ =  compo-
nent for 1α = . In Figures 4(a)-(d), we present 2,tri N

mζ  for 0.0α = , 0.4, 0.8, 
and 1.0 as functions of 2J , respectively. As 2J  is decreased, 2,tri N

mζ  in-
creases revealing the development of the 120˚ spin correlation. For small 
( )0,0.4α = , the finite-size effect (FSE) for 2 0.05J   is rather weak implying 

the occurrence of the 120˚ Néel state. As α  is increased, the FSE becomes 
stronger. In the isotropic case of 1.0α = , we can see a strong FSE even for 

2 0.1.J < −  
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Figure 4. The squared three-sublattice magnetizations (a)-(c) 2,
xy

tri N
m  and (d) 2,

xyz
tri N

m  as func-

tions of 2J . Note that for 1.0α = , ( )2, 2,3 2xyz xy
tri triN N

m m= . 

 
We consider the Binder ratio ( )triB Nζ  [25] [14]. In Figures 5(a)-(d), we 

show ( )triB Nζ  for different even N as functions of 2J  for 0α = , 0.4, 0.8, and 
1.0, respectively. For a large 2J , ( )triB Nζ  decreases with increasing N, which 
reveals that LRO is absent. As 2J  is decreased, ( )triB Nζ  increases and the val-
ues for different N are close to each other. For 0α  , ( )triB Nζ  for different N 
intersect at almost the same 2J  (see Figure 5(a) and Figure 5(b)). That is, 

( ) ( )2 0 0.06 0.01tJ = ±  and ( ) ( )2 0.4 0.01 0.01tJ = ± . As α  is increased, the inter-
section points scatter, as seen in Figure 5(c). In this case, we consider a lower 
bound 2

lJ  and a upper bound 2
uJ  of ( ) ( )2

tJ α  according to the hypotheses 
described in Sec. II: the LRO is present when the Binder ratio ( )sB Nζ  increases 
with N, whereas it is absent when ( )sB Nζ  decreases with increasing N. We 
evaluate 2

lJ  and 2
uJ , and tentatively estimate ( ) ( )2

tJ α  as their average value. 
In this way, we get the thresholds as ( ) ( )2 0.6 0.01 0.01tJ = − ± ,  

( ) ( )2 0.8 0.05 0.04tJ = − ± , and ( ) ( )2 0.9 0.10 0.06tJ = − ± . 
In the case of 1.0α = , ( )triB Nζ  exhibits a somewhat different behavior from 

those for 1.0α < . Although ( )triB Nζ  increases with decreasing 2J , its increment  
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Figure 5. Binder ratios (a)-(c) ( )xy

triB N  and (d) ( )xyz
triB N  of the squared 3-sublattice magnetiza-

tion as functions of 2J . 
 

depends only very weakly on N, especially for 2 0J < . We could see no definite 
intersection point of ( )triB Nζ  for 24N ≥  down to 2 0.4J = − , i.e., we could 
not evaluate 2

lJ . Therefore we believe ( ) ( )2 1 0.1tJ < − , because 2 0.1uJ − . 

3.2. Ising-Like Case (α > 1) 

For 1α > , we are interested in 2,
z

tri N
m  and 2,

xy
tri N

m  because a distorted 
120˚ Néel state occurs in the classical model. We obtain the eigenfunction 

( )z

N
Mψ  with the minimum energy ( )zE M  for each zM  subspaces. Note 

that we consider only the subspaces of 6zM N≤  because the GS is in the 
6zM N=  subspace for 2J →−∞ . The GS eigenfunction sG Nψ  of the sys-

tem is one which gives the lowest value among ( )zE M ’s. When 2 0J ≥ , the 
GS eigenfunction sG Nψ  is ( )0

N
ψ . As 2J  is decreased, sG Nψ  succes-

sively changes to ( ) ( ) ( )1 , 2 , , 6
N N N

Nψ ψ ψ  at ( ) ( ) ( )1 2 6
2 2 2, , , NJ J J , re-

spectively. Using sG Nψ , we obtain 2,
z

tri N
m  and 2,

xy
tri N

m  for various α . 
A typical result of these is shown in Figure 6 for 1.25α = . For 2 0J  , both 

2,
z

tri N
m  and 2,

xy
tri N

m  exhibit a strong N dependence which reveals that 

2, 2,, 0xy z
tri triN N

m m →  for N →∞ . As 2J  is decreased, 2,
z

tri N
m  and 2,

xy
tri N

m  
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show different behaviors from each other. For 2,
xy

tri N
m , they remain almost 

constant down to ( )1
2J  and drop at ( ) ( ) ( )1 2 6

2 2 2, , , NJ J J . For the whole range of 

2J , we see a strong N dependence, that suggests that 2, 0xy
tri N

m →  for N →∞ . 
In contrast, 2,

z
tri N

m  gradually increases down to ( )1
2J  and discontinuously 

jumps at ( ) ( ) ( )1 2 6
2 2 2, , , NJ J J . It exhibits its own N dependence in different 

ranges of 2J . For 1) ( )6
2 2

NJ J< , 2,
z

tri N
m  is almost independent of N. We be-

lieve that the classical ferrimagnetic state arises in this range, because 

2, 1z
tri N

m   and 2, 0xy
trim

∞
= . For 2) ( ) ( )6 1

2 2 2
NJ J J< < , 2,

z
tri N

m  increases 
with N revealing the occurrence of the LRO of the z component of the spin. 
However, for 3) ( )1

2 2J J< , 2,
z

tri N
m  slightly decreases with increasing N. Note 

that we also obtain the similar results for 1.67α =  and 2.5. 
In Figure 7(a) and Figure 7(b), we plot the Binder ratio ( )z

triB N  as a function  
 

 

Figure 6. Squared three-sublattice magnetizations 2,
z

tri N
m  (solid symbols) and 2,

xy
tri N

m  

(open symbols) as functions of 2J . Jumps in those quantities occur at ( ) ( ) ( )1 2 6
2 2 2, , , NJ J J

 
from the right. 

 

 
Figure 7. Binder ratios ( )z

triB N  as a functions of 2J  for (a) 1.25α =  and (b) 2.5α = . 
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of 2J  for 1.25α =  and 2.5α = , respectively. For (a) 1.25α = , we evaluate 
the lower and upper bounds of ( )

2
tJ  as 2 0.15lJ −  and 2 0uJ  , i.e., 

( ) ( )2 1.25 0.08 0.08tJ − ± . For (b) 2.5α = , we estimate 2 0.08lJ −  and 

2 0.04uJ  , i.e., ( ) ( )2 2.5 0.02 0.06tJ − ± . Note that we also examined ( )xy
triB N  

to confirm the speculation given above and found that, in fact, ( )xy
triB N  de-

creases with increasing N for the whole range of 2J . 
To close this subsection, we emphasize that the distorted 120˚ Néel state is 

absent in the QAFH model, in contrast to the classical model. We find that, 
when ( )1

2 2J J< , the LRO of the z component of the spin occurs. A question re-
mains as to what the value of ( )1

2J  for N →∞ , ( )1
2,J ∞ . If ( ) ( ) ( )1

2, 2
tJ J α∞ = , the 

LRO of the z component of the spin occurs for ( ) ( )2 2
tJ J α≤ . If not, two possi-

bilities exist in the range ( ) ( ) ( )1
2, 2 2

tJ J J α∞ < < : either there is still the LRO, or the 
system is in a critical state that is similar to the spin state of the Ising model with 

2 0J = . Further studies are necessary to answer this question. 

4. Stripe State 

In this section, we consider the stripe state. We obtain the GS as the eigenfunc-
tion ( )0strG N N

ψ ψ=  with energy strE  because the stripe state belongs to 
the 0zM =  subspace. In Figure 8(a) and Figure 8(b), we show these quantities 
as functions of 2J  for 0.4α =  and 1.25α = , respectively. We readily see that 
the results for the 24N =  system are quantitatively different from those of the 

28N =  and 32 systems, which lead us to consider mainly data for 28N ≥  in 
order to evaluate ( )

2
sJ . We see similar properties in the cases of 1α <  and 

1α > . The magnetization 2,str N
mζ  rapidly increases around the peak posion 

2
peakJ  of strE  that implies the occurrence of the phase transition. When 

2 2
peakJ J< , 2,str N

mζ  is small and its N dependence is strong which reveals that 
the stripe state is absent. When 2 2

peakJ J> , 2,str N
mζ  is large, although its N 

dependence is still considerable especially for 1α < . Then we examine the  
 

 

Figure 8. The GS energies strE  and four-sublattice magnetizations tri N
mζ  as functions of 2J . 
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Figure 9. Binder ratios as functions of 2J . 

 
Binder ratio ( )strB Nζ . In Figure 9(a) and Figure 9(b), we plot ( )xy

strB N  and 
( )z

strB N  as functions of 2J  for 0.4α =  and 1.25α = , respectively. For 
0.4α = , when 2 0.19J  , ( )xy

strB N  increases with N, suggesting the presence 
of the stripe state, i.e., 2 0.19uJ = . In contrast, the lower bound of ( )

2
sJ  is eva-

luated from 2 0.16peakJ   of the 32N =  system because 2
peakJ  increases 

slightly with N. Therefore we estimate ( ) ( )2 0.4 0.18 0.02sJ = ± . Similarly, we es-
timate ( ) ( )2 1.25 0.195 0.010sJ = ± . 

We have also examined ( )
2

sJ  for 1α = . We may evaluate the lower bound of 

2 2 0.20l peakJ J=  . However, we could not evaluate 2
uJ  because  

( ) ( )32 28xyz xyz
str strB B<  even up to 2 0.3J =  [26]. 

5. Summary 

We have studied the 1 2S =  anisotropic antiferromagnetic model ( )z xyJ Jα ≡  
with nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions on a tri-
angular lattice using the exact diagonalization method. We have obtained the 
ground-state energy and the sublattice magnetizations for systems of different 
size N. We have examined Binder ratios to investigate the stability of the 
long-range order of the system. The N-dependences of Binder ratios suggest the 
threshold ( ) ( )2

tJ α  between the three-sublattice Néel state and the disordered 
state, i.e., the spin liquid (SL) state, and the threshold ( ) ( )2

sJ α  between the 
stripe state and the SL state. The results are summarized in the phase diagram 
shown in Figure 10. For 1α < , the classical 120˚ phase or the stripe phase oc-
curs in the xy plane. For 1α > , the xy component of the sublattice magnetiza-
tion vanishes, i.e., the distorted 120˚ state is replaced by the collinear (up up 
down) antiferromagnetic state because of quantum fluctuations. 

We have suggested that the SL state exists over a wide range in theα-J2 plane 
in contrast with recent approximation studies [20] [22] [23] [24] which give 

( ) ( )2 1 0.06 - 0.10tJ =  and ( )
2 0.135 - 0.16sJ = . The discrepancy will come from 

either the finite-size effect or approximations. Further studies are necessary to  
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Figure 10. The α-J2 phase diagram of the J1-J2 anisotropic Heisenberg model on a trian-
gular lattice. Cross symbols are those estimated in SMFS [14]. 

 
establish the thresholds for 1α  . 
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