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Abstract 
A modified form of the Townsend equations for the fluctuating velocity wave 
vectors is applied to the interaction of a longitudinal vortex with a laminar 
boundary-layer flow. These three-dimensional equations are cast into a Lo-
renz-format system of equations for the spectral velocity component solu-
tions. Tsallis-form empirical entropic indices are obtained from the solutions 
of the modified Lorenz equations. These solutions are sensitive to the initial 
conditions applied to the time-dependent coupled, non-linear differential 
equations for the spectral velocity components. Eighteen sets of initial condi-
tions for these solutions are examined. The empirical entropic indices yield 
corresponding intermittency exponents which then yield the entropy genera-
tion rates for each set of initial conditions. The flow environment consists of 
the flow of hydrogen gas with impurities at a given temperature and pressure 
in the interaction of a longitudinal vortex with a laminar boundary layer flow. 
Results are presented that indicate a strong correlation of predicted entropy 
generation rates and the corresponding applied initial conditions. These ini-
tial conditions may be ascribed to the turbulence levels in the boundary layer, 
thus indicating a source for the subsequent entropy generation rates by the 
interactive instabilities. 
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1. Introduction 

Results are reported for an innovative computational procedure applied to a 
study of the sensitivity to initial conditions in the computation of entropy gen-
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eration rates generated by the non-linear interaction of a longitudinal vortex 
with a laminar boundary layer flow. The equations for the fluctuating velocity 
components in a three-dimensional shear flow have been presented by Town-
send [1]. These equations are written in a Lorenz form (Sparrow [2]) and solved 
for the flow configuration shown in Figure 1. The mathematical bases and the 
corresponding computer program listings employed for these calculations have 
been discussed previously in Isaacson [3] [4] [5]. 

The nonlinear, time-series solutions for the spectral velocity wave compo-
nents are obtained from a modified Lorenz-type set of equations that is sensitive 
to the initial conditions applied to the integration of the equations. The control 
parameters for these equations are the steady state boundary layer velocity gra-
dients that are determined by the particular value of the kinematic viscosity for 
the system. Experimental measurements of the unsteady fluctuation levels in la-
minar boundary layers when subjected to free stream turbulence have been pre-
sented by Walsh and Hernon [6]. These results indicate that the free stream 
turbulence level has a significant effect on the resulting entropy generation rates 
in laminar boundary layers. The initial conditions for the integration of the Lo-
renz-type equations are heuristically assumed to be attenuated levels of the tur-
bulence imposed on the system from the free stream. 

However, the initial conditions for the integration of the modified Lorenz eq-
uations are the actual turbulent intensity levels applied to the flow system at the 
specific location within the boundary layer where the computational results are 
obtained. We have selected eighteen sets of initial conditions for the initial val-
ues for the computation of the time development of the spectral stream wise, 
normal and span wise velocity components. 

The boundary-layer environment used in the study reported here is the flow 
of helium with slight impurities at a temperature of T = 320.0 K and a pressure 
of p = 1.01325 × 105 N/m2 at a normalized boundary-layer vertical location of η 
= 3.00. The kinematic viscosity for the helium mixture at these conditions is ν = 
1.384696 × 10−4 m2/s. 

The Falkner-Skan transformation, in the form 
1 2

eu
y

x
η

ν
 =  
 

                          (1) 

provides the definition of the normalized distance, η from the surface of the 
boundary layer flow. In this expression, ue is the boundary layer edge velocity, x 
is the stream wise distance and the edge value for the normalized vertical dis-
tance is η∞ = 8.0. 

This article includes the following sections: 
In Section 2, the laminar boundary-layer flow configuration considered in this 

study is described. In Section 3, eighteen sets of initial conditions for the integra-
tion of the time-dependent modified Lorenz equations are presented. Section 4 
presents a brief review of the results of the study of the sensitivity of the solu-
tions of the modified Lorenz equations for the entropy generation rates to the 
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initial conditions. In Section 5, the fluctuation equations of Townsend [1], 
Isaacson [3] [4] [5], and Hellberg and Orszag [7] are transformed into the spec-
tral plane and written as modified Lorenz equations. Computational results for 
the time-dependent spectral velocity components are discussed. Section 6 de-
scribes the power spectral densities, the introduction of empirical entropies, em-
pirical entropic indices, and intermittency exponents extracted from the numer-
ical results of the computations. Section 7 covers the computation of the entropy 
generation rates for each of the sets of initial conditions, including a discussion 
of the strong correlation of these entropy generation rates with the correspond-
ing initial conditions, through the intermittency exponents. 

The article closes with a discussion of the results and final conclusions. 

2. Boundary-Layer Interaction Environment 

The solution of the modified Lorenz equations requires the input of various eq-
uation control parameters. The steady state boundary-layer velocity gradients 
and the time-dependent spectral wave component solutions serve as control pa-
rameters for the solution of the time-dependent fluctuating spectral velocity eq-
uations. The mathematical and computational methods used for the computa-
tion of the x-y plane and the z-y plane steady-state laminar boundary-layer ve-
locity gradients are summarized in this section. The boundary layer steady ve-
locity gradients vary with the stream wise distance x, indicating the initiation of 
instabilities within the boundary layer for several stream wise stations, similar to 
the development of a young turbulent spot. 

Singer [8] has reported the results of the direct numerical simulation of the 
effect of strong free stream turbulence on the development of a young turbulent 
spot in laminar boundary layer flow. These studies indicate the development of a 
counter-clockwise stream wise vortex that produces a laminar boundary layer in 
the z-y plane of the flow environment as shown in Figure 1. Ersoy and Walker 
[9] discus the development of this z-y plane boundary layer produced by the in-
teraction of the vortex tangential velocity with the flow surface. Belotserkovskii 
and Khlopkov [10] have computed the normalized span wise velocity at the out-
er edge of the vortex structure as we = 0.08. This is the value we use for the span 
wise velocity. Schmid and Henningson (pp. 429-436 [11]) discuss the develop-
ment of streaky structures, longitudinal vortex structures and the eventual de-
velopment of turbulent spots relative to the intensity levels of the free stream 
turbulence. These various observations provide a strong motivation to gain a 
better understanding of the transition of laminar flows to turbulent flows 
through the study of the effects of the values for the initial conditions applied to 
the solution of the modified Lorenz equations in the boundary layer flow. 

The computer source code listings that we have used to compute the steady 
laminar boundary layer velocity profiles for both the x-y plane and the z-y plane 
were developed by Cebeci and Bradshaw [12] and Cebeci and Cousteix [13]. 
These orthogonal profiles are similar in nature (Hansen [14]) and thus form the  
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Figure 1. A schematic diagram is shown of the configuration of a longitudinal vortex 
tangential velocity boundary layer profile in the z-y plane normal to the stream wise 
boundary layer profile in the x-y plane with free stream turbulence. 

 
steady boundary layer velocity gradient control parameters for the solution of 
the modified Lorenz equations. The working gas for these studies is a mixture of 
helium with several impurities, as described in [3], at a temperature of 320.0 K 
and a pressure of 0.101325 MPa. 

The boundary layer profiles are determined at six stream-wise stations, with 
the first station designated as the transmitter station. The following five stations 
are designated as receiver stations, with the first receiver station designated as 
station 1. The results obtained for the entropy generation rates at the receiver 
station 3, at x = 0.120, as a function of the initial conditions, are presented in 
depth in this article. A computational flow chart is presented in Figure 2 for the 
overall path of the computational procedure. The primary result of this study is 
the strong correlation of the resultant entropy generation rates with the corres-
ponding applied initial conditions for those rates. This is discussed in the next 
section. 

3. Selection of Initial Conditions 

An essential aspect of the computational procedure discussed in this article is the 
inclusion of the time-dependent, coupled, nonlinear modified Lorenz equations 
for the prediction of the development of ordered regions within the nonlinear 
time series solutions. For the studies reported in [3] [4] [5], a single set of initial 
conditions was used to obtain the reported entropy generation rates. However, 
solutions of the nonlinear modified Lorenz equations are very sensitive to the 
initial conditions applied in the calculation of the solutions ({Sparrow [2]). We 
have computed the entropy generation rates for the flow configuration shown in  
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Figure 2. Computational flow chart for the calculation of the entropy generation rates 
[3]. 

 
Figure 1 for a range of initial values for the stream wise spectral velocity wave 
component from 0.0050 to 0.2000, with the corresponding normal and span wise 
spectral velocity components at 40 percent of the stream wise initial value. Table 
1 shows the values for eighteen sets of initial conditions over this range. Also in-
cluded in Table 1 are corresponding values of an equivalent turbulence level as 
defined by Sengupta (pp. 103-105 [15]). Each of these set numbers are shown in 
Figure 3, for the corresponding entropy generation rates. 

4. Entropy Generation Rates: Sensitivity to Initial Conditions 

Application of the computational procedure outlined in Figure 2 to the fluc-
tuating velocity components in the three-dimensional flow shown in Figure 1 
yields the entropy generation rates that occur through the dissipation of the or-
dered regions predicted in the nonlinear solutions of the modified Lorenz equa-
tions. The solutions of the time-dependent modified Lorenz equations require 
initial values for each of the three spectral velocity components. The entropy  
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Table 1. This table provides the initial conditions for the computation of the three spec-
tral velocity components and the corresponding values of the equivalent turbulence level 
in percent. 

Initial conditions, 
set number 

Initial spectral 
velocity  

component, ax [1] 

Initial spectral 
velocity  

component, ay [1] 

Initial spectral 
velocity  

component, az [1] 

Equivalent  
turbulence level, 

percent 

1 0.00500 0.000200 0.000200 0.332 
2 0.00560 0.002240 0.002240 0.371 
3 0.01000 0.004000 0.004000 0.663 
4 0.01500 0.006000 0.006000 0.995 
5 0.02000 0.008000 0.008000 1.327 
6 0.03000 0.012000 0.012000 1.990 
7 0.04000 0.016000 0.016000 2.653 
8 0.05000 0.020000 0.020000 3.317 
9 0.06000 0.024000 0.024000 3.980 

10 0.07000 0.028000 0.028000 4.643 
11 0.08000 0.032000 0.032000 5.307 
12 0.09000 0.036000 0.036000 5.970 
13 0.10000 0.040000 0.040000 6.633 
14 0.12000 0.048000 0.048000 7.960 

15 0.14000 0.056000 0.056000 9.287 

16 0.16000 0.064000 0.064000 10.613 

17 0.18000 0.072000 0.072000 11.940 

18 0.20000 0.080000 0.080000 13.266 

 

 
Figure 3. The entropy generation rate as a function of the initial conditions applied to the 
solution of the modified Lorenz equations, at the stream wise location of x = 0.120, the 
normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 
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generation rate for each set of initial conditions shown in Table 1 has been 
computed for a three-dimensional boundary-layer flow of a helium mixture at a 
temperature of T = 320.0 K and a pressure of p = 0.101325 MPa. This tempera-
ture and pressure for this mixture provide a kinematic viscosity of v = 1.384696 
× 10−4 m2/s. Figure 3 shows the entropy generation rate at the stream wise sta-
tion x = 0.120, for a normalized boundary layer distance of η = 3.00 [1] for each 
of the sets of initial conditions listed in Table 1. 

These results indicate a strong correlation of the predicted entropy generation 
rates with the corresponding initial conditions applied to the equations for the 
time dependent solutions. If the assumption is made that these initial conditions 
are provided by the attenuated free stream turbulence, these computational me-
thods may then provide a path to understanding bypass transition. A detailed 
explanation of the procedures used in the calculation of these results and a dis-
cussion of the possible sources for the indicated entropy generation rates are 
presented in the next sections. 

5. Modified Lorenz Equations in the Time Dependent  
Spectral Plane 

5.1. Transformation of the Townsend Equations to the Modified 
Lorenz Format 

For the flow of a wall shear layer with velocity fluctuations, the computational 
procedure may be separated into the evaluation of the steady state velocity pro-
files and a set of equations for the fluctuating velocity field (Townsend [1]). The 
non-equilibrium spectral equations of Townsend [1] and Hellberg, et al. [7] are 
arranged into a Lorenz format (Sparrow [2]) for the computation of the nonli-
near time series solutions for the fluctuating spectral velocity field. The 
time-dependent spectral equations of Townsend [1] and Hellberg, et al. [7] are 
then solved with the steady state boundary layer velocity profiles as control pa-
rameters. 

The solutions of the modified Lorenz equations yield the spectral velocity 
components within the nonlinear time series solutions. Statistical analysis of 
these spectral time-series solutions yields the power spectral densities and the 
empirical entropies over a range of sixteen empirical modes. The correspon-
dence of the peaks of the spectral power spectrum and the empirical modes of 
the singular value decomposition analysis is achieved by invoking the Wein-
er-Khintchine theorem (Attard (pp. 354-355 [16]). This theorem relates the 
power density spectrum and the autocorrelation function since both properties 
are computed from the same nonlinear time series data.  

The equations for the velocity fluctuations within a wall shear layer may be 
written as (Townsend (pp. 46-49 [1])): 

21i i i i i
j j j

j j j i j j

u u U u upU u u
t x x x x x x

ν
∂ ∂ ∂ ∂ ∂∂

+ + + = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

.          (2) 

Fourier transform of these equations yields the equations for the three 
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time-dependent spectral velocity wave components, ai(k), as (pp. 47-49 [1]): 

( ) ( ) ( ) ( )

( ) ( )

2
2

2

2i i i l l
i i i

i m

i m
l im l l mk k k

a k U k k U
k a k a k a k

t x xk
k k

i k k a k a k
k

ν

δ′ ′′+ =

∂ ∂ ∂
= − − +

∂ ∂ ∂

  ′ ′′+ − 
 

∑
            (3) 

The nonlinear coupling terms in the spectral velocity components in Equa-
tions (3) are represented in our series of equations by characterizing the transfer 
matrix 

2
i m

l im
k k

k
k

δ − 
 

                          (4) 

as basic to the formation of patterns in nonlinear time series solutions (Manne-
vile (pp. 302-312 [17])). A model equation for this expression in the form 

( )( )( )1 cosK k t− ∗                        (5) 

is introduced to provide the proper weighting of the transfer matrix (Equation 
(4) in our computational procedure. K is an empirical amplitude factor [18] and 
( )k t  is given by: 

( ) ( )2
xk t k=                         (6) 

Substitution of Equation (5) and with ( )( )cosF K k t= , the equations for the 
spectral velocity components, Equations (3), may be rearranged into Lorenz 
format as [2] [3]: 

d
d

xn
yn yn xn xn

a
a a

t
σ σ= − ,                      (7) 

( )
d

1
d

yn
xn zn n xn n yn

a
F a a r a s a

t
= − − + − ,               (8) 

( )d
1

d
zn

xn yn n zn
a

F a a b a
t
= − − .                 (9) 

The expressions for the coefficients ynσ , xnσ , rn, sn, and bn are given in detail 
in [3]. These coefficients are functions of the wave number components, ki, and 
the steady state values of the velocity gradients in the boundary layer flow, as in-
dicated in Equation (3). These equations are designated as the modified Lorenz 
equations. These equations are solved at the initial station of x0 = 0.06, consi-
dered as the transmitter station. 

The solutions of these equations at the transmitter station require additional 
assumptions for the modified Lorenz equations. Manneville (pp. 305-312 [17]) 
has discussed both the format and justification for the heuristic choice of Ex-
pression (5) as the approximate replacement for the basic pattern matrix of Equ-
ation (3). This form appears in the fundamental basis for pattern formation in 
the study of dissipative structures in turbulent flows. Therefore, since we are 
looking for the formation of ordered regions in solutions of the modified Lorenz 
equations, the model equation of Expression (5) appears to be a logical choice. 
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We have found that a value of K = 0.05 yields instabilities in the nonlinear time 
series solutions of the modified Lorenz equations for a normalized boundary 
layer location of η = 3.00. Sengupta (pp. 158-165 [15]) reported the excitation of 
instabilities in wall shear layers with the application of normal wall velocities 
with a time dependent magnitude of sinusoidal form with a coefficient of ap-
proximately 0.05. These experimental results provide a measure of validation for 
our computationally determined value for the amplitude factor K.  

Incorporating Expression (5) in Equation (3), with the definition of the term 
F, the modified Lorenz equations take the form of Equations (7-9). These equa-
tions are solved at the transmitter station for each set of initial conditions listed 
in Table 1. This station provides the initial generation of instabilities in the non-
linear time series solutions of the modified Lorenz equations at the stream wise 
location of x0 = 0.060. 

The following stations at x1 = 0.080, x2 = 0.100, x3 = 0.120, x4 = 0.140, and x5 = 
0.160 are designated as receiver stations. From thermodynamic considerations 
(Attard (pp. 329-331 [16])), for the solutions at the receiver stations, we must 
take into account that the solutions of the first and subsequent receiver stations 
will be influenced by the fluctuations produced in the transmitter station and 
prior receiver stations. The concept of synchronization and the application of 
the modified Lorenz equations at each of these receiver stations is discussed in 
the next section. 

5.2. Synchronization Properties of the Modified Lorenz Equations 

We apply the transformation of the pattern matrix (Equation (5)) to the trans-
mitter station at x = 0.060. The time-series solutions for this station indicate the 
generation of nonlinear instabilities in each of the spectral velocity components. 
These instabilities are then transferred to the next station, or first receiver sta-
tion. The modified Lorenz equations have been shown to have the property of 
synchronization or extraction of ordered signals from a chaotic signal. We will 
apply this property to each of the receiver stations in the system. 

The synchronization properties of systems of Lorenz-type equations have 
been shown by Pecora and Carroll [19], Pérez and Cerdeira [20], and Cuomo 
and Oppenheim [21] to have the capability to extract messages masked by chao-
tic signals. The modified Lorenz equations are adapted here to exploit these 
synchronization properties to extract ordered signals from the nonlinear time 
series solutions generated for each of the spectral components at each of the 
stream wise receiver stations. 

We apply the synchronization properties at each of the receiver stations 
downstream from the initial transmitter station. The various boundary layer 
control parameters at each of these stations are computed in the same manner as 
in the transmitter station. Following the results in [18], the time-dependent 
output for the x-direction spectral velocity component from the transmitter sta-
tion is used as input to the nonlinear coupled terms in the modified Lorenz equ-
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ations at the next station, which we denote as the first receiver station in the 
x-direction. Then, the input to the nonlinear-coupled terms at the next down-
stream receiver station is made up of the sum of the stream wise velocity wave 
component output from the transmitter station plus the x-direction spectral ve-
locity wave component output from the first receiver station. This process is re-
peated for each of the five receiver stations. With this method, the memory of 
the initial velocity fluctuations from the transmitter station and the influence of 
subsequent fluctuations from the receiver stations are retained in the overall 
computational procedure. 

For each receiver station, n, the system of nonlinear dynamic equations is 
written as: 

d
d

xn
yn yn xn xn

a
a a

t
σ σ= − ,                      (10) 

d
d

yn
rn zn n xn n yn

a
a a r a s a

t
= − + − ,                   (11) 

d
d

zn
rn yn n zn

a
a a b a

t
= − .                      (12) 

Note that for the initial station, characterized as the transmitter station, ax0 , is 
the time-dependent spectral velocity wave component output from the trans-
mitter station. The input driving term for the next station, the first receiver sta-
tion at x = 0.08, is then given by ax0, where ax0 is the output from the initial or 

transmitter station at x = 0.06. 
In Equations (10-12), the input driving signal, arn, carrying information from 

the transmitter and the previous receiver stations to the n-th station is given by 
the sum of the outputs from the transmitter station and the previous n-1 receiver 
stations: 

1
0 , 1, 2,3, 4,5i n

rn xiia a n= −

=
= =∑                (13) 

The initial conditions for the fluctuating spectral velocity wave vector com-
ponents for the transmitter station and for each successive receiver station are 
set equal to the values listed in Table 1. This process determines the result that 
the outputs from each of the receiver stations will be masked by the original 
transmitter output signal, and that the synchronization process will yield an in-
dication of the ordered regions within the transmitter signal and the output sig-
nal from each of the receiver stations. 

5.3. Sensitivity to Initial Conditions 

The free stream velocity for the stream wise boundary layer flow is taken as uni-
ty, ue = 1.00, while the vortex tangential velocity is we = 0.08 (pp. 101-102 [10]). 
The solutions of the steady boundary layer velocity gradient profiles in the x-y 
plane and the z-y plane at each stream wise station provide the control parame-
ters for the solutions of the modified Lorenz equations at these stations. The so-
lutions of the modified Lorenz equations at the transmitter station yield the 
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fluctuating spectral velocity wave components for the stream wise location x = 
0.060 and the span wise location of z = 0.003. The boundary layer instabilities 
are observed within the boundary layer at a normalized distance from the hori-
zontal surface of approximately η = 3.0. With the outer edge of the boundary 
layer at the normalized distanceη∞ = 8.00, the instabilities occur at 37.5 percent 
of the boundary layer thickness. The time step for the time-dependent integra-
tion process is taken as h = 0.0001 s. Initial values for the spectral wave number 
equations are taken as kx [1] = 0.04, ky [1] = 0.02 and kz [1] = 0.02. The initial 
conditions for the wave component solutions are kept at these values for each set 
of initial conditions for the spectral velocity components indicated in Table 1. 

The solutions of nonlinear, coupled differential equations, such as the mod-
ified Lorenz equations (Equations (7-10) and Equations (10-12)), are sensitive to 
the particular values of the initial conditions applied in the solutions. Table 1 
presents a range of initial conditions for the solutions of these couple equations 
from an equivalent free stream turbulence level of 0.332 percent to a level of 13.3 
percent. Eighteen different sets of initial values for ax [1], ay [1] and az [1] are in-
cluded in the table. Each set of initial conditions is applied to the solution of the 
modified, Lorenz equations for six stream wise stations. The initial station, at x = 
0.06, denoted as the transmitter station, with n = 0 has the stream wise spectral 
velocity component, denoted as ax0. The following station is denoted as the first 
receiver station, n = 1, at x = 0.08, with the stream wise spectral velocity compo-
nent as ax1. The results presented here are the sensitivity to the initial conditions 
for the entropy generation rates at the receiver station of n = 3, at the stream 
wise location of x = 0.120. The three spectral velocity components are denoted as 
ax3, ay3 and az3. 

The initial conditions applied to the spectral velocity wave equations must 
arise from the attenuation of the external free stream turbulence level through 
the boundary layer flow. Schmid and Henningson (pp. 401-413 11]) and Sen-
gupta (pp. 171-200 [15]) discuss the effect of outside disturbances on laminar 
boundary layer flows and the subsequent development of various instabilities 
that may occur in the flow environment. The incorporation of the time depen-
dent spectral wave equations of the Lorenz format in the computational process 
thus opens the possibility of connecting the concept of boundary layer bypass 
transition to the subsequent development of ordered regions in the interaction 
of laminar boundary-layer environments. 

5.4. Deterministic Results for the Modified Lorenz Equations 

The solutions of the modified Lorenz equations have been obtained for each set 
of intial conditions listed in Table 1 for the designated stream wise stations. We 
have chosen to present graphical results in Figure 4 for initial conditions Set 8, 
Figure 5 for Set 9 and Figure 6 for Set 10. These results are obtained for a flow 
temperature of T = 320.0 K and a pressure of p = 0.101325 MPa. Figure 4 shows 
the phase diagram for ay3 − ax3, where ay3 is the normal spectral velocity wave  
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Figure 4. Shown is the normal spectral velocity component, ay3, versus the stream wise 
spectral velocity component, ax3, for the initial conditions of Set 8 at the stream wise loca-
tion of x = 0.120, the normalized vertical location of η = 3.0 and the span wise velocity 
component of we = 0.080. 

 

 
Figure 5. Shown is the normal spectral velocity component, ay3, versus the stream wise 
spectral velocity component, ax3, for the initial conditions of Set 9 at the stream wise loca-
tion of x = 0.120, the normalized vertical location of η = 3.0 and the span wise velocity 
component of we = 0.080. 
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Figure 6. Shown is the normal spectral velocity component, ay3, versus the stream wise 
spectral velocity component, ax3, for the initial conditions of Set 10 at the stream wise lo-
cation of x = 0.120, the normalized vertical location of η = 3.0 and the span wise velocity 
component of we = 0.080. 

 
component and az3 is the span wise spectral velocity wave component, again at 
the station x = 0.120. 

Figure 6 shows the phase diagram for ay3 − az3, where az3 is the span wise 
spectral velocity wave component and ay3 is the normal spectral velocity wave 
component, again at the station x = 0.120. These results indicate the formation 
of an initially strong spiral cone in the stream wise direction, transforming into a 
strongly oscillating motion in the stream wise, normal and span wise spectral 
planes of the flow environment. 

In Figure 3, the entropy generation rates for initial conditions sets, Set 8, Set 9 
and Set 10, are shown. The results for Sets 8 and 10 show relatively low values 
for the generation rates, while Set 9 indicates a spike in the generation rate. Fig-
ure 4 and Figure 6 indicate that for the relatively low generation rates, the 
stream wise spectral velocity components decrease in value relative to the com-
ponent values at the end of the spiral generation sequence. 

However, for the spike in entropy generation rate for Set 9, the stream wise 
spectral velocity component maintains a strong value, with significant structure. 
This pattern is repeated for initial condition Sets 6, 9, 12, 15 and 18, creating the 
strong patterns indicated in Figure 3. It is an interesting result that the solutions 
of the nonlinear modified Lorenz equations should exhibit such strong patterns 
in response to the values of the applied initial conditions. 
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6. Power Spectral Densities, Empirical Entropies, Empirical 
Entropic Indices and Intermittency Exponents 

6.1. Power Spectral Density Empirical Modes 

Burg’s method (Chen [22]) is used to compute the power spectral densities 
within the nonlinear time series solutions for the modified Lorenz equations. 
The computer program listing for Burg’s method given by Press et al. (pp. 
572-574 [23]) are incorporated into the computational procedure, providing the 
spectral peaks within the time series solutions. The mathematical basis for Burg’s 
method is found in information theory, with a thorough discussion presented by 
Cover and Thomas (pp. 409-425 [24]). Burg’s method provides excellent spectral 
resolution and yields sharp spectral peaks within the power spectral density 
computations. We have found that Burg’s method is an effective tool for ex-
tracting the underlying structural characteristics of the ordered velocity regions 
within the nonlinear time series solutions. 

The first five sets of initial conditions in Table 1 indicate relatively low levels 
of entropy generation. The nonlinear time series solutions of the modified Lo-
renz equations for these five sets indicate that instabilities are generated primar-
ily in the stream wise spectral velocity component, with relatively low levels of 
excitation in the normal and span wise spectral velocity components. However, 
for the initial conditions in Set 6 of Table 1, strong instabilities are observed in 
both the normal and the span wise components of the spectral velocity compo-
nents. Figure 7 presents the power spectral density for the normal spectral ve-
locity wave component, ay3 at the third receiver station at x = 0.120, for initial 
conditions, Set 6. For the power spectral density spectrum, we have assigned 
empirical mode numbers to the peaks, starting with mode j = 1 representing the 
highest peak in the distribution, continuing to mode j = 16, representing the 
corresponding lowest peak among the sixteen peaks. 

The power spectral density for the normal spectral velocity component shown 
in Figure 7 indicates that the kinetic energy available for dissipation is distri-
buted in well-defined spectral peaks or empirical modes. The kinetic energy 
within each empirical mode, jξ , of the power spectral density distribution is 
computed using Simpson’s integration rule. The sum of the individual contribu-
tions across the modes then yields the total kinetic energy contained within the 
ordered regions. This value is then used to get the fraction of kinetic energy in 
each mode that is available for dissipation into internal energy. 

6.2. Singular Value Decomposition and Empirical Entropies 

Additional fundamental characteristics within the nonlinear time series solu-
tions of the modified Lorenz equations may also be found using the singular 
value decomposition procedure (Holmes, et al. (pp. 130-152 [25])). The com-
puter program listings presented by Press et al. (pp. 59-65 [23]) for the singular 
value decomposition procedure have been incorporated into our overall compu-
tational program. The computer program for the singular value decomposition  
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Figure 7. The power spectral density for the normal spectral velocity component for the 
initial conditions Set 6 at the stream wise location of x = 0.120, the normalized vertical 
location of η = 3.00 and the span wise velocity of we = 0.080. 
 
[23] is made up of two parts, the computation of the autocorrelation matrix and 
the singular value decomposition of that matrix. This computer program then 
yields the empirical eigenvalues for each of the empirical eigenfunctions for the 
given nonlinear time series data segment. 

The singular value decomposition of the nonlinear time series solutions of the 
modified Lorenz equations yields the distribution of the spectral velocity com-
ponent eigenvalues λj across the empirical modes, j, for each set of initial condi-
tions listed in Table 1. Using Parseval’s theorem, (Thomas (pp. 97-100 [26])), 
the eigenvalues in the spectral plane, λj, are equivalent to the eigenvalues in the 
physical plane. These eigenvalues therefore represent the distribution of the ki-
netic energy of the fluctuating velocity components across the empirical modes, 
j. The fractional eigenvalues have an approximate exponential distribution over 
the empirical modes, j, as shown in Figure 8 (Isaacson [27]). 

Therefore, the analysis of Rissanen (pp. 58-60 [28]) is applicable and the em-
pirical entropy, Sempj, may be obtained from these eigenvalues by the expres-
sion: 

( )ln .j jSemp λ= −                      (14) 

In this expression, λj is the empirical eigenvalue computed from the singular 
value decomposition procedure applied to the nonlinear time-series solution. 
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Figure 8. The fractional eigenvalues from the singular value decomposition of the normal 
spectral velocity component at x = 0.120 are shown as a function of the empirical mode, j, 
for the initial conditions, Set 9. Also shown is an exponential curve fit to the data. 

 
The peaks of the spectral power density analysis and the empirical modes of 

the singular value decomposition analysis are computed from the same set of 
nonlinear time series data. Therefore, the Weiner-Khintchine theorem allows us 
to relate each power spectral density peak with a corresponding empirical ei-
genvalue. The Weiner-Khintchine theorem relates the power density spectrum 
to the autocorrelation function as they are operating on the same nonlinear time 
series data (Attard (pp. 354-355 [16]). 

The results for the empirical entropy value for each of the empirical modes 
allows us to compute a corresponding entropic index for these modes. This 
process is described in the next section. 

6.3. Empirical Entropic Indices 

The power spectral density spectrum shown in Figure 7 indicates regions of 
strongly peaked kinetic energy densities. The application of the singular value 
decomposition of the given time series data also provides us with a correspond-
ing value of the empirical entropy for each peak. These two properties allow us 
to construct a computational method to follow these regions from ordered 
structures into equilibrium thermodynamic states. To accomplish this, we use 
the approach of the Tsallis entropic indices (Tsallis [29]). 
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The empirical entropy, Sempj describes the entropy of an ordered region 
identified by the empirical eigenvalue, jλ , for the empirical mode, j. We have 
found that an expression from which we may extract an empirical entropic in-
dex, qj, from the empirical entropy, Sempj, may be written in a Tsallis entropic 
format as [18]: 

( ) ( )
( )

1
ln

1

jq
j

j j
j

Semp
q

λ
λ

−
= − =

−
.                 (15) 

The empirical entropy index, qj, provides a connection between the empirical 
entropy obtained from the singular value decomposition to the intermittency 
exponent of the ordered structures within the time series solutions. The inter-
mittency exponent describes the fraction of the available kinetic energy within 
each empirical mode, j, that is dissipated into thermodynamic internal energy, 
thus increasing the entropy of the system. The intermittency exponent for each 
of the empirical modes is discussed in the next section. 

6.4. Empirical Intermittency Exponents 

The final phase of the dissipation of fluctuating kinetic energy into thermody-
namic internal energy occurs through the process of intermittency exponents 
and a relaxation process into the final thermodynamic entropy state. 

The intermittency exponents for the each of the empirical modes, ζj, are ob-
tained from the empirical entropic indices of the Tsallis form extracted from 
the empirical entropies in Equation (15). Arimitsu and Arimitsu [30] derived, 
using multifractral methods, a relationship from which the intermittency ex-
ponent, ζj, may be extracted from the entropic index of Tsallis. The intermit-
tency exponent provides the fraction of fluctuating kinetic energy within the 
non-equilibrium empirical mode, j, that is dissipated into thermodynamic in-
ternal energy [30]. 

The absolute value of the empirical entropic index calculated from Equation 
(15) is used to extract the intermittency exponent from the equation derived by 
Arimitsu and Arimitsu [30]. This expression for the empirical mode, j, is written 
as: 

( ) ( )
( ) ( )

2 2

2 2

1 log 1 1 2 log 1 1 2
1

log 1 1 2 log 1 1 2

j j

j j

j

jq

ζ ζ

ζ ζ

ζ − −

− −

+ − + − − −
= −

+ − − − −


.     (16) 

The intermittency exponent, ζj, found from this expression, represents the 
fraction of kinetic energy in the empirical mode, j, that is dissipated into back-
ground thermal energy. The kinetic energy contained within the spectral mode, 
j, of the power spectral density is denoted as ξj. Thus, the product of the kinetic 
energy of the mode, j, and the intermittency exponent for that mode, ζj, summed 
over all of the empirical modes, represents the amount of kinetic energy in the 
given spectral velocity component that is dissipated into increasing the entropy 
of the reservoir. 
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The computation of the intermittency exponents yields two significant results. 
First, the computed value for each empirical mode allows the computation of the 
entropy generated through the dissipation of that mode. Second, the particular 
value for each empirical mode provides us with additional insight into the phys-
ical processes involved in the generation of entropy through the dissipation of 
the empirical modes embedded in the nonlinear solutions of the modified Lo-
renz equations. 

Consider the entropy generation rates for initial conditions Sets 8, 9 and 10 in 
Figure 3. The entropy generation rate for Set 9 indicates a spike in the value of 
the generation rate compared to the rates generated for Sets 8 and 10. We wish 
to compare the intermittency exponents for each of these sets of initial condi-
tions to better understand the physical processes related to the generation of the 
spike for Set 9. 

Figures 9-11 show the intermittency exponents for the stream wise, normal, 
and span wise spectral velocity wave components ax3, ay3 and az3 as functions of 
the empirical mode, j for the initial conditions Sets 8, 9 and 10, respectively. 
Note that the stream wise intermittency is relatively low for all three sets of ini-
tial conditions. The increase in value for the stream wise intermittency expo-
nents at the high empirical modes do not make a signifiacant contribution 

 

 
Figure 9. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 8 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 
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Figure 10. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 9 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 

 

 
Figure 11. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 10 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 
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to the entropy generation rates because these modes contain very low fractions 
of the available stream wise kinetic energy. 

However, for the normal and span wise spectral velocity components for ini-
tial conditions Sets 8 and 10, the first and third empirical modes make signifant 
contributions to the values of the intermittency exponents, with the third mode 
dominating the contributions. For the initial conditions Set 9, the fifth empirical 
mode comes into play with a significant increase in value. This indicates that as 
the initial conditions are increased in magnitude, the nonlinear time dependent 
solution of the modified Lorenz equations for the normal spectral velocity com-
ponent predicts the spread of ordered kinetic energy over an additional empiri-
cal mode for this component. This results in the predition of a higher rate of en-
tropy generation for this particular set of initial conditions. The repeated pattern 
shown in Figure 3 for the generation rates over the first twelve sets of initial 
conditions is rather surprising, given that we are using coupled, nonlinear 
first-order differential equations in our modified Lorenz equations. 

Figure 12 shows the intermittency exponents for the three spectral velocity 
components for initial conditions Set 15, which is the maximum entropy genera-
tion rate shown in Figure 3. The stream wise intermittency exponent shows an 
increase for empirical modes 1 and 3, with the span wise component increasing 
for modes 1, 3, and 5. The normal component indicates an almost linear increase 
in intermittency exponent value over empirical modes 1, 3, 5, and 7. This is also 
an interesting pattern within the nonlinear solutions of the modified Lorenze 
equations with the increase in intial conditions. 

The foundation for the Tsallis entropic index [29] and the Arimitsu and Ari-
mitsu intermittency exponent [30] lies in the concept of the fractal nature of the 
dissipation of turbulent kinetic energy (Mandelbrot [31]). Mandelbrot [31] also 
introduced the concept of fractals to describe the geometry of turbulent inter-
mittency. Frisch and Parisi [32] noted that there are actually many fractal scales 
involved in the dissipation of turbulent energy and in the process of intermit-
tency and introduced the concept of the multifractal model of turbulence. We 
have taken advantage of the considerable progress that has been made in ex-
tending these models to actual physical processes and wish to compare our re-
sults with recent theoretical and experimental results concerning the intermit-
tency of the turbulent dissipation of kinetic energy. 

To compare our computational results with results presented in the literature, 
we need to obtain average values for the intermittency exponents computed for a 
selected set of initial conditions from Table 1. For example, we will start with 
the results obtained for the initial conditions in Set 5 of Table 1. This set of ini-
tial conditions did not indicate the generation of significant flow instabilities and 
has a relatively low entropy generation rate, as indicated in Figure 3. The aver-
age intermittency exponent for the set of initial conditions is found by first av-
eraging the intermittency exponents found for each empirical mode of the sin-
gular value decomposition procedure applied to each of the three spectral veloc-
ity components. Then, these three average values are averaged across the three  
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Figure 12. The intermittency exponents are shown for the spectral velocity components, 
ax3, ay3, and az3, for the initial conditions of Set 15 at the stream wise location of x = 0.120, 
the normalized vertical location of η = 3.00 and the span wise velocity of we = 0.080. 

 
spectral velocity components to yield the average intermittency exponent for the 
entire Set 5 initial conditions. The resulting intermittency exponent will be des-
ignated as 

5ave
ζ . The value of the average intermittency exponent for initial 

conditions Set 5 is found to be 
5ave

ζ  = 0.349. 
Arimitsu and Arimitsu [33] found, in the analysis of quantum turbulent in-

termittency, a value of 
5ave

ζ  = 0.326, while Arimitsu, et al. [34] found by DNS 
analysis of this same quantum system a value of 

5ave
ζ  = 0.345. We may be able 

to gain a better understanding of the fundamental characteristics of systems with 
high values of intermittency exponents through a comparison of these two dif-
ferent systems. 

The low-temperature quantum superfluid system studied in [33] [34] appears 
to have negligible mutual friction between the superfluid and the normal fluid 
components. Therefore, the level of irreversibilities produced in the system 
would be very low. In the three-dimensional boundary-layer with initial condi-
tions given in Set 5 of Table 1, very low levels of instabilities are found in the 
nonlinear time-series solutions of the modified Lorenz equations. Subsequently, 
low values are predicted for the entropy generation rates for the initial condi-
tions of Set 5. Thus, the similarity between these two systems is that they each 
have very low levels of irreversibilities. 

However, when we move to the initial conditions Set 6, the first significant in-
stability is found in the nonlinear time series solutions of the modified Lorenz 
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equations. These instabilities give rise to a higher rate of dissipation of turbulent 
kinetic energy, thus increasing the irreversibilities in the process. This increase is 
reflected in the local peak in the entropy generation rate for Set 6, as indicated in 
Figure 3. 

The computation of entropy generation rates reported here are for a 
three-dimensional laminar boundary layer located at a stream wise distance of 
0.120 on a 1 m scale, with a stream wise velocity of unity, and at a normalized 
vertical distance in the boundary layer, η = 3.0, with the edge of the boundary 
layer at η

∞
 = 8.00, or 37.5 percent of the boundary-layer thickness. This loca-

tion is approximately the position of the hot-wire measurements reported by 
Meneneau and Sreenivan [35]. 

Table 2 shows the average intermittency exponents for a selected range of ini-
tial conditions, corresponding to the patterns apparent in Figure 3. Also shown 
are values of intermittency exponent used in a number of studies of the fractal 
nature of the dissipation of turbulent kinetic energy. The referenced values of 
the intermittency exponents are the values assumed in the indicated reference as 
either a given value for the analysis or an experimental value for comparison. 

An overall average intermittency value was determined by averaging over Sets 
6 - 10 and 14 - 16 with the results that 

5ave
ζ  = 0.241, which agrees with the un-

iversally accepted value of approximately 0.24 [33] [36]. It should also be noted 
that, in an analysis of the number of steps in the cascade process of the dissipa-
tion of turbulent kinetic energy [36], the number of steps was found to be 16.4, 
which is close to the number of empirical modes, 16, that we have found from 
the power spectral density results. 

6.5. Kinetic Energy Available for Dissipation 

The source of the kinetic energy to be dissipated through the empirical modes is 
considered as the local steady-flow kinetic energy, u2/2, at the normalized vertic-
al distance, η = 3.0 in the x-y plane boundary layer. This kinetic energy is as-
sumed to be distributed over the three fluctuating velocity components. The 
fraction of kinetic energy in the x-direction velocity component is denoted as 

xκ , the fraction of kinetic energy in the y-direction velocity component is de-
noted as yκ  and the fraction in the z-direction velocity component is denoted 
as zκ . The fraction of dissipation kinetic energy within each empirical mode of 
the power spectral energy distribution is denoted as jξ . Then the total rate of 
dissipation of the available fluctuating kinetic energy for the stream wise, normal 
and span wise velocity components is the summation, over the empirical modes, 
j, of the product of the kinetic energy fraction of each mode, jξ , times the in-
termittency exponent for that mode, ϕξ  [3]. 

The empirical intermittency exponent for each of the empirical modes has 
been obtained from the expression (Equation (16)) given by Arimitsu and Ari-
mitsu [31]. Thus, values are available for the input energy source for the 
non-equilibrium ordered regions, the fraction of the fluctuation kinetic energy  
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Table 2. This table shows the average value for the intermittency exponents for a selected 
range of sets of initial conditions. Also shown are comparable values from selected refer-
ences. 

Initial conditions: 
Set number 

Intermittency exponent: 
Average value 

Reference  
intermittency value 

Reference number 

5 0.3487 0.345 [34] 

6 0.2377 0.238 [33] 

7 0.2313 0.235 [35] 

8 0.2267   

9 0.2502 0.259 [36] 

10 0.2187   

14 0.2636   

15 0.2647 0.260 [34] 

16 0.2380 0.240 [33] 

 
available in each of the empirical modes within the non-equilibrium ordered re-
gions, and the fraction of the energy in each of the empirical modes that dissi-
pates into background thermal energy, thus increasing the thermodynamic en-
tropy. Concepts from non-equilibrium thermodynamics are used to calculate the 
dissipation process for the ordered regions as a general relaxation process. This 
is considered in the next section. 

7. Entropy Generation Rates through the Dissipation of  
Ordered Regions 

de Groot and Mazur (pp. 221-230 [37]), from the concepts of non-equilibrium 
thermodynamics, write the equation for the entropy generation rate in an inter-
nal relaxation process as: 

( ) ( )xs J x
t x

µ∂∂
= −

∂ ∂
.                       (17) 

Here, s is the entropy per unit mass, μ is the mechanical potential for the 
transport of the ordered regions in an external context and J(x) is the flux of ki-
netic energy through the ordered regions available for dissipation into thermal 
internal energy. The dissipation of the ordered regions into background thermal 
energy may be considered as a two-stage process from the transition of the or-
dered regions into equilibrium thermodynamic states and a turn-over process of 
the downstream velocity in the initial state to the final equilibrium state of the 
velocity over the internal distance x. The local boundary layer steady state veloc-
ity is written as eu u f ′= , where f ′  is the derivative of the Falkner-Skan 
stream function f with respect to the normalized distance η. The expression for 
the entropy generation rate (in Joules/(m3∙K∙s)) through the non-equilibrium 
ordered regions is then written as [3]: 
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In this expression, ρ is the density of the working substance, T is the temper-
ature and ue is the free stream velocity. The dissipation rate for each of the three 
fluctuating spectral velocity components is included in Equation (18). 

The kinetic energy in each spectral mode available for final dissipation into 
equilibrium internal energy is computed for each of the spectral peaks shown in 
Figure 7. The empirical entropy for each of the regions indicated by the spectral 
peaks is found from the singular value decomposition process applied to the 
given time series data segment. The connecting parameter, the empirical en-
tropic index, is then extracted from the resulting value of the empirical entropy. 
The empirical entropic indices then allow the extraction of the corresponding 
intermittency exponents. 

8. Discussion 

There are two significant issues with the computational procedure and the re-
sults reported in this article. First, there have been no comparable computational 
results which would validate the procedures adopted here. Second, experimental 
validation is sparse and applies only to selected aspects of the computational ap-
proach and the results. However, the computational procedure is innovative in 
that it provides a method for the incorporation of a deterministic set of equa-
tions for the development of instabilities within the steady state environment of 
a three-dimensional laminar boundary layer flow. The results indicate that the 
entropy generation rates resulting from nonlinear interactions in a three-    
dimensional laminar boundary-layer flow are significantly affected by the par-
ticular initial conditions that are applied to the longitudinal vortex structure and 
the adjacent laminar boundary layer flow. 

The counter clockwise rotating longitudinal vortex structure creates a viscous 
boundary layer along the z-y plane of the flow configuration. This viscous 
boundary layer is orthogonal to the laminar boundary layer in the x-y plane in 
the stream wise direction. It is shown that this nonlinear interaction creates in-
stabilities within the three-dimensional flow configuration. 

The computational results reported here for the entropy generation rates for a 
helium mixture boundary layer flow are obtained at the stream wise location of x 
= 0.120, in the range of stream wise locations from x = 0.06 to x = 0.18, for the 
normalized vertical station of η = 3.00. The weighting factor K in Equation (5) 
has been found to yield the prediction of instabilities for a value of K = 0.05. In 
an experimental investigation of laminar boundary layer receptivity to surface 
mass injection, Sengupta (pp. 158-170 [15]) found that the coefficient of 0.05 for 
a time-dependent sinusoidal surface mass injection rate also initiated instabili-
ties within a laminar boundary-layer flow. We thus have the implication that 
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Equation (5) is a proper choice for the transformation of the Townsend equa-
tions for the fluctuating velocity components into a modified Lorenz format. 

Free stream turbulence levels provide the turbulent kinetic energy that enters 
the wall shear layer. However, this level is attenuated within the layer and only a 
portion is available to serve as the initial conditions for the solution of the mod-
ified Lorenz equations describing the development of instabilities within the 
layer. Schmid and Henningson (pp. 430-436 [11]) discuss the resulting forma-
tion of stream wise vortices, streaky structures, and the subsequence formation 
of turbulent spots through the interaction of this turbulence level within the wall 
boundary layer flow. 

In the study reported here, we have modeled the interaction of a longitudinal 
vortex structure with a stream wise developing boundary layer through the time 
dependent modified Lorenz equations and have applied a range of initial condi-
tions to the solutions of these equations. 

Fluctuating spectral velocity components are found within the time-series so-
lutions for the modified Lorenz equations. Statistical processing of the solutions 
indicates the presence of ordered regions embedded within the nonlinear time- 
series solutions. The dissipation of these ordered regions into equilibrium ther-
modynamic states yields the entropy generation rates for the three-dimensional 
interaction flow environment. Significant entropy generation rates are predicted 
for the specified sets of initial conditions applied to the solutions. The results for 
these entropy generation rates indicate a strong correlation of the entropy results 
with the levels of the applied initial conditions and that a pattern emerges as a 
function of the increasing levels of the initial condition equivalent turbulence 
intensities. 

The sensitivity to initial conditions of the Lorenz format spectral velocity equ-
ations may provide a means of connecting the incorporation of these time de-
pendent spectral equations in the computational procedure with the concept of 
bypass transition of the boundary layer flow due to outside disturbances. 

9. Conclusions 

The flow configuration of a longitudinal vortex structure and an adjacent lami-
nar boundary layer for a helium mixture flow provides a three-dimensional non-
linear interaction of laminar boundary layers. In the study reported in this ar-
ticle, the velocity fluctuations produced by the instabilities that occur in such an 
interaction have been modeled through the transformation of the Townsend 
equations for the velocity fluctuations into a set of nonlinear deterministic Lo-
renz equations for the spectral velocity components of the fluctuations in the 
time frame. 

The steady boundary-layer velocity profiles in the longitudinal-normal plane 
and the span wise-normal plane are computed using well-established numerical 
methods and serve as control parameters for the solutions of the modified Lo-
renz equations for the time-dependent spectral velocity components. It is shown 
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that the solutions of the nonlinear deterministic modified Lorenz equations are 
strongly dependent on the values for the initial conditions applied to the solu-
tions. Eighteen sets of initial conditions are examined for the resulting effects on 
the final values for the computed entropy generation rates. 

Power spectral density analysis of the nonlinear time series indicates the 
presence of sixteen ordered spectral velocity modes within the time series data. 
Integration over each of these modes provides the ordered energy available 
within that mode for dissipation into background thermal energy, or increase of 
entropy. From the singular value decomposition of the time series data, the frac-
tion of kinetic energy in each of the sixteen modes yields a corresponding value 
of empirical entropy for that mode. The value of empirical entropy yields the 
value for the Tsallis empirical entropic index, from which the corresponding in-
termittency exponent for each mode is obtained. Combining these results yields 
the expression of the total entropy generation rate for all of the ordered modes.  

The entropy generation rates through the dissipation of these ordered regions 
are computed for eighteen sets of initial conditions for the given helium boun-
dary layer flow environment. Strong correlation is found between the predicted 
entropy generation rates and the initial conditions applied for the solutions of 
the modified Lorenz equations, both in amplitudes of the generation rates and 
the emergent of significant patterns of the entropy generation rates as a function 
of the intensity levels of the applied initial conditions. 

These results offer a deterministic path to the understanding of bypass transi-
tion and a foundation for the development of an understanding of the dynamics 
of turbulent spots in the transition from laminar to turbulent flows. 
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Nomenclature 

ai: Fluctuating i-th component of velocity wave vector 
bn: Coefficient in modified Lorenz equations defined by Equation (9) 
F: Time-dependent feedback factor 
h: Integration time step (s) 
j: Mode number empirical eigenvalue 
J: Net source of kinetic energy dissipation rate, Equation (17) 
k: Time-dependent wave number magnitude 
ki: Fluctuating i-th wave number of Fourier expansion 
K: Adjustable weighting factor 
n: Stream wise station number 
P: Local static pressure (N∙m−2) 
qj: Empirical entropic index for the empirical entropy of mode, j 
rn: Coefficient in modified Lorenz equations defined by Equation (8) 
s: Entropy per unit mass (J∙kg−1∙K−1)) 
sn: Coefficient in modified Lorenz equations defined by Equation (8) 
Sempj: Empirical entropy for empirical mode, j 

genS : Entropy generation rate through kinetic energy dissipation (J∙m−3∙K-1∙s−1) 
t: Time (s) 
u: Mean stream wise velocity in the x-direction in Equation (4) 
u’: Fluctuating stream wise velocity in Equation (4) 
ue: Stream wise velocity at the outer edge of the x-y plane boundary layer 
ui: The i-th component of the fluctuating velocity 
Ui: Mean velocity in the i-th direction in the modified Lorenz equations 
we: Span wise velocity at the outer edge of the z-y plane boundary layer 
x: Stream wise distance 
xi: i-th direction 
xj: j-th direction 
y: Normal distance 
z: Span wise distance 
Greek Letters 
δ: Boundary layer thickness (m) 
δlm: Kronecker delta 

jζ : Intermittency exponent for the j-th mode in Equation (18) 
η: Transformed normal distance parameter 
η∞: Transformed outer edge of the boundary layer 

xκ : Fraction of kinetic energy in the stream wise component 

yκ : Fraction of kinetic energy in the normal component 

zκ : Fraction of kinetic energy in the span wise component 
λj: Eigenvalue for the empirical mode, j 
μ: Mechanical potential in Equation (17) 
v: Kinematic viscosity of the gas mixture (m2∙s-1) 

jξ : Kinetic energy in the j-th empirical mode 
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ρ: Density (kg∙m−3) 
σy: Coefficient in modified Lorenz equations defined by Equation (7) 
σx: Coefficient in modified Lorenz equations defined by Equation (7) 
τw: Wall shear stress (N∙m−2) 
Subscripts 
e: Outer edge of the laminar boundary layer 
i, j, l, m: Tensor indices 
x: Component in the x-direction 
y: Component in the y-direction 
z: Component in the z-direction 
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