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Abstract 
A formula is derived for the central nucleon-nucleon potential, based on an 
analysis of the physical origin of the nucleon-nucleon attraction by pion ex-
change. The decrease of the dynamical mass of the interaction field, ex-
changed pion in this case, is the principal mechanism responsible for the nuc-
lear attraction in a similar way that the decrease of the kinetic energy of the 
exchange electron in the diatomic molecule is directly responsible for the co-
valent molecular attraction. The minimum value of this central nucleon-nucleon 
potential and the position of the minimum are similar with the values re-
ported in literature for a potential calculated by lattice QCD, which shares the 
features of the phenomenological nucleon-nucleon potentials. The Schrodin-
ger equation with this central nucleon-nucleon potential was solved numeri-
cally for different values of the pion mass. The binding energy increases with 
the decrease of the pion mass. For masses higher than the real pion mass the 
nucleon-nucleon system is unbound. We discuss on the two pion exchange 
and hard core repulsion. The minimum value of the potential for two pion 
exchange is comparable with the minimum value of the CD Bonn potential. 
For a hard core radius of 0.5 fm the binding energy is equal to the deuteron 
binding energy. 
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1. Introduction 

The effective degrees of freedom in the nuclear interaction at low energy, in par-
ticular in the nuclear bound state, are the nucleons and the pions. The pion ex-
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change is the basic mechanism of nucleon-nucleon (NN) attraction at low ener-
gy [1]-[6]. 

As it is well known the current masses of quarks (antiquarks) u (ū) and d (đ) 
are very small; the nucleon and pion masses are mainly of dynamical origin 
(“kinetic” energy). The confinement of the quarks into nucleon and pion asso-
ciate an energy, given by the Heisenberg uncertainty relation, which is just the 
dynamical mass. 

The long range structure of the nucleon is given roughly by the pion [7] [8], 
which also gives the range of nuclear forces. In particular, the Compton wave-
length of the pion m cπ π=  , which has a value of 1.41 fm for the charged 
pion, gives the range Nr  of the nucleon extension. The pion in nucleon can be 
represented by a degree of freedom of current mass ≅  0, localized into a region 
of radius Nr π=  . This localization into the nucleon associates an energy (dy-
namical mass) 2E pc c m cπ π≅ = =  , given by the uncertainty relation, which 
is just the mass of the pion. 

At the formation of a nuclear bound state this dynamical mass decreases, 
which determines a mass defect and consequently a binding energy for the 
nucleon-nucleon state [9] [10]. Indeed, when two nucleons approach each other 
to form a bound state, in particular the deuteron, they put in common their 
pion degrees of freedom (pion exchange). This is equivalent with a slight 
de-localization of the pion degree of freedom from a region of radius Nr π≅   
to a region of radius ( ) ( )Nr R Rπ+ ∆ = + ∆ , where ( )R∆  is direct propor-
tional to the distance R between the two bound nucleons and is strongly depen-
dent on the probability of the pion to penetrate the potential barrier between the 
two nucleons [10]. The dynamical mass gets: 

( )
cE

Rπ
∆ ≅ + ∆





                          (1) 

and is lower than the initial one (that in the free nucleon). To form a bound state, 
the decrease of the dynamical mass of the pion degree of freedom: 

( )
c cE

Rπ π

∆ = −
+ ∆

 

 

                       (2) 

must be larger than the kinetic energy acquired by the system of two nucleons 
due to their localization at a distance R each other: 

This mechanism of nuclear binding has similarities with the mechanism of 
molecular binding of diatomic molecules [11]. In fact Heisenberg was the first 
who presented the attractive force between proton and neutron in analogy to 
that in the hydrogen molecular ion 2H+ , where the electron is the particle ex-
changed between the two protons [2]. 

2. Feynman Approach to the Molecular and Nuclear 
Exchange Interactions 

Let’s start with the physical interpretation of the mechanism of 2H+  ion binding 
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presented by Feynman in [11]. 
In the 2H+  ion, since there are two protons, there is more space where the 

electron can have a low potential energy than in the case of hydrogen atom. The 
exchanged electron spreads out lowering its kinetic energy, in accord with un-
certainty relation. This kinetic energy decrease is at the origin of the molecular 
attraction in covalent bond, in particular in the 2H+  ion [11] [12] [13] [14]. 

For large distances between the two protons of the 2H+  ion the electrostatic 
potential energy of the exchanged electron is nearly zero over most of the space 
between the protons and the electron moves nearly like a free particle in empty 
space but with a negative energy [11]: 

2

2 H
e

p W
m

= −                           (3) 

where HW  is the binding energy (+13.6 eV) of the hydrogen atom. This means 
that p is an imaginary number: 

2 e Hp i m W=                        (4) 

The probability amplitude A for a particle of definite energy to get from one 
place to another a distance R away is proportional to [11]: 

( )e~
i pR

A
R



                        (5) 

where p is the momentum corresponding to the definite energy. Replacing p one 
obtains that the amplitude of jumping of electron from one proton to the other, 
for large separation R between the two protons, will vary as [11]: 

( ) 0
2e e~

e Hm W R R a

A
R R

− −

=


                  (6) 

where 0a  is the Bohr radius. 
If the particle goes in one direction the amplitude is [11]: 

0~ e R aA −                           (7) 

One can note that this exponential function limits drastically the amplitude of 
electron exchange for large separation. 

The nuclear interaction which takes place between a neutron and a proton by 
pion exchange is described by Feynman with similar arguments [11]. Since in 
the nuclear process the proton and the neutron have almost equal masses, the 
exchanged pion will have zero total energy. But for a pion of mass mπ : 

2 2 2 2 4E p c m cπ= +                      (8) 

where E and p are the total energy and the momentum of the pion. 
Since the exchanged pion have practically zero total energy the momentum is 

again imaginary [11]: 

p im cπ=                         (9) 

This means the amplitude for the pion to jump from one nucleon to another 
is for large R: 
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( )~ e em c R RA π π− −=

                     (10) 

The exponential function is typical for a Yukawa potential or exponential po-
tential, and again it limits drastically the exchange for large R. 

3. The Central Nucleon-Nucleon Potential Due to Pion  
Exchange 

In fact, the exponential factor is well known from the tunneling of a potential 
barrier of width R by a particle with an energy much lower than the barrier 
height. The probability of transmission is the (absolute) square of the amplitude 
[11], this means in our case: 

2~ e RP π−                            (11) 

The increase ( )R∆  of the radius of localization region of the pion degree of 
freedom, which appears in formulae (1) and (2), is strongly limited by this ex-
ponential function (11), i.e. the probability for the exchanged pion to penetrate 
(tunnel) the potential barrier between the two nucleons. From a physical point 
of view one expects that this probability of transmission is 1 for a barrier width 

0R → . Therefore ( )R∆ , which is proportional both to the distance R between 
the nucleons and to the probability of transmission of the exchanged pion, is 
equal to: 

( ) 2e RR R π−∆ =                        (12) 

By replacing (12) in formula (2), we obtain the decrease of the dynamical mass 
of the pion degree of freedom, which is at the origin of nuclear attraction. In fact 
with sign minus this decrease is just the NN potential due to pion exchange [10]: 

( )
2

2 2

e*
Re e

R

R R

c c c RV R E
R

π

π π
π ππ π

−

− −= −∆ = − = −
+ +



 

  

  

     (13) 

where 2c m cπ π=  . 
The NN potential V(R) as a function of inter-nucleon distance R is shown in 

Figure 1 for a charged pion exchange between the two nucleons ( )1.41 fmπ = . 
This potential has some similarities with that obtained by lattice QCD [15] [16], 
which shares the features of the phenomenological NN potentials: an attractive 
well at intermediate and larger distances and a hard core repulsion at small 
range, with the maximum depth of the potential in the intermediate range [1] [2] 
[3] [4] [5]. The minimum value of the potential (−22 MeV) and the position of 
the minimum (0.7 fm) in Figure 1, are comparable with the values shown in 
Figure 3 from [15]: about −25 MeV and 0.7 fm. The fall of the potential towards 
zero value in Figure 1 for small R (R < 0.6 fm) is compatible with the beginning 
of the hard core repulsion region [1] [2] [3] [4] [5] [15] which gets dominant at 
short range. 

The potential in Figure 1 is a little larger, in particular the fall towards higher 
values of R is slower than in the case of potential obtained in [15]. But the results 
in [15] were obtained for a pion mass (530 MeV) higher than the real pion mass.  
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Figure 1. The NN potential in the case of charged pion exchange. 

 
For a lower pion mass (360 MeV) the range of the potential gets wider also 
[15]. 

We solved numerically the Schrodinger equation for the potential V(R) given 
in relation (13), for different values of the pion mass mπ : 

( ) ( ) ( ) ( )
2

2
R V R R E Rψ ψ ψ

µ
− ∆ + =
                (14) 

where µ  is the reduced mass of the two nucleons. 
From a numerical point of view, the Schrodinger equation in central potential 

has been solved using the substitution: ( ) ( )R R Rψ φ=  which, in turn, gives a 
standard Sturm-Liouville eigenvalue problem with a constant coefficient for the 
second order derivative: 

( ) ( ) ( ) ( )
22

2

d
2 d

R
V R R E R

R
φ

φ φ
µ

− + =
                 (15) 

We look for the ground state, this means zero centrifugal energy (l = 0). 
The spatial dimension has been truncated as [ ]0,20 fmR∈  with a standard 

discretization in equal intervals of 310 fmR −∆ = . Such large radial extension is 
needed in order to resolve properly the states lying closely to the continuum 
( 0E <≅ ). The eigenvalue problem is solved by means of a finite difference me-
thod with the boundary values ( ) ( )0 0 0φ φ′= =  and imposing an exponential 
decay at large radius. The resulting Hamiltonian is diagonalized and the eigen-
values (energy) are obtained. 

In Figure 2 is given the dependence of the total energy of the two nucleons in 
function of the exchanged pion mass mπ . For the real pion mass corresponds 
about −0.1 MeV, this means a very small binding energy. 
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Figure 2. The total energy of the two nucleons as a function of the pion mass mπ . 

 
The total energy of the two nucleons decreases, this means the binding energy 

increases with the decrease of the pion mass. For masses higher than the real 
pion mass the total energy gets positive (unbound state). This underline the cen-
tral role of the pion as main player in the production of nuclear attraction, as 
largely accepted in literature [1]-[6]. 

4. The Two Pion Exchange and the Hard Core Repulsion 

The maximum molecular attraction is realized in the diatomic molecular bond 
by exchange of two electrons [11]. This is the case of the hydrogen molecule H2 
in which the two hydrogen atoms put in common (exchange) their electrons. 

Similarly, the maximum of NN attraction is given by the exchange of two 
pions. Each nucleon puts in common (exchanges) a pion degree of freedom with 
the other nucleon. This means two pion degrees of freedom are slightly 
de-localized. The NN potential in this case is practically two times the potential 
given by relation (13). The minimum value of the potential gets −44 MeV, which 
is comparable with the minimum value (−50 MeV) of the CD Bonn potential 
[2]. 

If one adds to this two pion exchange potential 2 V(R), where V(R) is given by 
relation (13), a hard core repulsion at 0 0.6 fmr ≤ , a typical value for phenome-
nological nucleon-nucleon potentials [1] [2] [3] [4] [5], it results the NN poten-
tial shown in Figure 3. 

The Schrodinger equation for this two pion exchange potential 2V(R) with 
hard core repulsion was solved numerically for different values of the hard core 
radius 0r . In Figure 4 it is shown the total energy of the two nucleons in func-
tion of the hard core radius. 

For a value of the hard core repulsion radius equal to 0.5 fm, the binding 
energy is equal to the deuteron binding energy. For this hard core radius  
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Figure 3. The NN potential in the case of two pion exchange and hard core repulsion at 
0.6 fm. 

 

 
Figure 4. The total energy of the two nucleons as a function of hard core repulsion radius 

0r  for the two pion exchange potential. 

 
( 0 0.5 fmr = ) in Figure 5 is given the dependence of the total energy of the two 
nucleons bound by two pion exchange in function of the pion mass mπ . 

With pion mass increase, for pion masses higher than about 60 MeV, the total 
energy increases, i.e. the binding energy decreases, and gets zero at about 190 
MeV, a result comparable with that obtained in [4] for deuteron binding 
energy. In [17] the binding energy becomes zero at about 300 MeV. 
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Figure 5. The total energy of the two nucleons as a function of the pion mass mπ , for 
the two pion exchange potential and a hard core repulsion radius 0 0.5 fmr = . 

5. Discussion and Conclusions 

The pion exchange is at the origin of the nuclear attraction, in a similar way that 
the electron exchange is at the origin of attraction in the molecular covalent 
bond. The decrease of the kinetic energy (in fact dynamical mass decrease from a 
relativistic point of view) of the exchange electron in the 2H+  ion, directly re-
sponsible for the formation of the molecular bound state, is replaced by the de-
crease of the dynamical mass of the pion degree of freedom in the case of the 
nuclear attraction by pion exchange. The slight de-localization of the pion de-
gree of freedom, which is at the origin of this dynamical mass decrease, is dras-
tically limited by an exponential function, which represents the probability for 
the pion to penetrate the potential barrier between the two nucleons. A similar 
exponential function exists in the case of molecular bond. 

The analytical formula of the central nuclear potential (13) derived for the NN 
interaction by pion exchange does not contain any unknown parameter. The 
minimum value of the NN potential and the position of the minimum are simi-
lar with the values reported in literature for the central NN potential obtained by 
lattice QCD, which shares the features of the phenomenological NN potentials. 
A very small binding energy (0.1 MeV) was obtained by solving numerically the 
Schrodinger equation. The binding energy increases for pion masses lower than 
the real pion mass. For masses higher than the real pion mass the nucle-
on-nucleon system is unbound. 

The fall of the potential (13) towards zero value for small R (Figure 1) is 
compatible with the beginning of the well known hard core repulsion region 
which is dominant at short range. On the other hand the Yukawa potential, de-
rived in analogy with the coulomb attraction (virtual photon exchange), gets in-
finite attractive for 0R →  due to factor 1 R−  [1] [2]. 
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Since the maximum value of 2e RR π−   is 0.26 fm (for 2R π=  ), this means 
substantially smaller than 1.41 fmπ = , relation (13) can be written in a good 
approximation as: 

( ) 22 e RRV R m c π
π

π

−≈ − 



                     (16) 

The NN nuclear potential is proportional to the mass of the interaction field. 
It is also proportional to the ratio R π , which is directly related to the slight 
de-localization of the pion degree of freedom and its (dynamical) mass decrease. 
This de-localization is drastically limited by the exponential function, which is 
similar to an exponential potential except the factor 2. Due to this exponential 
function the width of potential (16) gets larger for pion masses lower than the 
real pion mass and this explains the increase of the binding energy with the pion 
mass decrease (Figure 2). For too small pion masses this dependence reverses 
because the depth of potential (16) becomes too low. 

In the case of two pion exchange the minimum of the potential gets compara-
ble with the minimum value of the CD Bonn potential. The potential in this case 
is in a good approximation: 

( ) 22
2 2 e RRV R m c π
π π

π

−≈ − 



                   (17) 

The dependence of the type e xx −  of the nuclear potential, where 2x R π=  , 
is similar with the attractive part of the Rydberg potential used to describe the 
molecular covalent bonding [18]. 

A hard core repulsion was added to this two pion exchange potential and the 
Schrodinger equation was solved numerically for different values of the hard 
core repulsion radius. For a radius of 0.5 fm the binding energy is equal to the 
deuteron binding energy. 

Let’s compare the strength of the nuclear potential ( )2V Rπ  from relation (17)  

with the coulombian potential 
2

C
qV
R

= . The ratio of the two potentials for 

R π=   is: 

( ) ( ) 2 2
2 2

12 e 2 eC
cV V

qπ π π α
− −= =



                (18) 

where α  is the e.m coupling constant, a typical result for the relative strength 
of the nuclear interaction to the e.m. interaction. 

If we analyze the mechanism of NN interaction at quark level, we could say 
that by pion exchange between two nucleons some quark degrees of freedom are 
implicitly exchanged and in consequence are slightly de-localized. The confine-
ment region of a quark slightly increases and accordingly its dynamical mass 
decreases. This suggests to interpret the nuclear interaction as a residual strong 
interaction. 
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