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Abstract 
In the present article, we explore a new static, spherically symmetric charged 
anisotropic fluid model of compact star in curvature coordinates. We consider 
metric potential 44g  of Durgapal’s fifth solution [1] with a specific choice of 
electric field intensity E and physically acceptable expression of anisotropy 
factor ∆ , which involve parameters K (charge) and ∆  (anisotropy) respec-
tively. The solution so obtained is utilized to construct the model for su-
per-dense star like neutron star. We have analysed that corresponding to 

0.1X = , 2.8K = , 1.6α =  and by assuming surface density  
14 32 10 gm cmbρ = × , the mass of the compact star comes out to be 2.17MΘ  

with radius 14.51 kms, which closely resembles to that of PSRJ0348 + 0432. 
The solution is well behaved for the values of K satisfying 1 5K≤ < . Our 
model is described analytically as well as with the help of graphical represen- 
tations. Our solution is well behaved and free from any central singularity. It 
also satisfies all the energy conditions as well as the causality condition thus 
reconfirming the stability of our model. 
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1. Introduction 

During the final stages of stellar evolution when the nuclear fuel inside the star is 
almost exhausted, the star deviates from its hydrostatic equilibrium stage and 
starts to collapse. During contraction, gravitational force dominates all other ex-
isting forces i.e. pressure gradient forces and radiation forces. The collapse will 
continue until some quantum-mechanical phenomena such as electron degene-
racy pressure, neutron degeneracy pressure generates inside the star thereby 
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providing stability to it against gravitational collapse. Compact objects such as 
white dwarf stars, neutron stars, strange stars and black holes represent the final 
stages of a star’s evolution. The stars at this stage become so dense that relativis-
tic effects come into picture and have significant role in describing the crucial 
features of compact stars. The possibility of existence of Quark star and strange 
star at such high densities can not be ignored. Neutron star is composed of neu-
trons, while strange star is composed of u, d, and s quarks. The formation of 
strange matter can be categorized in two ways: the quark hadron phase transi-
tion in the early universe and conversion of neutron stars into strange stars [2]. 
When a massive star undergoes a supernova explosion, neutron star and strange 
quark star are expected to be formed at the inner core of the star. A phase transi-
tion between hadronic and strange quark matter may occur at such a higher 
densities [3]. Recent developments in observation cosmology have explored in-
teresting facts regarding evolution of these compact objects and revealed many 
of their features from the study of their emission spectra. But still some of the 
parameters like mass, internal composition, radii, etc. are not clearly known 
which cannot be inferred from direct observational data. However many theo-
retical investigations have successfully explained the various characteristics of 
compact stellar objects. The study of relativistic models of compact stars like 
neutron stars and strange stars have been a field of active research in recent 
years. To understand the nature and complex composition of such immense 
gravity objects, we require an exact solution to the Einstein’s field equations. The 
first exact solution of the Einstein’s field equations was obtained by K Schwarz-
schild in 1916 describing the exterior of a spherically symmetric matter distribu-
tion [4]. Later on the interior solution for a uniform density sphere was also ob-
tained by Schwarzshild [5]. Of course no astrophysical configuration has a per-
fect fluid distribution. Observations of stars and the understanding of Particle 
Physics within compact stars have emphasized the search for more realistic solu-
tions of the field equations. It is interesting to note that by relaxing the condition 
of a perfect fluid and allowing for pressure anisotropy and charge within the in-
terior of stellar configurations, more realistic structure of compact stellar objects 
can be realized. It has been suggested that in the presence of charge the gravita-
tional collapse of a spherically symmetric astrophysical object to a point singu-
larity may be averted. The presence of charge in a charged fluid has tendency to 
oppose the gravitational collapse. This property persuaded the research workers 
to work on the charged perfect fluid configurations. 

Ivanov [6] and Bonner [7] investigated a model for charged perfect fluid 
sphere in which formation of singularity is avoided. Many static fluid spheres 
which do not satisfy some or all the physical requirements become relevant after 
the inclusion of charge in them [8] [9]. The central density of most of compact 
objects could be several times higher than the normal nuclear matter density. 
The theoretical investigations [10] [11] [12] [13] [14] on compact stellar models 
strongly suggest that the matter distribution in such massive stellar objects may 
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be locally anisotropic, the radial pressure may not be equal to the tangential 
pressure, at least in certain very high density ranges (>1015 gm∙cm−3). During the 
post main-sequence of a star, the surface magnetic field reaches up to 1012 - 
1013G when neutron star forms. Due to very intense magnetic field of a newly 
born NS, the matter inside the star may generate pressure anisotropy [15]. The 
observational evidence for the neutron star is obtained from the pulsars and its 
glitches. The sudden change in the time period of pulsars, called glitches is due 
to neutron superfluidity. Neutron superfluidity also affects the neutrinos emis-
sion rate through modified Urca process [16]. At a density of the order of 1015 
gm∙cm−3 nuclear matter may be anisotropic and it needs to be treated relativisti-
cally [17]. Poin condensation at nuclear densities may also cause anisotropy [18]. 
Sokolov [19] suggested that phase transition from normal states of pions to su-
perconducting states can generate pressure anisotropy. Thus it is desirable to 
study the implications of Einstein-Maxwell field equations with the incorpora-
tion of anisotropy for the proper understanding of compact stars. Dev and 
Gleiser [20] have shown that pressure anisotropy affects the physical properties 
and structure of stellar matter and also provides more stability to stellar objects 
against radial adiabatic perturbations as compared to isotropic matter. Bowers 
and Liang [21] have studied anisotropic spheres with uniform energy density 
and suggested that anisotropy could also play an important role in describing the 
high redshift objects like quasars. Anisotropy in pressure could significantly af-
fect the physical parameters like maximum compactness, mass and radius of star. 
A large number of anisotropic models are available in the literature [22]-[35]. 
Local anisotropy in self-gravitating systems were studied by Herrera & Santos 
[36] They conjectured that an anisotropic model can be stable. Charged aniso-
tropic models of stellar objects have been discussed by many Astrophysicists i.e. 
Thirukkanesh and Ragel [37], Maurya and Gupta [38], Pandya et al [39], Bhar et 
al. [40] and Murad [41]. Compact stellar models for neutral/charged static 
spherically symmetric configuration with anisotropic pressure have been ob-
tained in numerous works. Some of them include; Herrera et al. [42] [43], Chaisi 
and Maharaj [44], Maurya and Gupta [45] [46], Maharaj et al. [47]. Pant et al. 
[48] have also studied a class of relativistic anisotropic charged stellar models in 
isotropic coordinates. There have been several recent investigations of static flu-
id configuration incorporating charge and pressure anisotropy: Pradhan & Pant 
[49], Newton Singh et al. [50], Pant et al. [51] and Maharaj et al. [52]. Being mo-
tivated by the aforementioned recent works we develop some new analytical re-
lativistic anisotropic charged stellar models by using Durgapal’s metric potential 
[1]. Our analysis depends on several mathematical key assumptions. The form of 
metric potential ensures that the metric function is nonsingular, continuous, and 
well behaved in the interior of the star. This is one of the desirable features for 
the model on physical grounds. Further, we assume some particular forms of 
electric charge distribution function and pressure anisotropy so that we may 
construct a physically reasonable models of stellar objects. 

Our whole investigation is divided into 7 sections. In first we give a brief in-
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troduction on which our present study is based on. The next section contains the 
complete procedure to solve Einstein Maxwell’s field equations for anisotropic 
fluid charge distribution. In a third section we give the elementary criteria to be 
satisfied by the interior solution in order to present a realistic model. In the last 
section we conclude all results obtained after complete analysis of newly ob-
tained solution. 

2. Einstein Maxwell Field Equations of Anisotropic Charged 
Fluid Distribution 

Let us consider a spherical symmetric metric in curvature coordinates as 
2 2 2 2 2 2 2 2d d d sin d ds e r r r e tλ νθ θ= − − − Φ +            (2.1) 

For a charged and anisotropic fluid distribution the Einstein Maxwell field 
equation is given as 

4

8π 1
2

i i i
j j j

G T R R
c

δ− = −                        (2.2) 

Here i
jT  is the energy momentum tensor and is given by 

( ) ( ) ( )2 1
4π

i i i i im i mn
j j j r j jm j mnT p c p p p F F F Fρ ν ν δ χ χ δ⊥ ⊥ ⊥

 = + − + − + − +  
 (2.3) 

Here i
jR  is Ricci tensor, i

jT  is the energy momentum tensor, R is the scalar 
curvature, mnF  is electromagnetic field tensor, ( ),rp p⊥

 are the radial and 
transverse pressures respectively, ρ  is the energy density, iv  is the velocity 
vector and iχ  is the unit space vector in radial direction. 

In view of metric (2.1), the field Equation (2.2) gives 
2

4 2 4

8π 1
r

G e qp e
rc r r

λ
λν −

−′ −
= − +                   (2.4) 

2 2

4 4

8π e
2 4 4 2

G qp
rc r

λ ν λ ν ν ν λ−
⊥

 ′′ ′ ′ ′ ′ ′−
= − + + − 

 
          (2.5) 

2

2 2 4

8π 1 eeG q
rc r r

λ
λλ

ρ
−

−′ −
= + −                   (2.6) 

( ) ( )
2

2
24π

er r E
r

λ

σ
− ′=                       (2.7) 

Here σ  is the proper charge density and q is the charge enclosed by a sphere 
of radius r. 

Assuming 

( )5 2
1, 1 ande Y e B x x c rλ ν− = = + =                  (2.8) 

Here B is the constant which has positive value. In view of Equation (2.8), 
Equation (2.4) and Equation (2.5) reduces to 

( )( )
2 2

1 1

d 14 2 1 1 1 2 0
d 1 1 6 1 6
Y x x x EY
x x x x x x c c

 − − + ∆
+ + − − = 

+ + +  
      (2.9) 
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Here ( )4

8π
r

G p p
c ⊥∆ = −  is anisotropy factor. 

3. Physical Acceptability Conditions 

For well behaved nature of the solution in curvature coordinates, the following 
conditions should be satisfied: 

1) The solution should be free from physical and geometric singularities, i.e. it 
should yield finite and positive values of the central pressure, central density and 
nonzero positive value of eλ  and eν . 

2) The solution should have positive and monotonically decreasing expres-
sions for pressure and density (p and ρ ) with the increase of r. The ratio of 
pressure and density should be positive and less than 1(weak energy condition) 
and less than 1/3 (strong energy condition) throughout within the star. 

3) The casualty condition should be obeyed i.e. velocity of sound should be 
less than that of light throughout the model. In addition to the above the velocity  

of sound should be decreasing towards the surface i.e. dd 0
d d

rp
r ρ
 

< 
 

  

2d 0
d

rp
ρ

 
> 

 
 and dd 0

d d
tp

r ρ
 

< 
 

 
2d

0
d

tp
ρ

 
> 

 
 or i.e. the velocity of sound is  

increasing with the increase of density and it should be decreasing outwards. 

4) The adiabadtic index d
d

r r

r

p p
p

ρ
γ

ρ
+

=  for realistic matter should be 

4 3γ ≥ . 

5) The red shift z should be positive, finite and monotonically decreasing in 
nature with the increase of r. 

6) Electric field intensity E is positive and monotonically increasing from cen-
ter to boundary and at the centre the electric intensity is zero. 

7) The anisotropy factor ∆  should be zero at the center and increasing to-
wards the surface. 

8) For a stable anisotropic compact star, 2 20 1t rv v< − ≤  must be satisfied 
[24]. 

4. A New Class of Solution 

To solve Equation (2.9) we assume 

( )
( )

( )
( )

3 322
1

4 2 4
1 1

1 6 1 6
and

1 1

l mx x kx xc qE
c c xx x

α − −+ +∆
= = =

+ +
      (4.1) 

where , ,k lα  and m  are real and positive constants. We assume anisotropy 
and electric field intensity in such a way that Equation (2.9) is integrable and 
provides well behaved solutions. The solutions are physically acceptable when 
both anisotropy and electric field intensity increase as we move from the centre 
to the surface. On plugging Equation (4.1) into Equation (2.9) we get the fol-
lowing solution, 
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( )
( )
( )

( ) ( )
( )

32 3

3

3 1 3

3

1 61 112 309 54 8
112 2 11

1 6 1 6
1 1

l

m

x xx x xe Y
lx

kx x Ax x
m x

λ α −
−

− −

 +− − −
= = +

−+ 
+ +

+ +
− +

    (4.2) 

A is an arbitrary constant of integration. 
The expressions for density and pressure are given by 

( )
( )( )
( )( )

( )( )
( )( )

( )( )
( )

32 3

4 4 4
1

3 1 3

4 4

11 1 1 68π 475 4125 1050 200
112 1 2 1 1

12 1 1 6 11 1 1 6

1 1 1

l

r

m

x xG x x xp
c c x l x

k x mx x A x x

m x x

α −

− −

+ +− − −
= +

+ − +

− + + + +
+ +

− + +

     (4.3) 

( )
( )

3

4 4 4
1 1

1 68π 8π
1

l

r
x xG Gp p

c c c c x

α −

⊥

+
= +

+
              (4.4) 

( )
( )

( )( )
( )

( )
( )( )

( )

( )
( )

( )
( )

( )

2 3

2 4
1

3 1
2 2

4

3 1
2 2

4

3 4 3
2

4 4

8π 1935 15 450 120
112 1

1 6
3 15 4 18 4

2 1 1

1 6
3 15 4 18 4

1 1

1 6 1 6
22 11 3

1 1

l

m

m

G x x x
c c x

x
x lx x lx

l x

k x
x mx x mx

m x

kx x A x
x x

x x

ρ

α −

− −

− −

+ + +
=

+

+
− + − − −

− +

+
− + − − −

− +

+ +
− − − + +

+ +

     (4.5) 

The proper charge density will be given by the following expression 

( ) ( )
( ) ( )
( ) ( )

2
1

3 1 6

3 2 17 6 2

4π 1 1 6 m

m x m m xc kx Y x
x x

σ −

 − − − + =
+ +

       (4.6) 

Differentiating Equations (4.3), (4.4) and (4.5) with respect to r, we get the 
radial and tangential pressure gradients as well as density gradient. 

( )
( )
( )( )

( )

( )
( )( )

(

)
( )
( )

( )

3 2

4 5
1

3 1
2 2

5

3 1
2 2 2 2

5

2

4 3
2

5

d8π 200 1500 10275 6025
d 112 1

1 6
22 198 24 9 2 7

2 1 1

1 6
2 6 216

1 1

2 29 12 3 8

1 6
220 15 5

1

r

l

m

pG x x x
xc c x

x
lx x lx x l

l x

k x
m x mx x

m x

m x mx x m

A x
x x

x

α − −

− −

−

+ + −
=

+

+
+ − − − + − +

− +

+
+ − −

− +

+ − + − +

+
+ − − +

+

 (4.7) 

( )
( )

( )
3 1

2 2
4 4 5

1 1

1 6d d8π 8π 2 18 2 3 1
d d 1

l
r xp pG G lx x lx x

x xc c c c x

α − −

⊥ +
= + − − − + +

+
   (4.8) 
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( )

( )
( )

( )

( )
( )

( )

( )
( )( )

(

)
( )
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3 2

2 5
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3 1
2 2

5

7 3
3 2
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3 2
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A x
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l x
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k x
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ρ

α
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−
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=

+

+
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+
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+
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− +

+ − + − − − −

+
−

− +( )
(

)

2 3 3 3 2 2
5

2 2 2

8 108 324 16

86 432 8 32 171 10 15

m x mx x m x
x

mx x m x mx x m

+ + +
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   (4.9) 

We have shown the variation of metric potentials with radial coordinate for 
the star PSR J0348 + 0432 in Figure 1. It is clear from figure that metric poten-
tials are regular and free form any singularity inside the fluid sphere. It can be 
observed from Figure 2 and Figure 3 that radial, transverse pressures and den-
sity monotonically decrease with the increase of radius. Electric field intensity 
increases when we move from centre towards surface (see Figure 4). Moreover 
the electric field intensity is zero at the centre, which shows that our solution sa-
tisfies the required acceptability conditions. From the graphs plotted in Figures 
5-8 we notice that pressure to energy density ratio, red shift, proper charge den-
sity, square of radial and transverse velocity decrease with the increase of radi-
al coordinate respectively. In Figure 9 we have shown the variation of aniso-
tropy factor with radial coordinate r and we observe that anisotropy factor 
 

 
Figure 1. Variation of metric potentials with radial coordinate for PSR J0348 + 0432. 
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Figure 2. Variation of radial and transverse pressures with radial coordinate 
for PSR J0348 + 0432. 

 

 
Figure 3. Variation of matter density with radius for PSR J0348 + 0432. 

 

 
Figure 4. Variation of electric field intensity with radial coordinate for PSR 
J0348 + 0432. 

 
is zero at the centre and increases in moving towards boundary. Figure 10 
shows the outmarch of compression moduli with radial coordinate inside the  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

Pr
es

su
re

r/rb

Solid Line Pr
Dashed Line Pt

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.2 0.4 0.6 0.8 1 1.2

De
ns

ity

r/rb

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8 1 1.2

El
ec

tr
ic

 F
ie

ld
 In

te
ns

ity

r/rb

https://doi.org/10.4236/jmp.2017.811104


R. Tamta, P. Fuloria    
 

 

DOI: 10.4236/jmp.2017.811104 1770 Journal of Modern Physics 
 

 
Figure 5. Variation of pressure to energy density ratio with radius for PSR 
J0348 + 0432. 

 

 
Figure 6. Variation of red shift with radial coordinate for PSR J0348+0432. 

 

 
Figure 7. Variation of proper charge density with radius for PSR 
J0348+0432. 
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Figure 8. Variation of v2/c2 with radius for PSR J0348 + 0432. 

 

 
Figure 9. Variation of anisotropy with radial coordinate for PSR J0348 + 
0432. 

 

 
Figure 10. Variation of compression moduli with radius for PSR J0348 + 
0432. 
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Figure 11. Variation of energy conditions with radius for PSR J0348 + 0432. 

 

 
Figure 12. Variation of adiabatic index with radial coordinate for PSR J0348 
+ 0432. 

 
configuration. 

5. Properties of the New Solution 

The values of pressure and density at centre are given by 

( )4 4
1 10

8π 8π 475 0
112 2 1 1r

r

G G kp p A
l mc c c c
α

⊥

=

   
= = − − + >    − −   

     (5.1) 

2
1

8π 1935 3 3
112 1

G k A
mc c

ρ
 

= − −  − 
                  (5.2) 

At the centre of a star the proper charge density must have a finite value 

( ) 130 0
4π

c krσ = = >                       (5.3) 

The pressure and density also decrease from the centre to the surface 
2 2 2
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The square of speed of sound is given by 

2 2d d;
d d

r
r

p pv v
ρ ρ

⊥
⊥= =                      (5.5) 

2 2
rv c  and 2 2v c⊥  must have values less than 1 to fulfill the causality condi-

tion and the stability factor must satisfy 2 21 0rv v⊥− ≤ − ≤ . The expression for 
gravitational red shift and adiabatic index are 

( ) 5 2
2 1 d1 1;

d
r r

r

x p pz e
pB

ν ρ
γ

ρ

−
− +  +

= − = − =  
 

        (5.6) 

The gravitational red shift must be non zero and must have positive finite 
value at the centre. The compression moduli eK  is given by 

e rK pγ=                               (5.7) 

we can judge the density of compact star with the help of compression moduli, it 
must have highest value at the centre and should decrease on moving outwards 
from the centre. 

6. Boundary Conditions 

The interior solution obtained for super dense star must be matched with Reiss-
ner-Nordstrom metric at the boundary, the metric is given by 

( )

12 2
2 2 2 2

2 2 2 2

2 2 2 2

2 2d 1 d 1 d

d sin d

GM e GM es c t r
c r r c r r

r θ θ φ

−
   

= − + − − +   
   

− +

       (6.1) 

Here M represents the mass and e the total charge of compact fluid sphere. 
Continuity of eλ , eν  and q across the boundary br r=  gives the following 

equations 

( )
2

5
2 2

21 1b

b b

GM ee B X
c r r

ν  
= − + = + 
 

               (6.2) 

( )
2

2 2

21b

b b

GM ee Y x
c r r

λ−  
= − + = 
 

                (6.3) 

where 2
1 bX c r=  and q e=  is the charge at br r= . Also the pressure at the 

boundary br r=  

( ) 0r bp r r= =                            (6.4) 

In view of Equation (6.4) the constant A can be computed as 

( )

( )( )
( )

( )( )

1 3 3 2

3 3

1 6 200 1050 4125 475
11 1 112

11 1 1 6 12 1 1 6
2 1 1

l m

X X X XA
X

X X k X mX X
l m

α − −

+  + + −
= + 

+ + − + +
− −
− − 

   (6.5) 

In view of Equations (6.2) and (6.3) the other constants can be evaluated as 
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( )
( )
( )

( )
( ) ( )
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 −+ 

+
+ +
− + + 

  (6.6) 

Mass of super dense star can be expressed as 

( ) ( )
( )

322
5

4

1 6
1 1

2 1

m
b kX Xc rM B X

G X

− +
 = − + +
 + 

           (6.7) 

The surface density is given by 

( )
( ) ( )
( )

( ) ( )
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+ + 

 (6.8) 

In Table 1 we have shown the variation of radial and transverse pressures, 
density, pressure to density ratio, electric field intensity with respect to radial 
coordinate r and we observe that these parameters show well behaved nature. In 
Table 2 the profile of proper charge density, red shift, compression moduli, 
square of the speed of sound, stability factor and anisotropy have been shown. 
We see that all these variables have physically reasonable behavior. In Table 3 
we have mentioned the well behaved values of the parameters used for two 
compact stars PSR J0348 + 0432 and EXO 0748-676. 

 
Table 1. The variation of radial and transverse pressures, density, pressure to density ratio and electric field intensity with radial 
coordinate corresponding to k = 2.8, X = 0.1, l = 0.1, m = 0.3, α = 1.6. 

r/rb 8 πG/c4prrb
2 8 πG/c4ptrb

2 8 πG/c2ρrb
2 pr/ρc2 Pt/ρc2 E2/c1 

0 0.37607 0.37607 1.87177 0.20091 0.20091 0 

0.1 0.37078 0.37088 1.86255 0.19907 0.19912 0.00099 

0.2 0.35515 0.35554 1.83533 0.19350 0.193723 0.00392 

0.3 0.32987 0.33074 1.79131 0.18415 0.18463 0.00863 

0.4 0.29603 0.29752 1.73233 0.17088 0.17175 0.01487 

0.5 0.25503 0.25728 1.66070 0.15356 0.15492 0.02233 

0.6 0.20848 0.21158 1.57899 0.13203 0.13400 0.03064 

0.7 0.15810 0.16211 1.48982 0.10612 0.10881 0.03943 

0.8 0.10559 0.11053 1.39572 0.07565 0.07919 0.04833 

0.9 0.05258 0.05844 1.29901 0.04048 0.04498 0.05701 

1 0.00054 0.00726 1.20176 0.00045 0.00604 0.06516 
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Table 2. Variation of proper charge density, red shift, compression moduli, square of the speed of sound, stability factor and ani-
sotropy with radial coordinate with values of k = 2.8, X = 0.1, = 0.1, m = 0.3, α = 1.6. 

r/rb σ z Ke = γpr in powers of 1041 vr
2/c2 vt

2/c2 vt
2/c2 – vr

2/c2 Δrb
2 

0 0.000236 0.58550 4.05333 0.37566 0.30491 −0.070752 0 

0.1 0.000233 0.58404 4.02687 0.37563 0.30415 −0.071481 0.0000099 

0.2 0.000226 0.57969 3.94817 0.37550 0.30181 −0.073682 0.000039 

0.3 0.000215 0.57253 3.81931 0.37511 0.29772 −0.077392 0.000086 

0.4 0.000200 0.56272 3.6439 0.37426 0.29159 −0.082665 0.000149 

0.5 0.000183 0.55045 3.42711 0.37269 0.28312 −0.089568 0.000225 

0.6 0.000164 0.53596 3.17564 0.37012 0.27196 −0.098157 0.000310 

0.7 0.000144 0.51951 2.89744 0.36629 0.25783 −0.108458 0.000401 

0.8 0.000124 0.50139 2.60127 0.36097 0.24054 −0.120424 0.000493 

0.9 0.000104 0.48191 2.29617 0.35392 0.22004 −0.133879 0.000585 

1 0.000085 0.46137 1.99092 0.34498 0.19655 −0.148431 0.000672 

 
Table 3. The well behaved values of the parameters used for two compact stars. 

Compact objects α k A B 
computed value of  

R kms) 
computed value of 

M/MΘ 
observed value of  

R (kms) 
observed value of 

M/M Θ 

PSR J0348 + 0432 1.6 2.8 −1.96 0.49 14.51 2.17 13 ± 2 2.01 

EXO 0748 − 676 1.8 3.2 −1.96 0.52 13.73 1.62 13.8 ± 1.8 2.1 ± 0.3 

7. Results and Discussions 

In the present article we have proposed a new model of anisotropic charged 
compact star which satisfies all the physical reality conditions and is free from 
central singularity with the exterior space time being the Reissner-Nordstrom 
metric. We electrified the uncharged fluid sphere e.g. Durgapal thV  solution  
[1] with anisotropy taken into account. The charged solution is well behaved 
with positive values of charge parameter k. 

The regularity of metric potentials throughout the interior of the star can be 
observed from Figure 1 by showing that the solution is free from geometrical or 
physical singularity. It has been observed from the Figures 2-7 that the physical 
parameters , , , , , , , ,r rp p p p zρ ρ ρ σ⊥ ⊥  are positive inside the stellar model and 
they are monotonically decreasing function of radial coordinate. At the boun-
dary of the star the radial pressure vanishes while the matter density and trans-
verse pressure are non negative. The electric field intensity and adiabatic index 
γ  also increase with radial coordinate by which we conclude that this is a phys-
ically viable configuration Figure 4 and Figure 12. Further the adiabatic index is 
more than 4/3 throughout the interior of the star, which reconfirms the stability 
of our model. We also observe that the anisotropic factor 0∆ >  and increases 
when we move from centre towards boundary as observed from Figure 9. 
Moreover at the centre of a star ∆  vanishes which is an essential feature of a 
realistic star. The profile of velocity of sound has been shown in Figure 8. For 
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our present model both radial and transverse velocity are less than 1 and mono-
tonically decreasing towards the boundary which shows that causality condition 
holds good inside the star. From Figure 10 it is also observed that the compres-
sion moduli of star decreases with the increase of radius which indicates that star 
is more dense at the centre than outer surface. Furthermore our new model for 
anisotropic fluid distribution also satisfies the null energy condition ( )0ρ > , 
weak energy condition ( ) 0rpρ − ≥  and ( ) 0tpρ − ≥  and the strong energy 
condition 2 0r tp pρ − − ≥  Figure 11. We have shown the variation of required 
physical parameters with radial coordinate corresponding to 2.8k = , 0.1X = , 

0.1l = , 0.3m = , 1.6α =  in Table 1 and Table 2. Finally we have constructed 
a neutron star model by assuming surface density 14 32 10 gm cm×  corres-
ponding to, 1.6α = , 0.1X =  and 2.8k =  with mass 2.17MΘ  and radius 
14.51 kms which is close to the observational data of the neutron star PSR J0348 
+ 0432 [53]. The parameters with values 1.8α = , 0.1X =  and 3.2k =  gene-
rates the model for EXO 0748-676 with radius 13.73 kms and mass 1.62MΘ  
[54]. We have provided the well behaved parameters of these two well known 
compact stars which gives mass and radius compatible to observed values in Ta-
ble 3. 
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