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Abstract 
By interpreting multifractal L-function zero alignment as a decoherence pro- 
cess, the Riemann hypothesis is demonstrated to imply the emergence of clas-
sical phase space at zero alignment. This provides a conception of emergent 
dynamics in which decoherence leads to classical system formation, and clas-
sical system trajectories are characterized by modular forms. 
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1. Introduction 

Throughout the twentieth century, a preoccupation of theoretical physics has 
been to identify the fundamental constitutents of matter and understand how 
they behave. This preoccupation has led to the construction and operation of in-
creasingly larger particle colliders with which these constituents have been stu-
died with greater and greater precision, and ultimately, to the discovery and va-
lidation of the Standard Model of particle physics. This model stands as a testa-
ment to the efforts of many people, and some might claim it constitutes a theory 
of everything once a consensus is reached on how to incorporate the gravita-
tional force [1]. 

Notably, at the root of this claim, there lies a reductionist view of the natural 
world, born out of extensive agreement of atomic models with experiment, and 
the direct observation of atoms and elementary particle tracks with scanning 
tunneling microscopes and particle colliders. For some, this evidence is strong 
enough to conclude that the Standard Model of particle physics constitutes an 
understanding of all biology, and even consciousness in that it describes in 
principle all biochemical mechanisms at an atomic level. Of course, this point 
of view is not universal, since scientists studying natural phenomena whose 
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features of interest are not explained by atom-scale models may draw different 
conclusions, and regard such claims about human understanding as scientific 
overreach. 

Interestingly, despite the many successes of quantum physics, there are basic 
theoretical questions surrounding it that remain unresolved. For instance, there 
is no entirely satisfactory explanation for how a measured quantum system 
collapses into an observable state. Secondly, though often taken for granted, it is 
a feature of all closed quantum systems that they undergo unitary evolution in 
time, because the eigenvalues of the time evolution operator are complex 
numbers lying on a circle of unit radius. This time evolution operator is deter- 
mined by the interaction and kinetic energies of a configuration of particles in 
space, and its success as a descriptor of atomic physical systems provides the 
theoretical basis for reductionism. 

Given this situation, the purpose of this paper is to apply number theory to 
investigate the possibility that non-unitary evolution is the prime mover driving 
physical change. Our investigation proceeds via the study of open quantum 
systems which exhibit non-unitary evolution in time. From a conventional 
perspective, this non-unitary evolution, known as decoherence, or state mixing, 
is a consequence of unitary evolution of the open quantum system and its en- 
vironment considered as a whole. However, in this paper we’ll present a 
different point of view, from which quantum unitary evolution emerges as a 
special limit of non-unitary evolution.   

In terms of layout, Chapters 2 - 4 outline research interests that motivated this 
work. For example, understanding how the physics of open quantum systems 
may be relevant to the workings of biological systems intricately coupled to their 
environment is discussed. Switching modes, Chapter 5 introduces the theory of 
solitary waves, and Chapter 6 elaborates on this discussion, introducing tau 
functions, modular forms and L-functions. Using these ideas, Chapter 7 
introduces an alignment process analogous to state mixing that leads to the 
emergence of quantum unitary evolution and classical phase space, and a 
conjecture is made about how this emergence relates to the Standard Model. 
Chapter 8 concludes with a summary of results, and explains why they are of 
scientific interest.  

2. Time and Space: Continuous or Discrete? 

Classical physical theories such as electrodynamics describe physical systems as 
configurations of particles and fields. In these theories, a particle such as an 
electron or proton is idealized as a point in three dimensional space, as shown in 
Figure 1, and electric and magnetic fields are time dependent spatial vectors 
determining the direction of particle motion. For consistency with experimental 
observation, the real time evolution of the spatial configuration of particles and 
fields should obey Maxwell’s equations [2]. These equations describe a dynamic 
interplay between particles and fields whereby the manner in which the fields  
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Figure 1. Classical model of particles moving in continuous time and space.  
 
influence particle motion and particle motion influences fields are taken into 
account simultaneously. 

Importantly, Maxwell’s equations are differential equations describing smooth 
evolution of particle and field configurations in time and space. Mathematically, 
this relies on the assumption that time and space dimensions are coordinatized 
by 4 real numbers , , ,t x y z∈ . Physically, this is interesting, because it is not 
clear that particle motion in time and space is truly continuous. For instance, 
rather than being a continuum, we can imagine that time and/or space consists 
of a discrete lattice of points so finely placed that discontinuous motion of 
particles is impossible to detect. In this event, Maxwell’s equations could arise as 
approximations of underlying difference equations on the lattice, and we would 
be unable to discern the discrete quality of time and/or space. 

Interestingly, this issue is not particular to classical electrodynamics, but 
persists generally in classical and quantum mechanical descriptions of Nature, 
where we can similarly imagine the differential equations describing physical 
systems in time and space are approximations of underlying difference equations. 
This situation is not entirely satisfying, because it leaves us ignorant as to 
whether time and space are continuous, discrete, or better understood from a 
different point of view. 

3. Mechanics of Physical Systems 
3.1. Classical Systems  

In classical mechanics, a point particle constrained to move in one dimension is 
described by its position and momentum at any given moment in time. That is, 
assuming its position and momentum are coordinatized by real numbers 

,x p∈ , the description of its motion is given by assigning time dependence to 
these coordinates, making them functions ( )x t  and ( )p t  of time t∈ . 
Geometrically, this assignment results in time flow of the point ( ),x p  in the 
plane 2 . Similarly, for more complicated physical systems consisting of d  
point particles moving in one dimension, the collective system motion is 
described by the motion of a point ( )1 1 2 2, , , , , ,d dx p x p x p

 in a hyperdimen- 
sional Euclidean space 2d

  parameterizing the positions and momenta of all 
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particles in the system simultaneously. This higher dimensional space in which 
the entire system is treated as a single point is known as a classical phase space, 
and the vector field directing real time evolution of this point is known as a 
Hamiltonian vector field. The components of this vector field are determined by 
a classical Hamiltonian function d

  defining the system’s energy [3].  
Practically speaking, classical mechanics is well equipped to model closed 

physical systems, but not open systems. For instance, to usefully model cell 
division with classical mechanics, we are forced to somewhat arbitrarily partition 
the phase space of the cell and its environment together into separate cell and 
environmental phase spaces. That is, it is necessary to identify all of the particles 
playing a role in the cell’s division, and model this division as a process governed 
by interactions between these particles and some average environmental effect. 
Unfortunately, this description does not allow for unpredictable variations in 
temperature, pressure, or particle exchange between the cell interior and exterior, 
making precise modeling impossible. Moreover, in the case of cell division, these 
sources of imprecision are complicated by the extremely large number of 
particles involved in all phases of the process. This situation is illustrated in 
Figure 2 [4], where high resolution images of three phases of cell division are 
shown.  

Another interesting feature of classical mechanics is that system time 
evolution tends to be disordered. That is, classical system trajectories are generi- 
cally chaotic, filling entire ( )2 1d − -dimensional regions of the phase space 

2d
 , while lower dimensional trajectories expressing some degree of order are 
determined by Hamiltonian vector fields satisfying special symmetry constraints 
[5]. This is interesting, because we generally think of biological systems as 
maintaining a high degree of order in the presence of an ever changing 
environment, suggesting there may be some intricate maintenance of order 
inherent in the interplay between system and environmental variables that is not 
captured by the classical modeling approach.  

Finally, as a technical point, we note that while classical physics describes the 
real time evolution of fields as well as particles, there is no clear choice of 
configuration space in which field configurations flow like there is for particles. 
That is, if we ask what the set of physically realizable electric field configurations 
across the Euclidean space 3

  is at some point in time, it is not obvious how to 
rigorously define this set. This is because the configuration space of the electric 
field is a space of functions from 3

  to itself, and it is not obvious what mathe-  
 

 
Figure 2. High resolution image of cell division [4], demonstrating why it is difficult to 
partition the phase space into system and environment. 
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matical criteria these functions should satisfy, or how to define a probability 
measure on this function space as necessary to describe the statistical behavior of 
the field in a thermal environment.  

3.2. Quantum Systems  

In quantum mechanics, the Heisenberg uncertainty principle states that precise 
position and momentum coordinates of particles are not simultaneously 
specifiable. Consequently, the mathematical description of quantum particles is 
given in terms of position or momentum probability distribution functions, not 
points in phase space, and closed multi-particle systems are described by wave 
functions of position or momentum coordinates that evolve in time according to 
the dictate of a Hamiltonian energy operator rather than a Hamiltonian vector 
field. This operator defines real valued system energy levels, and unitary 
evolution of wave functions according to Schrodinger’s equation. A similar 
mathematical formalism describes the time evolution of quantum fields, though 
computations are typically performed via evaluation of Feynman diagrams 
rather than directly solving the Schrodinger equation. As in the case of classical 
mechanics, quantum mechanical modeling of biological systems with environ- 
mental interactions is awkward when system and environmental variables are 
difficult to distinguish.  

One crucial difference between quantum and classical descriptions of physical 
systems is the effect of measurement on these systems. This difference stems 
from the description of quantum particles as wave functions spread out over all 
of position space, whereby a particle-like quality of these entities is only realized 
upon measurement with an experimental apparatus. The prototypical example 
of this is the observation of particle position on a detecting screen in Young’s 
double slit experiment, in which observation of classical particle-like behavior 
absent in the mathematical description of wave functions is referred to as wave 
function collapse. Intuitively, one expects collapse to be a consequence of the 
interaction of a quantum mechanical system with its measurement apparatus, as 
required to observe the system. For this reason, collapse and our experimental 
observation of particles is inherently related to the behavior of open quantum 
systems. Philosophically, this is important, because it leaves open the possibility 
that our classical notion of “particle” emerges from a description of open 
quantum systems in which this notion is not fundamental. 

4. Mixing and Measuring  

Turning to the study of open quantum systems, it is common to use density 
matrices instead of wave functions to describe system evolution, because this 
formalism can account for environmentally induced state transitions [6]. 
Typically, this evolution is described using a master’s equation derived from the 
Hamiltonian evolution total  of the open system and its environment together: 

total sys int env ,= + +                      (1) 

by averaging over environmental degrees of freedom. The upshot of this 
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description is that most pure quantum states of the open system are unstable, 
and evolve into statistical mixtures of pointer states that are stable against 
further mixing [7]. These pointer states are clearly defined when the system 

sys  and environmental interaction int  operators commute, in which case 
they are simultaneous eigenstates of these operators. However, when sys  and 

int  do not commute, more complicated behavior results from system- 
environment competition. In either case, from the system’s perspective, state 
mixing is a non-unitary process, because it changes the information entropy of 
the system density matrix, unlike unitary evolution which leaves the information 
entropy of the density matrix constant. An illustration of an open quantum 
system interacting with its environment is shown in Figure 3.  

As mentioned, in the commuting case, state mixing results in the off-diagonal 
decay of the system density matrix written in a pointer state basis. Furthermore, 
in the event the environment acts as a heat bath at thermal equilibrium, the 
diagonal weights of the density matrix evolve towards an equilibrium distribu- 
tion in which each pointer state is weighted by a Boltzmann factor. This process, 
known as relaxation, typically takes place on timescales much longer than 
dephasing. Figure 4 shows a rough conceptualization of the state mixing process, 
in which dephasing eliminates the off-diagonal elements of the density matrix, 
and relaxation adjusts the pointer state weights along the diagonal from M  to 
L  values. 

Importantly, evolution of a system density matrix into a statistical mixture of 
pointer states is mathematically distinct from the projection of a density matrix 
into a pure quantum state that occurs with measurement of the system. This 
projection, known as collapse, has the effect of restoring a pure quantum state 
that can once again evolve into a mixed state upon environmental interaction. 
From a theoretical point of view, it is understood why measured quantum sys- 
 

 
Figure 3. Schematic illustration of an open quantum system and its environment that 
together constitute a closed quantum system. 
 

 
Figure 4. Non-unitary density matrix evolution in pointer state basis. Dephasing 
eliminates off diagonal elements, and relaxation adjusts diagonal weights to equilibrium 
levels. 
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tems evolve into statistical mixtures of pointer states, because they are 
necessarily open to their environment. However, it is not clear how collapse into 
a single observable outcome occurs, and this absence of clarity lies at the heart of 
the measurement problem. 

To obtain a classical approximation of a quantum system, the Wigner trans- 
form can be applied to the quantum system density matrix to construct a 
classical trajectory distribution on classical phase space. Depending on the 
mixed state represented by the density matrix, this construction is not always 
physically meaningful. However, in the event the density matrix represents a 
statistical mixture of spatially localized pointer states, applying the Wigner 
transform yields a time varying probability distribution on classical phase space 
that describes the likelihood of the system taking different classical trajectories. 
Conventionally, such spatially localized pointer states are called coherent states. 

Remarkably, there are similarities between the theory of open quantum 
systems and number theory, whereby commuting sys  and int  operators 
sharing a basis of pointer states are analogous to commuting rotation operators 
sharing number theoretic waveforms VπΨ∈  as eigenfunctions. Therefore, in 
Chapter 7 we’ll present an alignment process resembling state mixing, in which 
the standard time variable t  is replaced by a renormalization flow parameter 
 , and pointer states are replaced by number theoretic waveforms. We’ll also see 
how this process leads to the 0=  emergence of quantum unitary evolution 
and classical phase space 1

 , and interpret classical system formation in this 
phase space as wave function collapse. The following two chapters provide the 
necessary background for this discussion.  

5. Driving 

To explain how the alignment process described in Chapter 7 is driven, we turn 
to the theory of solitary waves (i.e. solitons). This theory is useful to us because 
differential equations describing the motion of solitons define geometric objects 
called Riemann surfaces Σ  that comprise moduli spaces underlying the 
emergent phase space 1

 . More specifically, these moduli spaces parameterize 
Riemann surfaces whose real or imaginary periods vanish as they deform into 
modular curves, and this modular deformation is posited as the driver of 
multifractal zero alignment and phase space emergence.  

To begin explaining this, let’s take a look at the Korteweg de-Vries (KdV) 
equation, the prototypical soliton equation describing non-dispersive propaga- 
tion of waves in shallow water [8]. This equation is the nonlinear differential 
equation: 

3 1 ,
2 4t x xxxφ φ φ φ= ⋅ +                       (2) 

where ( ),x tφ  is a function describing the amplitude of the wave, and this 
partial differential equation can be reformulated as a Lax equation:  

[ ]2
3 2

d , ,
dt

=


                          (3) 
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in differential operators 2  and 3  of orders 2 and 3 in x :  
2

2 ,x φ= ∂ +                          (4) 

( )3
3

3 .
4x x xφ φ= ∂ + ∂ + ∂                    (5) 

This Lax equation has time independent solutions of the form:  

( ) ( )0 0 1, ; , ,x t x xφ =℘ + Ω Ω                   (6) 

where ℘  is a Weierstrass elliptic function with half periods 0 1,Ω Ω ∈ , and 
these solutions can be written in terms of the 1 × 1 period matrix 0 1Ω = Ω Ω  
as:  

( ) 0 0
0 0 1 2

1 11

1; , ; ,1 ,
x x

x x
 + Ω

℘ + Ω Ω = ℘ Ω ΩΩ  
            (7) 

0
2

11

1 ; ,
x x +

= ℘ Ω ΩΩ  
                    (8) 

or:  

( )
2

0
0 0 1 112

1

; , log ; ,x xx x
x

ϑ
 +∂

℘ + Ω Ω = − Ω Ω∂  
         (9) 

using the relationship between ℘  and the Jacobi theta function 11ϑ  [9]. 
Remarkably, since elliptic functions are doubly periodic, by asserting 0Ω ∈ , 

1 iΩ = − , it follows ( ) ( )0,x t x xφ =℘ +  is a wave with period 02Ω  along the 
x-axis. Such a solution is shown in Figure 5 for increasing periods 02Ω . In the 
long period limit 0Ω →∞ , this periodic KdV wave becomes a soliton. 

To better understand the relationship between the KdV equation and elliptic 
curves, let’s assume the differential operators ( )2 t  and ( )3 t  commute at 

0t = :  

( ) ( )3 20 , 0 0.=                        (10) 

In this event, according to a result of Burchnall and Chaundy, the operators 
( )2 0  and ( )3 0  share a basis of eigenfunctions ( ); ,xψ ′   whose 

eigenvalues   and ′  satisfy a polynomial equation:  

( ), 0,′Σ =                         (11) 

of degree 3 in   and 2 in ′  [10]. This polynomial defines the aforementioned 
elliptic curve with period matrix Ω . 
 

 
Figure 5. Solitons form in long period limits 0Ω →∞  of periodic KdV waves. 
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More generally, we can construct soliton equations:  

[ ], ,m
n mt

∂
=

∂


                         (12) 

solved by functions ( ),x tφ , where m  and n  are φ -dependent differential 
operators in x  of orders m  and n . As before, under assumption of 
commutativity of ( )0m  and ( )0n , their eigenvalues   and ′  are related 
by a polynomial equation ( ), 0′Σ =   of degree n  in   and m  in ′ . This 
polynomial defines a Riemann surface Σ  known as the spectral curve, which 
can be visualized as an m  sheeted cover of ( ) , or an n  sheeted cover of 
( )′  as shown in Figure 6. To emphasize the existence of this curve, t  can 

be replaced with  , and Lax Equation (12) can be rewritten in the extended 
form:  

[ ], ,m n
n m

∂ ∂
− =

′∂ ∂
 

 
 

                    (13) 

in which the differential operators ( ), 0m   and ( )0,n ′   depend on   and 
′ , and commute at ( ) ( ), 0, 0′ =  . Fixing 0′ = , the solution to this equation 

is given by conjugation with an operator ( ), 0  :  

( ) ( ) ( ) ( ) 1, 0 ,0 0,0 ,0 ,m m
−= ⋅ ⋅                   (14) 

satisfying:  

( ) ( ) ( ), 0 0,0 ,0 .n
∂

= ⋅
∂
    


                (15) 

Similarly, fixing 0= , the solution to Equation (13) is given by conjugation 
with an operator ( )0, ′  :   

( ) ( ) ( ) ( ) 10, 0, 0,0 0, ,n n
−′ ′ ′= ⋅ ⋅                  (16) 

satisfying:  

( ) ( ) ( )0, 0,0 0, .m
∂ ′ ′= ⋅
′∂
    


              (17) 

Because conjugation of an operator does not change its eigenvalues, the 
eigenvalues of the operators ( ), 0m   and ( )0,n ′   in Equation (14) and 
Equation (16) are independent of the spectral parameters   and ′ .  

Assuming the differential operators ( )0,0m m=   and ( )0,0n n=   
share a single Burchnall-Chaundy (BC) eigenfunction ( );xψ σ  over each point 

( ),σ ′= ∈Σ  , this eigenfunction constitutes a line bundle over the spectral  
 
 

 
Figure 6. Covering of the Riemann sphere ( )′   by the spectral curve Σ . 
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curve. Moreover, since there are m  points σ  distinguishing m  common 
eigenfunctions ( );xψ σ  over each value of  , these eigenfunctions constitute 
a rank m  vector bundle over ( )  if their linear span is independent of  . 
Consequently, operator Equation (15) defines a connection on this vector 
bundle:  

( ) ( ) ( ) ,m m mψ ψ∂
= ⋅

∂
   


                 (18) 

whose m m×  solution matrix ( )mψ   describes the m  eigenfunctions of n  
with m  eigenvalue  . Similarly, if the span of the m  eigenfunctions fibered 
over ′  does not change across fibers, Equation (17) gives rise to an n n×  
matrix equation:  

( ) ( ) ( ) ,n n nψ ψ∂ ′ ′ ′= ⋅
′∂

   


               (19) 

whose solution ( )nψ ′  describes the n  eigenfunctions of m  with n  
eigenvalue ′ . Formally, Equations (18) and (19) are imaginary time Schro- 
dinger equations whose solutions depend on   and ′ . In Chapter 7, we’ll 
investigate how these solutions fibered over spectral curves deform as 0→  to 
define modular forms characterizing classical system trajectories. Technically, 
this requires introduction of a Q-deformation parameter Q e=  . 

To introduce these ideas, let’s imagine that a state mixing process takes place 
in the Q-analog limit 1Q → . In this event, differential equations describing 
classical particle motion can emerge as limits of Q -difference equations, 
because the Q -difference operator Qσ  acting on d d×  matrix valued 
functions ( );dF u Q :  

( ) ( ); ; ,Q d dF u Q F Qu Qσ =                   (20) 

defines a differentiation operator in u  as 1Q → :  

( ) ( ) ( ) ( )
1 1

; ;
lim ; lim ;1 .

1
Q d d

Q d dQ Q

F Qu Q F u Q
F u Q u F u

Q u
σ

→ →

− ∂
≡ =

− ∂
    (21) 

More specifically, upon substituting ihu e= , the matrix Q -difference 
equation:  

( ) ( ) ( ); ; ; ,Q d d dF u Q u Q F u Q= ⋅               (22) 

where ( );d u Q  is a d d×  matrix, becomes a differential equation in the 
parameter h  at 1Q =  whose d  solutions can be interpreted as the 
components of a vector field directing the positional change of d  classical 
particles.  

Locally, Q -difference Equation (22) is equivalent to constant coefficient 
equations at 0u =  and u = ∞ , and these local equations have solutions ( )0

dF  
and ( )

dF ∞  with branched pole structures in the complex u -plane [11]. These 
pole structures are shown in Figure 7 for 1Q ≠ , and consist of discrete 
branches stretching from 0 to ∞  together with discrete half branches stretching 
towards intermediary points. As 1Q → , the poles on each branch flow together 
to form continuous branches at 1Q = , in a process known as confluence.  
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Figure 7. Poles of local solutions ( )0
dF  and ( )

dF ∞  flow together in the limit 1Q → . 

 
Remarkably, these branches resemble centromeres aligning chromosomes at 
metaphase, as shown in Figure 2.   

6. Meta-Physics 

This chapter introduces tao functions, explaining their relationship to soliton 
equations, theta functions, and modular forms. It also provides a brief introduc- 
tion to L-functions and the Riemann hypothesis, as necessary for understanding 
the discussion in Chapter 7. Note that tao functions are more commonly known 
as tau functions, but the name tao, meaning great waves, has been adopted here 
to avoid confusion with the modular parameter τ .   

6.1. Tao Functions  

Tao functions generate solutions to soliton equations. For example, a tao 
function ( ),x tΤ  satisfying the bilinear KdV equation:  

23 4 4 4 0.xx t x xt x xxx xxxx+ − − + =                  (23) 

generates solutions to KdV Equation (3) via the relation:  

( ) ( )
2

2, 2 log , .x t x t
x

φ ∂
=

∂
                  (24) 

For example, the Jacobi theta function appearing in Equation (9) is an 
example of a tao function solving Equation (23).   

More generally, soliton equations of type (12) with 2m =  have tao functions 
satisyfing the bilinear KdV equation that generate soliton equation solutions via 
logarithmic differentiation (24). Examples of time independent tao functions 
solving (23) are expressible in terms of Riemann theta functions ( )θ Ωx :  

( )
12π
2 ,

r

i
eθ

 ′ ′⋅Ω⋅ + ⋅ 
 

∈

Ω = ∑
x

x
  

 

                (25) 

as:   

( ) ( )1 0, ,x t xθΤ = ⋅ + Ωx x                  (26) 

where r  is the genus of a spectral curve Σ  with r r×  period matrix Ω . For 
fixed Ω , this tao function maps points in r

  to 


, and defines a one 
dimensional Schrodinger potential/operator in x  whose eigenvalue spectrum 
consists of r  stable bands interlaced with ( )1r +  unstable bands [12]. 

Tao functions can also be defined when 2m ≠ , but they do not determine 
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solutions to the KdV equation. Instead, via logarithmic differentiation, these tao 
functions determine solutions to the Kadomtsev-Petviashvili (KP) equation:  

4 3 1 ,
3 2 4yy t x xxxx

φ φ φ φ φ∂  = − ⋅ − ∂  
               (27) 

whenever they solve the bilinear KP equation:  
2 23 3 3 4 4 4 0.y xx yy t x xt x xxx xxxx− + + ⋅ + − ⋅ − ⋅ + ⋅ =            (28) 

Once again, Riemann theta functions provide viable examples of tao func- 
tions.  

6.2. Modular Forms  

Modular forms are functions ( )F τ  of a modular parameter τ  in the upper 

half of the complex plane { }Im 0τ τ= ∈ >  satisfying:  

( ) ( ) 1 21 2
3 4

3 43 4

,  ,wF F
γ γγ τ γ γ τ γ τ
γ γγ τ γ

   +
= + ⋅ ∀ ∈Γ   +   

        (29) 

for some discrete subgroup ( )2,SLΓ ⊂ 
 and weight 2w∈ . Typical 

examples of Γ  are the modular group ( )1Γ , and the congruence subgroups 
( )NΓ , ( )1 NΓ , and ( )0 NΓ  [13]. The set of modular forms satisfying 

Equation (29) for a particular group Γ  and weight w  is closed under addi- 
tion and constant multiplication, and therefore spans a complex vector space  

( )Modw Γ . For w +∈ , the dimension of ( )( )Modw NΓ  can be calculated as:  

( )( )( ) 3
2

1 1 1dim Mod 1 ,
24 4w

p N

wN N
N p

 − Γ = + −  
   

∏       (30) 

Demonstrating that the number of independent modular forms increases with 
weight w  and level N . Figure 8 shows an image of the real part of a weight 
1 2  modular form known as the modular discriminant.  

Other examples of weight 1 2  modular forms are provided by Riemann theta 
constants:  
 

 
Figure 8. Image of the real part of a modular form called the modular discrminant ( )η τ  

https://en.wikipedia.org/wiki/Dedekind_eta_function. 

https://en.wikipedia.org/wiki/Dedekind_eta_function
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( )
12π
2 2 2 2 2

, 0 ,
a a a bi

a b e
τ

θ τ

 ′ ′      + ⋅ ⋅ + + + ⋅            

∈

= ∑
  

 
               (31) 

in which ,a b∈ , and the 1 × 1 period matrix argument of the Riemann theta 
function is replaced by the modular parameter τ ∈ . These theta contants are 
of interest to us because they define modular functions associated with 
renormalization flow limits. Specifically, via its action on τ , the quotient group 
( ) ( )1 pΓ Γ  acts on a complex projective space ( )1 2p−

  spanned by ( )1 2p −  
theta constants whose ratios define ( )3 2p −  weight zero modular functions 
on the modular curve ( ) ( )X p p= Γ  [14]. A special case occurs when 

5p = , and the ratio of two theta constants is a modular function on ( )5X  
expressible as the ratio of two Rogers-Ramanujan modular forms in the variable 

2πiq e τ= :  

( )
( )

1 5 2 3
1 5 ;

.
1; 1 1 1 1
q q q q q qq

q
=

+ + + +





                (32) 

This modular function satisfies a polynomial equation whose coefficients 
depend on the j-invariant ( )j τ , and its evaluation at quadratic imaginary 
values of τ  generates an algebraic extension of ( )( )2π 5, ij eτ  whose Galois 
group is contained in the symmetry group ( ) ( )1 5Γ Γ  of the icosahedron. 

In physics, modular functions arise as renormalization flow limits of Ising 
model partition functions [15]. To understand this, recall that the Ising energy 

I  of a one dimensional chain of spins { }iσ  in an external magnetic field H  
with nearest neighbor coupling   is:   

1
1 1

.
I I

I i i i
i i

H σ σ σ +
= =

= − −∑ ∑                    (33) 

Summing over all possible spin configurations, this Ising energy generates a 
quantum partition function ( ),I h  : 

( )
{ }

1
1 1

, exp ,
i

I I

I i i i
i i

h h
σ

σ σ σ +
= =

 = +  
∑ ∑ ∑                (34) 

that depends on the parameters ( ) ( ), ,h H T T=   at temperature T .   
Assuming the spins iσ  take values in the set { }1,1− , this partition function 

can be summed over every other spin to produce a decimated partition function 
( )2 ,I h′ ′   satisfying:   

( ) ( ) ( )2 , , , ,I I Ih h hβ′ ′ = ⋅                   (35) 

where ( ),I hβ   is a rescaling factor satisfying the transfer matrix relation [16]: 

( )
2

2, .
h h

I
Ih h

e e e e
h

e e e e
β

′ ′ ′+ − + −

′ ′ ′− − − −

   
= ⋅   

   

   

   
            (36) 

The renormalization transformation associated with this decimation and 
rescaling is:  

( )
( )

2 2 cosh 2
,

cosh 2
h h h

e e
h

′ +
= ⋅

−



                  (37) 
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( ) ( )
( )

4
2

cosh 4 cosh 2
,

2cosh
h

e
h

′ +
=


                (38) 

and this transformation gives rise to regular and chaotic flows below and above 
the curve ( )4 21 sinh 0e h− = , as illustrated in Figure 9. The regular flow has 
stable limit points along the h -axis at 0= , and an unstable critical point at 
( ) ( ), 0,h = ∞ . 

Formally, under repeated iteration of renormalization transformation (35), 
the partition function ( ),I h   in Equation (35) may flow into a modular 
function ( )( ), 0h τ  of level 2N =  in τ  for some suitable function ( )h τ . 
More generally, given a one dimensional Ising model and a renormalization 
transformation of decimation degree N  acting on this model, its partition 
function ( ),I h   may flow into a level N  modular function ( )( ), 0h τ  
under repeated iteration of this transformation. 

6.3. L-Functions 

Artin L-functions ( ), sρ  are complex valued functions of a single complex 
parameter s , and can be regarded as generalizations of the Riemann zeta 
function:   

( ) 1 .
1 s

p
s

p
ζ −=

−∏                    (39) 

in that they are expressible as infinite products over primes. Technically, we can 
associate an L-function with each representation ρ  of a Galois group 

( )Gal C R , where C R  is an extension of algebraic number fields. Assuming 
this representation acts on a complex vector space cV  of dimension c , a 
unique c c×  diagonal matrix ( )Pρ ℑ  can be defined for each prime ideal 

RP∈  unramified in the ring of integers CO , and these diagonal matrices 
determine an Artin L-function:  

( )
{ }

( )( )
sing

1
, det 1 ,s

P
P P

s Pρ ρ
−−

∉

= − ℑ ⋅∏            (40) 

where { }singP  is the set of singular primes sing RP ∈  that ramify in CO  [18]. 
 

 
Figure 9. One dimensional Ising model renormalization flow. 
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Interestingly, it is conjectured that all non-trivial zeros of Artin L-functions lie 

along the critical line 1Re
2

s = , as shown in Figure 10 [19]. This conjecture,  

known as the generalized Riemann hypothesis, has close ties with physics. For 
example, it has been proposed that alignment of the Riemann zeros is related to 
the Hermiticity of quantum operators and/or the alignment of Yang-Lee zeros of 
Ising model partition functions [20] [21]. In addition, it has been conjectured 
that every Artin L-function ( ), sρ  equates with a Langlands L-function 
( ), sπ  for some automorphic representation π  of an adelic group acting on 

a vector space Vπ  of automorphic waveforms Ψ  [22]. As we’ll see in the next 
chapter, this reciprocity conjecture is related to wave-particle duality.  

7. Emergence  

In this chapter, our goal is to explain how the Riemann hypothesis is related to 
the emergence of classical phase space, and how this emergence is driven. To 
this end, Figure 11 shows the zeros of a Langlands L-function ( ), sπ  stereo- 
 

 
Figure 10. An illustration of the Riemann hypothesis: the Riemann zeta function does 

not have any non-trivial zeroes lying off the critical line 1Re
2

s =  [17]. 

 

 
Figure 11. Conjecturally, the zeros of a Langlands L-function ( ), sπ  along the critical 

line 1Re
2

s =  act as attractors of a multifractal L-function zero flow [23]. 



D. Brox 
 

474 

graphically projected onto the surface of a Riemann sphere. Conjecturally, these 
critically aligned zeros act as attractors for a multifractal L-function zero flow 
carrying the zeros of ( )QM s  into the zeros of ( ) ( )1 ,M s sπ=   as 1Q e= →  
[23]. In this chapter, we’ll assume this conjecture is true, and explain how 
multifractal zero flow leads to the emergence of classical phase space 1

 . 
Intuitively, we can think of zero flow as a state mixing process utilizing automor- 
phic waveforms as pointer states, and classical system formation in 1

  as wave 
function collapse. We can also think of zero flow as occuring with iteration of a 
renormalization transformation, in analogy to the way in which Yang-Lee zeros 
flow with renormalization of an Ising model. Because zero flow results in 
classical system formation at 1Q = , and resembles state mixing towards pointer 
states acted on unitarily by commuting rotation operators, we’ll refer to it as 
confluent unitary mixing. 

To understand the relationship between zero flow and state mixing, let’s 
assume the automorphic waveforms VπΨ∈  are complex valued functions:  

( ): ,GΨ →


                       (41) 

on the adelic group ( )G


  acted on by π  via right translation. In this event, 
Harish-Chandra transformations of these waveforms at unramified prime places 
p  are zonal spherical (e.g. hypergeometric) functions invariant under commut- 

ing rotations. More specifically, zonal spherical functions are invariant under 
right translation by ( )pK  , where ( )K 

 is a compact subgroup of ( )G 
 

whose Lie algebra g  of infinitesimal generators contains a rank r  root space 
r

rV ≅  . Via exponentiation, these roots generate commuting rotations sharing 
automorphic waveforms VπΨ∈  as eigenfunctions, and for this reason we’ll 
interpret them as number theoretic replacements for sys  and int  operators. 
From this point of view, the multifractal zero flow shown in Figure 11 is a state 
mixing process utilizing automorphic waveforms as pointer states. To highlight 
this interpretation, we’ll refer to Vπ  as a pointer space. 

To relate multifractal zero alignment to the emergence of classical phase space, 
we’d like to associate zero flows with geometric objects Q  that singularize into 
a classical phase space 1

  as 1Q → . Unfortunately, this association is not 
possible for 1Q ≠ , because multifractal zero flows are transcendental in nature, 
and cannot be associated with phase space geometries away from zero alignment. 
However, with assumption of the reciprocal relation:   

( ) ( ), , ,s sπ ρ=                      (42) 

the Galois representation ρ  represents discrete transformations of a classical phase 
space 1

  on a complex vector space cV  emerging at 1Q = . A sketch of this 
emergence when 1

  is the 2-dimensional phase space ( ) ( )2 2SL SO=    is 
shown in Figure 12, in which a single hyperbolic geodesic has been indicated. This 
phase space is the prototypical example of a quotient space:   

( ) ( )1 1 1 ,G K=                      (43) 

acted on by the discrete group ( )1Γ , and as the quotient of a continuous group 
( )1G 

 by a compact subgroup ( )1K 
, it is a symplectic space [24]. 
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Figure 12: Emergence of the 2-dimensional phase space 1 =  . 

 
In the special case 1 =  , ρ  represents the action of a subgroup of 
( ) ( )1 NΓ Γ  on a complex vector space c

cV ≅   spanned by c  co-cycles of 
( )NΓ , for some level N . More generally, ρ  represents transformations of 

a 2d -dimensional quotient space 
1

1 Γ 



  on a complex vector space cV  

spanned by c  of its co-cycles [25]. Physically, these co-cycles are interpretable 
as classical fields directing system trajectories in the phase space 1

 , and the 
1Q =  formation of a system in 1

  is interpretable as the collapse of a 
measured quantum system into an observable classical phase. Importantly, 
because this collapse occurs in conjunction with the emergence of phase space, it 
also occurs in conjunction with the emergence of any spatial metric defining a 
conventional notion of physical distance.  

Geometrically, we can understand classical system formation in 1
  using 

twistor theory [26]. To this end, let’s recall the setup of standard twistor theory 
in which twistors are complexified light rays in ( )3 4

1Gr=� � , and twistors 
intersect in pairs to form points in complexified Minkowsi spacetime ( )4

2Gr � . 
In this setup, the Penrose transform relates quantum fields over twistor space to 
classical fields in Minkowski spacetime, and these classical fields exhibit a 
geometric duality under the hodge star operator that generalizes the duality 
between electric and magnetic fields appearing in Maxwell’s equations. 
Consequently, from a twistor-centric perspective, ( )3 1+ -dimensional space- 
time and classical fields are not fundamental in and of themselves, but are born 
out of twistor incidence and twistor space geometry.  

With this in mind, let’s consider a variant of twistor theory in which twistors 
are replaced by continuous paths in d -dimensional Lagrangian (e.g. configu- 
ration) submanifolds:  

( ) ( )1 2 ,G K≅ � �                   (44) 

of 1
  that intersect in pairs to form points. From this point of view, an 

emergent path space 1  replaces 3�  as twistor space, 1
  replaces 

Minkowski spacetime as the target for twistor incidence, and co-cycles in cV  
replace ( )SU r  Yang-Mills fields as directors of classical system trajectories. 
Physically, the motion of the twistor intersection point in 1

  is interpretable as 
instanton tunneling between a pair of quantum potential wells [27].   

Visually, we can imagine system formation in 1
  occurs with resonant 

splitting of a KAM torus [28]. This is shown in Figure 13-top, in which separate 
KAM tori split into 3d =  and 5d =  sub-tori, indicated as golden particles. 
As shown in Figure 13-middle, these particles form at points of twistor inci- 
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Figure 13. (top) Resonant splitting of a KAM torus [28]. (middle) Dual spirals direct the 
the trajectory of a classical system formed in 1

 . (bottom) Fibonacci spirals determine 
the pattern of seeds in a sunflower.  
http://momath.org/home/fibonacci-numbers-of-sunflower-seed-spirals/  
 
dence in a plane ★  rotating around a central axis, and their trajectories leave 
and return to hyperbolic fixed points at 0 and ∞  along stable and unstable 
paths [29]. In return, these twistors trace dual spirals, marked in red and green, 
and particles traverse vortical trajectories similar to helical trajectories traversed 
by charged particles in static magnetic and electric fields. In Nature, dual 
Fibonacci spirals appear in patterns of sunflower seeds, as shown in Figure 13- 
bottom, in which the spiral branch ratio approximates the golden ratio 

( )1 5 2ϕ = + .   
Because the particle trajectory in Figure 13-middle is a vortex, we may 

suspect it has a characteristic period of rotation. In fact, up to anomalous factors, 
the Rogers-Ramanujan modular forms:  

( ) ( ) ( )
1 601 60

2 1
19 1 4 17281; , , , ,
60 60 5

q q j F
j

τ
τ

−  −
⋅ = ⋅   

 
         (45) 

( ) ( ) ( )
11 6011 60

2 1
31 11 6 1728; , , , ,
60 60 5

q q q j F
j

τ
τ

−  
⋅ = ⋅   

 
        (46) 

are Gaussian hypergeometric functions defining periods of classical rotational 
motion [30]. For this reason, we can imagine one of these periods characterizes 
the rotation of the golden particle around the central axis in Figure 13-middle. 
More generally, we’ll conjecture the rotational motion of the system formed in 

1
  is characterized by a modular invariant tao function ( )( )h τΤ  satisfying a 

http://momath.org/home/fibonacci-numbers-of-sunflower-seed-spirals/
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differential equation of degree ( )1d +  in ( )h h τ= . For example, ( )hΤ  may 
be a hypergeometric function of x h=  whose logarithmic derivative satisfies a 
differential equation of degree d . A differential equation of this type emerges as 
the confluent limit of the Q -difference equation described in Chapter 5. 

Intuitively, this conjecture is motivated by noting hypergeometric tao 
functions are combinatorial generating functions of signed Hurwitz numbers 
[31]. That is, the nq -coefficients of hypergeometric q -series count n -sheeted 
branched covers of the Riemann sphere, like the coverings of ( )′   by the 
spectral curve Σ  described in Chapter 5. Consequently, for 1Q ≠ , we can 
think of spectral curves QΣ  as points in Riemann surface moduli spaces ,n Q , 
so in the event these moduli spaces converge into the same rank r  space rV  
as 1Q → , ( )( )h τ  emerges at 1Q =  as an integral over the root space 
underlying 1

  [32] [33]. Moreover, in the event the monodromy represen- 
tation of the differential equation solved by ( )h  is a represention of the 
braid group with d  strands, we can picture the solutions of this differential 
equation as the twistor components shown in Figure 13-top. Physically, this 
makes sense if the logarithmic second derivatives of d -point correlation 
functions solving the KZ differential equation define quantum potential wells 
between which the twistor intersection point tunnels. 

To understand this in greater detail, let’s imagine Equation (18) is integrated 
in the complex  -plane to generate a holomorphic matrix ( ) ( )mGLΩ ∈ �  
connecting ( )0mψ  and ( )mψ  , and further imagine this holomorphic matrix 
is a one dimensional Ising model transfer matrix that factors:  

( ) ( ) ( ) 1 .−Ω = ⋅                          (47) 

into matrices ( )   and ( )   representing one dimensional flow and crash 
operators near a fixed point of the Ising model renormalization flow. Technically, 
this makes sense if the matrices in Equation (47) represent elements of a 
quantum group deforming the universal enveloping algebra ( )1 ĝ  of the 
Kac-Moody Lie algebra:  

1ˆ , ,g e h h g− = ⊕ ⊗                      (48) 

and Equation (47) is the Riemann-Hilbert factorization of ( )Ω   along a 
contour encircling the origin [34]. With this assumption, the 0=  determi- 
nants of the flow and crash operators may be modular invariant tao functions 
solving Knizhnik-Zamolodchikov (KZ) differential equations whose ratio 
defines a modular invariant partition function [35]. For example, written as 
spectral determinants, the hypergeometric functions in equations (45) and (46) 
are tao functions of:  

( ) ( )1728 ,x h jτ τ= =                    (49) 

solving KZ differential equations, whose ratio is a unitary character of the 
Virasoro algebra [36]. Such characters are quantum partition functions associat- 
ed with unitary representations of loop groups, and conjecturally, emerge in 
conjunction with unitary mixing. This situation is illustrated schematically in 
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Figure 14, in which the flow and crash operators are indicated by blue arrows, 
and unitary representations of loop groups emerge in conjunction with the 
pointer states VπΨ∈ . 

Algebraically, the determinant of Riemann-Hilbert factorization (47) is a 
relation between scattering amplitudes in the Hopf algebra of Feynman 
diagrams ( )ˆQ g , and in special cases, these scattering amplitudes equate with 
volumes of positive Grassmanniann cells [37]. For instance, this volumetric 
interpretation of scattering amplitudes may hold at 1Q =  where the Grass- 
mannian cells of interest are moment polytopes in the dual root space rV ∗  
whose volumes are given by hypergeometric integrals [38]. An artistic rendering 
of a fan constructed by connecting the vertices of a moment polytope to a central 
origin is shown in Figure 15.  
 

 
Figure 14. Artistic rendering of flow and crash operators.  
https://permies.com/t/44266/Wood-Heat-DIY-Rocket-Mass  
 

 
Figure 15. Artistic rendering of a “diamond’’ fan.  
https://www.quantamagazine.org/20130917-a-jewel-at-the-heart-of-quantum-physics/  

https://permies.com/t/44266/Wood-Heat-DIY-Rocket-Mass
https://www.quantamagazine.org/20130917-a-jewel-at-the-heart-of-quantum-physics/
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Interestingly, there are cases in which the the aforementioned relation 
between scattering amplitudes is a q -difference equation. Conjecturally, this 
occurs when the determinant of the crash operator in Equation (47) is a function 
( );Q q  satisfying a generalization of the q -difference equation: 

( ) ( ) ( )2; ; ; ,Q q qQ q q q Q q= +               (50) 

satisfied by ( );Q q , that, up to anomalous factors, equates with the modular 
invariant tao function ( )h  at 1Q = . More specifically, we’ll conjecture 
( )1;q  has expression as both an infinite product and infinite sum as a 

consequence of generalized Rogers-Ramanujan identities, and regard the q - 
difference equation it satisfies as a topological recursion relation describing how 
the root space rV  and classical phase space 1

  emerge [39]. Furthermore, 
we’ll regard the root space rV  as a moduli space of genus r  spectral curves 

QΣ  whose real or imaginary periods vanish as 1Q →  to produce singular 
modular curves ( )1 NΣ = Γ , because short period limits of this type create 
the quantum potential wells between which twistor intersection points tunnel. 
To emphasize the role this period vanishing plays in the emergence of phase 
space and characteristic modular forms, we’ll refer to it as modular deformation. 
A visualization of modular deformation is provided by Figure 16 using the limit 
set of a Fuschian group QΓ  defining the spectral curve Q QΣ = Γ  [40]. 

As an example, let’s assume 7N = , 2r = , and solutions to the third degree 
q -difference equation:  

( ) ( ) ( ) ( ) ( )2 2 2 5 3 3; 1 ; ; ; ,Q q qQ qQ q q Q q Q q q Q q Q q= + ⋅ + ⋅ − ⋅       (51) 

generate a modular function field of degree 3 at 1Q =  [14]. Explicitly, one 
solution to this equation is given by the infinite product:  

( )
( )( )( )

( )
7 3 7 4 7

1

1 1 1
1; ,

1

i i i

i
i

q q q
q

q

− −

≥

− − −
=

−
∏               (52) 

and the ratio:  

( )
( )

( )

( )
5 ,1

3 7 2π 7 7

1 ,1
7

0 7
;

,
1; 0 7

iq q
q e

q

θ τ

θ τ
− −= ⋅ ⋅




                (53) 

is a cyclotomic unit of degree 3 in ( )2π 7ie�  at 0τ = . This ratio does not have 
a continued fraction representation because q -difference Equation (51) is not 
of degree 2, however, the ratio:  
 

 
Figure 16. Modular deformation of a limit set defined by a Fuschian group QΓ  [40]. 
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( )
( )

( )( )( )
( )( )( )

7 1 7 2 7 4

7 3 7 5 7 6
1

1 1 1;
,

1; 1 1 1

i i i

i i i
i

q q qq q
q q q q

− − −

− − −
≥

− − −
=

− − −
∏








           (54) 

is conjectured to have a continued fraction expansion for an appropriate choice 
of the partition function ( );Q q  [41]. Based on this idea, we’ll conjecture 
the existence of a continued fraction modular function of level p for each p > 5. 
We’ll also conjecture that the level 7 modular function plays a role in 
characterizing the electroweak force, the rank 2 gauge field in the Standard 
Model. Reasonable justification of this final conjecture is the subject of future 
work.  

8. Conclusions 

Blending ideas from math and physics, this paper suggests state mixing is the 
fundamental process underlying the time evolution of physical systems. 
Formally, this is achieved by replacing quantum density matrices with multifrac- 
tal L-functions ( )QM s , and the time parameter t  with a flow parameter   
that approaches zero as the zeros of a multifractal L-function align. This flow 
towards alignment, termed confluent unitary mixing, leads to the emergence of 
quantum unitary evolution and classical phase space at 1Q e= = . 

Physically, the results of this paper are of interest because they highlight a 
connection between open quantum systems and number theory. Specifically, 
commuting system and environmental interaction operators sys  and int  
sharing pointer eigenstates of a state mixing process are analogous to commu- 
ting rotation operators sharing automorphic waveforms VπΨ∈  as eigenfunc- 
tions. Moreover, classical system formation in the emergent phase space 1

  via 
twistor intersection is interpretable as the collapse of a quantum system into an 
observable classical phase. From this perspective, multifractal zero alignment is a 
phase space selection process in which 1

  and classical fields directing system 
trajectories are continuously changed, and Langland’s reciprocal relation 

( ) ( ), ,s sπ ρ=   is a number theoretic statement of wave-particle duality.  
Mathematically, the drive towards multifractal zero alignment is explained 

using the theory of solitons. This is done by identifying the root space rV  
underlying 1

  as a moduli space of singular Riemann surfaces containing 
solitonic spectral curves QΣ  whose real or imaginary periods vanish as 1Q → . 
Using this idea, a class of modular forms characterizing classical system trajec- 
tories is conjectured to exist.   

Outside the realm of pure science, the results of this paper may also have real 
world applications. For example, as described, unitary mixing instills emergent 
classical systems with a balance between ordered and chaotic behavior that may 
be relevant to understanding the presence of self organized criticality in Nature 
[42]. Should this prove to the case, areas of pure mathematics that have 
traditionally been regarded as the preoccupation of ex-centrics may find 
application across scientific disciplines. 
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