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Abstract 
This article is the continuation of article [1] where the experimental facts of observa-
tion of the electroscalar radiation in the spectrum of the Sun have been presented [2]. 
This radiation comes into the world having a long wavelength, being longitudinal 
and extraordinarily penetrating. In accordance with the principle of least action, the 
Lagrangian of the electroscalar field and the tensor of energy-moment are deter-
mined using the variation the potential and coordinates. The equation of motion the 
charged particle in electroscalar field is determined and the energy of particle has the 
negative sign with respect to the mechanical energy of particle and the energy of 
electromagnetic field. So, this is decreasing the electrical potential of particle during 
the propagation. The electroscalar energy of charged particle and field’s force acting 
on the particle during their motion change the particle’s electrical status which, in its 
turn, may trigger the transition of the particle into a compound state during interac-
tion with any object. Due to the continuity this process can lead the particle to the 
state which enters into a compound state with a negative energy for a different par-
ticle’s velocity. This state is the physical vacuum’s state. Analysis of the solar spec-
trum demonstrates that scattering and absorption of electroscalar wave go on the 
cavities of solids. The spreading out of electroscalar field obeys to the law of plane 
wave and the transfer the energy and information can occur in vacuum and any medium. 
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1. Introduction 

Present article is the continuation of article [1] where the experimental facts of 
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observation the electroscalar radiation in the spectrum of the Sun have been presented. 
This radiation comes into the world having a long wavelength, being longitudinal and 
extraordinarily penetrating. One of the way to create the theory of this phenomenon it 
was using the analogy between the linear theory of elasticity and electrodynamics. It’s 
known that theory of elasticity [3] [4] contents both transverse and longitudional 
components of the vector of displacement in the equation of motion of elastic wave. So, 
from the transversal component of the vector of displacements the Maxwell equation 
has been resulted, and from the longitudinal component of the vector displacements 
the equation of electroscalar field has been received [2]. Moreover, the four-vector 
Maxwell electromagnetic potential and four-scalar potential neither form a single object 
in the Minkowski space nor interfere and, as a consequence, prove to be independent [5] 
[6]. Spectrum of radiation has a discrete character and single radiation signal posseses 
an exceedingly small value of raising time of electrical signal of front and drop of the 
order of fractions of a picosecond. Average amplitude of spectrum has a negative value. 
A 2-D analysis of spectrum shows that solar electroscalar radiation scatters and absorbs 
on the cavity of sensor made from the copper. Each cavities irradiate a corresponding 
electroscalar waves. The ability to detect the amplitude and frequency of this radiation 
would allow to observe an internal structure of the object. The spreading out of 
electroscalar field obeys to the law of plane wave and the transfer the energy and 
information can occur in vacuum and any medium. Both field components in the wave 
in vacuum are directed along the wave propagation being equal in absolute magnitude 
while in solids electrical component is opposite the electroscalar in forward direction. 
The equation of motion the charged particle in electroscalar field is determined that the 
energy of particle has the negative sign with respect to the mechanical energy and to the 
energy of electromagnetic field. The energy of charged particle in electroscalar field and 
field force acting on the particle change the electrical status of particle which causes the 
particle's transition into a compound state during the contact with any object. This 
state is the state of a PHYSICAL VACUUM. A single particle moves in electroscalar 
field will permanently and decrease the electrical potential and mass and finaly lost 
their individual properties. So, the continuity of this process may lead to a practicaly 
neutral state having however an electroscalar component but electrical component is 
not negligible. In articles [7] [8] [9] were shown that laws of conservation of the energy 
and charge in vacuum state are fulfilled.  

2. Generalized Electrodynamics 

The analogy with linear theory of elasticity, supporting propagation of both 
longitudional and transcendental waves, will give a strictly indication of how the basic 
equations of generalized electrodynamics should look like. Thus due to this the 
equation for the Maxwell electromagnetic field was derived from the transcendental 
component of the displacement vector, and an equation for the electroscalar field from 
the longitudinal component of the displacement vector. The continuity equation of the 
electromagnetic field contains displacement of current, and the electroscalar field 
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contains displacement of charge. In the continuous medium the system takes the form 
for the Maxwell equation: 

1 0,
c t

⊥∂
− + =

∂
E rotH                           (1) 

1 0,
c t ⊥
∂

+ =
∂
H rotE                           (2) 

div 0,=H                              (3) 

and another for the electroscalar fields ||E  and W  are: 

||1 0,W
c t
∂

+ ∇ =
∂

E
                          (4) 

||
1 div 0,W
c t
∂

+ =
∂

E                          (5) 

|| 0.=Erot                             (6) 

Such a system describes propagation of longitudinal waves in a continuous medium. 
Because the transverse and longitudinal waves propagate in the elastic continuum with 
different velocities, tc  for the transverse and lc  for the longitudinal ones, the fields 

⊥E  and ||E  can be considered as independent. The velocities of propagation of the 
longitudinal and transverse waves will be the same in this article. Let us introduce the 
following field definitions: 

1 ,
c t⊥
∂

= − =
∂
AE H rotA                       (7) 

||
1, ,W
c t

λλ ∂
= ∇ = −

∂
E                       (8) 

where A  are the time and space parts of the electromagnetic 4-potential. It should be 
noted here that by virtue of their definition the values ||E  and W  are the compo- 
nents of a 4-vector in the Minkowski space-time. 

3. An Absorption of the Electroscalar Radiation and a  
Plane Electroscalar Wave 

The electroscalar radiation is produced by the structures of solar plasma providing a 
spectrum with a sign-alternating amplitude of order of 20 millivolt and a frequency (by 
Fourier) up to 500 Hertz. The averaged value of the spectrum is negative and equals 
minus 2 - 5 millivolt, with a positive-amplitude signal coming on every millisecond and 
a negative-amplitude signal following after an interval. The frequency analysis of the 
spectrum shows that this radiation has a long wavelength and a practically constant 
amplitude. A single radiation signal has an exceedingly small value of raising time of 
electrical signal of front and drop of the order of fractions of a picosecond. 

The spectrum of the solar electroscalar radiation is given in Figure 1. 
Positive signal is the electrical potential applying along line of spreading out and 

contributing to the repulsion of charges due to their polarization. Negative signal is the 
result of comression charges by rotation the electrical field on the contour of surface  
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Figure 1. Spectrum of the Sun electroscalar radiaton. 
 
surrounded the volume of charges. In solid states the electroscalar radiation losses their 
energy on the cavities and due to that reradiate corresponding plasmons electroscalar 
signal [10]. The amplitude of signal in observed spectrum tells about presence in the 
metall of sensor varies cavities. In the case when the signal corresponds to the fre- 
quency of cavity may appear the enhancement the outgoing electroscalar signal 
(plasmon resonanse). Therefore, this radiation can be used to study the structure of 
objects, which is similar examination using x-rays. On the Figure 2 the 2-D graph of 
electroscalar signal of the Sun taken by Cu-spherical sensor is presented. For this aim 
the amplitude of signal iB  presented as 1i i iB B Bδ += − . Two projection of axis is 
components of signal iB . 

The spectrum of the Solar electroscalar radiation may be presented as a plane 
electroscalar wave. Particularly, the second equation of the electroscalar field is such 
that the electric field ||E  is expressed in terms of the scalar potential λ : 

|| ||
1div 4π .
c t

ρ∂
+ = −

∂
WE  

Since || λ= ∇E  and 1
c t

λ∂
= −

∂
W , the equation that is satisfied by the potential of 

the electroscalar field in matter is: 
2 2

|| 2
14π .
c t

λλ ρ ∂
∆ = − +

∂
 

From this equation it follows that the potential of the electroscalar field may have 
maxima and minima as the field in vacuum differs from the Laplace equation for the 
electromagnetic field with a zero right side and second derivatives have equal signs. 

In vacuum, with || 0ρ = , this equation may be given as: 
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Figure 2. 2-D graph of cavities. 
 

2 2
2

2 2 0.c
t x
λ λ∂ ∂
− =

∂ ∂
 

In order to find a solution for this equation, we will present it in the form: 

0.c c
t x t x

λ ∂ ∂ ∂ ∂   − + =   ∂ ∂ ∂ ∂   
 

The equation for the plane wave has the following solution: 

1 2 ,x xt t
c c

λ λ   = − + +   
   

Λ  

which describes two waves travelling in the direction +X:  

1
xt
c

λ  − 
 

 

as well as in the direction −X:  

2 .xt
c

λ  + 
 

 

When xt const
c

− = , the field changes with the time and at each moment it is 

different for different X . The electroscalar field has the same amplitude for the 

coordinates satisfying the relation xt const
c

− =  for the +X  direction. If the field has  

a particular value at some point, then in the time t it will take the same value at a point 
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being at the distance ct from the previous place. This implies that for all the values of 
the electroscalar field it propagates in space with the velocity *c*. This will be in a 
similar way for the −X  direction. We will now express the plane wave equation for 
the electroscalar field in terms of the field components W  and ||E : 

2 2
|| 0,− =E W  

i.e. 
|| =E W , both field components in the plane wave in vacuum are directed along 

the wave propagation being equal in absolute magnitude. The energy flux in a plane 
wave, i.e. the Pointing vector, will be: 

2 2
|| || ,

4π 4π 4π
c c cn= × = =S E W E W  

where n is a unit vector along the direction of the electroscalar wave propagation. 
Correspondingly, the energy of the wave will be as follows: 

2 2 2 2
|| || .

8π 4π 4π
+

= = =
E W E WE  

The flux of the field pulse is defined by the value of the field energy flux density. And 
the absolute value of the quantities 

||E  and W  transforms as  

E  

For the electromagnetic field the potentials can be chosen in such a way that 0φ = , 
with div 0=A , then the electric and magnetic fields of the plane wave are perpendi- 
cular to one another and are equal in absolute magnitude. 

4. Lagrangian of the Longitudinal Electroscalar Field 

The properties of a charged particle relating to its interactions with the electroscalar 
field are defined by one parameter: that is the particle charge which can be both 
positive and negative. The properties of the electroscalar field are characterized by the 
four-dimensional scalar potential λ  which is the coordinate and time function. The 
quantity λ  comes into action in accordance with the principle of least action as: 

d ,
b

a

e s
c

λ∫                               (9) 

where the integral is taken at the points a to b of the world line of a particle. The type of 
action can be established here on the grounds that the Lagrangian is a scalar, while the 
product of the charge and potential is the particle’s potential energy. Besides that, the 
relativistic invariance requirement allows for the scalar function the form: 

d .
b

a

sλ∫  

Thus, the action for a charge in the electroscalar field appears as: 

d ,
b

a

emc s
c
λ = − − 

 ∫S  

where the 1st term is the energy of a free particle, and the 2nd term is the potential 
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energy of the particle. According to the principle of longitudinal superposition, the 
charge may be expressed in terms of the charge density: 

( )|| 1 .i ie r rρ δ += −∑  

In such a case, summation goes over all the linear charges. 
The action can be represented as a time integral: 

d ,
b

a

L t= ∫S  

where L is the Lagrange function. 

Since 
2

2d 1 dvs c t
c

= − , the action of the electroscalar field will be as follows: 

2 2
2

2 21 1 d .
b

a

v vmc e t
c c

λ
 
 = − − − −
 
 
∫S                  (10) 

So, the Lagrange function of the electroscalar field is: 
2 2

2
2 21 1v vmc e

c c
λ= − − − −L  

In the non-relativistic case, 2 2 emv
c
λ= −L . 

5. The Energy-Momentum Tensor of the Electroscalar Field 

In order to determine the energy-momentum tensor of the electroscalar field and 
establish the equation of motion of a particle in the four-dimensional form, we apply 
the principle of least action in the relativistic case. The variables which vary in a 
principle of least action are field potentials and coordinates of the world line. The 
action of a charge in the electroscalar field in the three-dimensional form is as follows: 

demc s
c
λ = − − 

 ∫S  

The principle of least action states: 

d ,emc s
c

δ δ λ  = − −  
  
∫S  

and since: ( )2 2 2 2 2 2d d d d d d ,is x y z t x= − + + − = −  
the variation of action in the four-dimensional form is: 

( ) ( )2 2d d 0i i
emc x x
c

δ δ δ λ = − − − − =  ∫S  

The action variation takes place along the world line from a to b. 
Further: 

( )d dd d d 0,
d d

i i
i i

x xe emc x s x
s c c s

δ δ δ λ λ δ = − + = 
 ∫S           (11) 

( )d d d 0,i i i i
e emcu x s x
c c

δ δ δ λ λ δ = − + = 
 ∫S u             (12) 
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In the first and third terms we integrate by parts; differentiation of ixδ  and d ix  

here can be interchanged, d
d

i
i

x
s

=u  is the four-velocity of the particle.Thus, we obtain: 

( ) ( )d d d 0
b

b
i i i i i i i ia

a

e e emc x x mc x s x
c c c

δ δ λδ δ δ λ λ δ
   = + + − − − =      

∫S u u u u  (13) 

The expressions in the square brackets are equal to zero because in the limits i axδ  
and b

ixδ  they equal zero due to the zero field at infinity. Next, the expression for 
variation takes the form: 

0,
b

b
i i i ia

a

emc x x
c

δ λδ+ =u u                     (14) 

( ) ( )( )d d d d 0i i i i i i
e eS mc x s x u x
c c

δ δ δ λ λ δ λδ = − − − + =  ∫ u u       (15) 

Since 

dd d , = , d d , 1.
d

i
i i i i i

i i

u s x x u u
s x x

λ λδλ δ λ∂ ∂
= = = −

∂ ∂
u  

The expression for variation takes the form: 

dd d 0.k
i i i k i i

i k k

xe emc u x x x u x
c c x u x
λ λ λδ δ δ δ

 ∂ ∂ = − + − − =   ∂ ∂  
∫S      (16) 

Besides, d di ix u s= . Here, the i and k indices can be interchanged due to summation. 
Thus, we obtain: 

dd d 0.k
i i i i k i

i k i

xe emc u x x u x x
c c x u x
λ λ λδ δ δ δ

 ∂ ∂ = − + − + =   ∂ ∂   
∫S     (17) 

The expression takes thes form: 

d d d 0k
i i k i k i i

i k

e emc u x u u s x u su x
c c x x
λ λ λδ δ δ δ

 −∂ ∂ = − + − + =   ∂ ∂   
∫S    (18) 

From the arbitrariness of ixδ  it follows that the integrand is equal to zero and the 
equation of motion of a particle moving in an electroscalar field thus has the form: 

d ,
d

i
ik k

ue emc Z u
c s c
λ + = − 

 
                  (19) 

where 

ik k i
i k

Z u u
x x
λ λ ∂ ∂

= − ∂ ∂ 
                    (20) 

is the 4-dimential antisymmetric tensor of 2-nd order: 

( )0, , , , , 1, , 4.ii ik ki ik iZ Z Z Z E W i k
t
λλ ∂ = = − = ∇ = − = ∂ 



      (21) 

The tensor elements are: ||
12 21 2 21

vE
Z Z

c v c
= − =

−
, while ||

13 31 2 21

vE
Z Z

c v c
= − =

−
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and ||
14 41 2 21

E vW
Z Z

v c

+
= − =

−
 and 24 42 2 21

vWZ Z
v c

= − =
−

, 23 32 0Z Z= = ,  

34 43 2 21
vWZ Z

v c
= =

−
. 

Thus, we have obtained the equations for a particle moving in an electroscalar field. 
By using the action variation expression in the case when at least one of the limits is 

not equal to zero, for instance, ixδ , we derive: 

.i i iS mcu u x
c
ρδ λ δ = + 

 
 

Note that i ijρ =u . 

Let us determine now the generalized momentum i i i
i

S p j
x c

λ∂
= = +
∂

P  

From here we obtain the Hamilton-Jacobi equation: 
2

2 2 0.i
i

S j m c
x c

λ ∂
− + = ∂ 

 

By the way the equation of motion of a particle moving in an electromagnetic field 
thus has the form: 

d ,
d

i
ik k

umc u
s c

ρ
= F                         (22) 

Here Fµν
⊥  is the electromagnetic tensor in the Coulomb gauge: 

, 0, div 0.
AA

x x
µν

µν µ ν φ
⊥⊥

⊥ ⊥∂∂
= − = =
∂ ∂

F A  

So we obtain the tensor presenting the covariant law of motion of a charged particle 
in transverse electromagnetic and longitudinal electroscalar fields: 

uν
µν µν µν

⊥= −O F                        (23) 

can be considered as a relativistic law of summation of electromagnetic and electro- 
scalar fields or as a generalized intensity. So the mechanical and electroscalar energis 
enter to the total energy of charged particle with a different sign. However the electro- 
magnetic energy do not change the mechanical one. This properties may signify that a 
charged particle could be ready to come into a compound system. The expression for 
action covers both the action of free charges and their action in the electroscalar field. 
The action that is depending on the properties of the field itself, without charges, is 
governed by the field structure and components. Such a term is represented by one of 
the invariants of the electroscalar field which is defined by the expression ( )2 2

||−Wv cE . In 
the four-dimensional form this invariant has the following appearance: 2

ikZ . From the 
invariance of this variable it follows that there may be such states for which if 

|| >E Wv  or || <cE vW , then any system having a small component will remain 
always small and its radiation will be either purely longitudinal electric or longitudinal 
scalar. 
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6. Transformation Properties of Electroscalar Fields 

From the system of Equations (1) and (5) it follows that longitudinal electroscalar 
waves are responsible for the transport of Coulomb field. In point of fact, the system of 
Equation (5) contains an equation for electrostatics ||div 4πρ= −E  has a solution in 
the form of longitudinal waves, the time-dependant heterogeneous density of electric 
charge being the source of these waves. From the definition of three-dimensional fields 

||E  and W  it follows that they are covariant components of the λ -gradient four- 
vector: 

( )||
1 , ,i i iZ W
c t

λλ λ∂ = ∂ = ∇ = − ∂ 
E                      (24) 

Latin indexes runs from 1 to 4; ( )1 ,i ic tλ∂ = ∂ ∂ ∇  are the components of a four- 
gradient, and i∇  are the components of a three-gradient. Now we introduce the 
antisymmetric double tensor in four-dimensional notation: 

( ).ik i k k iZ Z u Z u= −                           (25) 

where iu  and ku  is the 4-vector of velocity. In the three-dimensional notation the 
components of this tensor acquire the following form: 

|| ||

2 2 2 2
, .i k k i

ik ki

vW cE v W cE

c v c v

+ − −
= =

− −
                     (26) 

Under Lorenz transformations, components of the four-vector µ  are transformed 
according to the law:  

,ν
µ µ ν= Λ                                (27) 

where ν
µΛ  is the matrix of Lorenz transformations ν

µΛ :  

( )
0

0 0 00
0 0 22

2

1 , , 1 ,
1

k
k k i

i i i i
VVV

c VV
c

δΛ
Λ = Λ = Λ = + Λ −

−

          (28) 

while iV  are the components of three-velocity of relative motion of reference frames. 
So, we obtain: 

( )0 02

2

1 1

1
k kV

cV
c

 ′ = + 
 

−

                       (29) 

( ) ( )
2

02 22

2

1 ,
1

i i
i i k k k k

V V VV V Z
cV VV

c

 
′ = − + + 

 −

     

or in the three-dimensional notation  

( )||2

2

1 1

1
W W

cV
c

 ′ = − 
 

−

VE                     (30) 
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( ) ( )
2

|| || || ||2 22

2

1 .
1

V W
cV VV

c

 
′ = − + − 

 −

V VE E VE VE  

From the definition of the Maxwell electric field:  
1 ,
c t

φ ∂
= −∇ −

∂
AE  

where φ  and iA  are the components of electromagnetic four-vector potential, it 
follows that the field contains both the potential and vortex parts, however, in the 
Coulomb gauge 0,div 0φ = =A , the Maxwell electric field becomes a vortex one : 

1 .i
i c t

⊥
⊥

∂
= −

∂
AE  

Note that the Maxwell field E  can be brought to the vortex type in any inertial 
reference frame, albeit the Coulomb gauge alone is not Lorenz-invariant [11]. Thus, it 
is possible to write for the transformation of three-dimensional fields ⊥E  and H  the 
following: 

( ) ( ) [ ]

( ) ( ) [ ]

2 22

2

2 22

2

1 1 ,
1

1 1 .
1

cV VV
c

V
cV VV

c

⊥ ⊥ ⊥ ⊥

⊥

 ′ = + − + × 
 

−

 ′ = + − − × 
 

−

V VE VE E VE V H

VH VH H VH V E
       (31) 

7. The Force and the Work of the Electroscalar Field 

We will calculate the generalized momentum for the relativistic Lagrangian (10) of the 
electroscalar field: 

v
∂

=
∂
LP  

2
0

0 2

2

1
.

1

e
m cm v

v
c

λ
+

=

−

P  

The equation of Euler for the in electroscalar field is: 
d .
d
P
t r

∂
=
∂
L  

The time derivative of the momentum vector is the force of the electroscalar field 
acting on a particle: 

2 2
0 0

3 32 2 2
2 22 22 2

2 42 2 2
2 2

d d d d d d ,
d d d d d d

1 1 11 1

m m vP v e v v ev v ev
t t t t t tv v vv vc cc cc c cc c

λ λ λ
= + + + +

   − − −− −   
   

 

where the full derivative of the four-dimensional quantity λ  is: 
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||
d = .
d

v v c
t t
λ λ λ∂

+ ∇ = −
∂

E W  

While the velocity varies in its magnitude, the force acting on a particle is directed 
along the velocity. Further, after simplifications we get: 

( )
20 2

||2 22 2
2

2 2

d d .
d d

1 1

emP c v evc v c
t tc vv vc

c c

λ
+  

= + − − − −

E W          (32) 

The right side of the equation has the appearance: 
2

21 ,ve
r r c

λ∂ ∂
= − −

∂ ∂
L  

||.r
λ∂
=

∂
E  

It should be pointed out that the derivative of the Lagrangian with respect to the 
radius is taken at the constant velocity. 

Next, we define the force acting on the particle motion in the electroscalar field: 

( )
2 2 20 2

|| ||2 22 2
2

2 2

d 1 .
d

1 1

em v c v e vc v c e
t v cv vc

c c

λ
λ

 
 + −  = − − − −
 

− − 
 

E W E     (33) 

Thus, the electroscalar force is longitudinal, and its value is 
2 2

2
c v

v
−  times larger 

with regard to the acceleration. The mass of a particle in the electroscalar field varies by 

the value 2
e
c
λ . The mass of a particle in the field will be denoted as 0 2 .e

cλ
λ

= +m m  

By transforming this expression, we derive: 

2

||22

2

d 1 .
d

1

m v v v e e
t ccv

c

λ  = − − 
 

−

W E                   (34) 

The magnitude of the force 
2

2

d
d

1

m v
tv

c

λ =

−

F  is called the force of the electroscallar 

field. Finally, we obtain: 

2

||21 .v ve e
cc

 = − − − 
 

F E W  

If || 0=E , then the force F  is parallel to the velocity. When 0=W , the force F  
is directed against the velocity. This is how relativistic transport of the electric field 
takes place. In the relativistic case, the field moves along the velocity vector, with the 
electric scalar force W  being directed along the velocity and the electric force, in the 
opposite direction. It may be seen from the expression for the force that such a 
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configuration of fields ||E  and W  is preserved at any velocity of motion, and the  
E
W

 ratio may be between zero and one. As a next step we will determine the energy  

of a particle in the electromagnetic and electroscalar fields. According to the definition 
of energy: .pv= −L  The energy of the electromagnetic field is then: 

2

2

2

,
1

mc
v
c

⊥ =

−

  

and the particle energy depends on the velocity. The energy of a particle in the 
electroscalar field equals: 

2

2

2

.
1

mc e
v
c

λ+
=

−


  

The electroscalar energy enters into the full energy with a negative value relative to 
the mechanical energy, while variation of the particle energy with the time is the work 
done on the particle. In the case of an electromagnetic field, this work is equal to the 
product of the particle velocity and the force exerted on the particle by the transverse 
electromagnetic field: 

d d .
d d

Pv e v
t t
⊥

⊥= =


  

In an electroscalar field this work is the product of the particle velocity and the force 
acting in the velocity direction: 

2

||2
||

d
1 1 .

d
v v ee

t c ec
 

= − − −  
 



Wv E
E


 

Figure 3 illustrates the work on the charged massive particle in electroscalar field for 
various velocity of particle. Unit of the work is evcm/sec. The energy is  

( ) 71 mev black 4.8 10 egr−= × , ( ) 65 mev red 2.4 10 erg−= × . 
 

 
Figure 3. The work on charged particle. 
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From this expression it is evident that in the cases when the field e vW  does not 
exceed ||e cE  at any velocity there is a possibility of the particles transition into 
compound states.This region is the region where the atomic systems and subsequent 
elements of structure of mater. The remarkable meaning of this expression for the work 
done by the electroscalar field on a particle is that the negative energy acquired by the 
particle changes the electrical status of a charged particle, charged atom or bioparticle. 
In this event, at lower energies than the energy characteristic for the superposition of 
particles, an increase the radiation of *electroscalar photons* takes place, as well as 
many acts of particle interactions, attraction and crystallization processes etc. in a 
medium. Thus, a change in the electric status of the particle provides conditions for a 
transition of the particle into compound states. For a medium, changes in the particle 
energy are conditioned by the interaction and attraction to the surrounding objects up 
to the energy that is characteristic for the longitudinal superposition. Further attraction 
leads to crystallization in the medium and to fractalization of the structure as well as to 
the growing repulsion from the object. 

8. The Electron in an Electroscalar Field 

Today, we do not yet comprehend the nature and origins of how various manifestations 
of the electromagnetic, electroscalar, electroweak types of interaction are combined in 
one charged particle, for instance, in an electron. The continuity equation of the 
electroscalar field comprises a displacement charge, which leads to the necessity of 
taking into account both the field produced by these charges and the field of the 
charges themselves. Thus, an electron contains a “basic” charge and a displacement 
charge, which provides enlargement of its size due to the Coulomb law. Now we will try 
to find the energy of an electron in the electroscalar field. The second equation of the 
electroscalar field may be written in another form if we employ here the Gauss 
theorem: 

|| ||
1d 4π .

S

S
c t

ρ ∂
= − −

∂∫
WE  

The flux of the longitudinal electric field through a spherical surface with the radius 
R equals: 

2
|| || 0 0

14π 4π , .R
c t

ρ ρ ρ ∂
= − − =

∂
WE  

We equate the sides and obtain the law of electric intensity (Coulomb law) of the 
electroscalar field: 

|| || 0 2
1 1

4 πc R
ρ ρ = − − 

 
E  

Thus, the electric field is conditioned both by the charge e and charge displacement 

0ρ ; and the radius of the sphere contains two terms, 1r  and 2r . 
Further, we define the energy of a system of charges proceeding from the expression 

for the electroscalar field energy density: 
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2
||

1 d .
8π V

V= ∫U E  

Since || λ= ∇E , the energy of the field of charges is: 

( ) ( ) ( )|| || ||
1 1 1d div d div d .

8π 8π 8πV V V

V V Vλ λ λ= ∇ = −∫ ∫ ∫U E E E  

Here, the first integral by the Gauss theorem equals the integral taken through the 
surface that limits the volume, and the field equals zero at infinity. The second equation 
of the electroscalar field is substituted into the second integral, and the energy 
expression for the electroscalar field of a system of charges assumes the form: 

|| 0
1 1 .
2 4πc
λ ρ ρ = + 
 

U  

If this formula is used for one charge, we can obtain that for || eρ =  the potential 
self-energy of the charge (for an electron) is: 

0
1 1 .
2 4π

e
c

λ ρ = + 
 

U  

Thus, an electron contains a “basic” charge and a displacement charge, which 
provides enlargement of its size due to the Coulomb law. During the electron’s motion, 
the work done by the electroscalar field on the electron discloses the physical meaning 
of its negative energy and losing its electric status. So, a change in the electric status of 
the electron depends on the electroscalar energy and provides conditions for its 
transition into a compound state. If there is no appropriate object to get into a 
compound state with, the electron can continue to lower its electric status and can be 
practically neutral with a small mass. 

9. Conclusions 

The following conclusions can be made from this study: 
1) A remarkable characteristic of the electrodynamics of electroscalar and electro- 

magnetic fields is that one and the same charged particle may exhibit fairly different 
properties. 

2) The continuity equation of the electroscalar field comprises a displacement charge 
(by analogy with the field created by Maxwell’s displacement current), which leads to 
the necessity of taking into account both the field produced by these charges and the 
field of the charges themselves. 

3) The time-dependent density of the electric charges accumulated along a 
longitudinal line enhances the longitudinal superposition of the charges. With the 
growth of the number of charges along the longitudinal line, the electroscalar field 
strength increases as well. On the contrary, the electromagnetic field generated by the 
field of charges incurs energy losses in the course of propagation and has no sources of 
replenishment. 

4) In solid states the electroscalar radiation loses its energy in the cavities and due to 
that produces a corresponding plasmon electroscalar signal. The ability to detect the 
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amplitude and frequency of this radiation would allow to observe the internal structure 
of the object. 

5) The work done by the electroscalar field on a charged particle discloses the 
physical meaning of the negative energy of charged particles, shows the meaning of 
motion velocity for any charged particle and its ultimate value, as well as how the 
particle is transferred into the compound state by way of changing its electrical status. 
It should be noted that in the absence of an appropriate object to get into a compound 
state with, the particle can continue to lower it electrical status. 

6) Decreasing the electrical status of the particle causes the particle to couple with 
any other body and make a transition into a compound state during the contact with an 
object. This state is the state of PHYSICAL VACUUM. 

Thus, there is a possibility that the changes entailed by this new electroscalar 
dynamics are of profound nature and do not come into contradiction with those 
properties of the electromagnetic dynamics which make it convincing and, as a result, 
these properties can be included into the electrodynamics as a second dynamics of 
charge motion. The observation of neutrinos from the pp-cycle sheds light [12] on this 
fundamental problem. The electron, in particular, may be responsible for the high 
stability of atomic and molecular structures owing to the possible process of electro- 
magnetic excitation of two electrons in an atom or molecule that exchange scalar 
photons, which leads to a strong coupling with the electron of the atom or molecule. 
Such processes may govern the confinement process in the atomic and molecular 
structures. 

10. Manifestations of the Electroscalar Properties in Nature 

The properties and potentialities of the electroscalar field find their ways of realization 
in nature and in the live bio-organism of this field which represents a new type of 
energy. Organisms and fishes with electrosensitivity and a capability to register the 
electroscalar radiation can be observed in nature [13]. Geophysical studies point to 
possible sources of this field at the Sun [14]. In biological investigations a great 
attention is paid to the organizing role of electric phenomena as well as to the 
possibility of controlling the growth and meaningfulness of the energy paradigm. 
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