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Abstract 
We have derived exact axisymmetric solutions of the two-dimensional Lane-Emden 
equations with rotation. These solutions are intrinsically favored by the differential 
equations regardless of any adopted boundary conditions and the physical solutions 
of the Cauchy problem are bound to oscillate about and remain close to these intrin-
sic solutions. The isothermal solutions are described by power-law density profiles in 
the radial direction, whereas the polytropic solutions are described by radial density 
profiles that are powers of the zeroth-order Bessel function of the first kind. Both 
families of solutions decay exponentially in the vertical direction and both result in 
increasing or nearly flat radial rotation curves. The results are applicable to gaseous 
spiral-galaxy disks that exhibit flat rotation curves and to the early stages of protop-
lanetary disk formation before the central star is formed.  
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1. Introduction 

We use a new method to solve analytically the axisymmetric Lane-Emden equations [1] 
[2] with rotation in two dimensions. The method is an extension of the one-dimensional 
algorithm that we applied to ordinary second-order differential equations of mathe-
matical physics [3] [4] [5] and produces separable equations in two dimensions [6]. The 
solutions are intrinsically favored by the differential equations themselves and dictate 
that the physical solutions of the Cauchy problem should oscillate about and remain 
close to these preferred solutions [4] [5]. 

The two-dimensional analytic solutions show that both the densities and the rotation 
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speeds decay exponentially with height from the symmetry plane 0z =  while the 
radial rotation curves are increasing or nearly flat at all heights. Thus, the Newtonian 
rotation profiles so derived are similar to the “flat” rotation curves observed in gaseous 
spiral galaxies [7] without the need of invoking dark matter [8]-[22] or the various 
modifications of the Newtonian dynamics [23]-[30]. 

In what follows, we derive the exact solutions of the 2-D Lane-Emden equations with 
rotation in the isothermal case (Section 2) and in the general polytropic case (Section 
3), and we discuss the astrophysical implications of our results (Section 4). 

2. Isothermal Self-Gravitating Newtonian Gaseous Disks 

We use the scaling constants oR  and oρ  to normalize the cylindrical coordinates (R, 
Z) and the density profiles ( ),R Zρ , respectively. We thus define the dimensionless 
radius ox R R≡ , height oz Z R≡ , and density ( ) ( ), , ox z R Zτ ρ ρ≡ . Velocities 
( ),V R Z  are also normalized consistently by the constant 4πo o oV R Gρ= , where G 

is the Newtonian gravitational constant, in which case we define the dimensionless ro-
tation velocity ( ) ( ), , ov x z V R Z V≡ . The same scaling also applies to the sound speed 

oC  of the gas which in this section is a constant, i.e., the dimensionless sound speed is 

o o oc C V≡ . 
The 2-D axisymmetric isothermal Lane-Emden equation with rotation [1] [2] [5] can 

then be written in dimensionless form as  

( )
2

2 2 2 1ln ,o x z
vc

x x
τ τ ∂ ∇ +∇ + =  ∂

                     (1) 

where τ  and v are functions of x and z, and  

2 1 ,x x
x x x
∂ ∂

∇ ≡
∂ ∂

                           (2) 

and  
2

2
2 .z z

∂
∇ ≡

∂
                             (3) 

This equation describes the axisymmetric equilibrium of a rotating, self-gravitating, 
gaseous disk in which the gas obeys the isothermal equation of state  
( ) ( )2,  ,op x z c x zτ= , where p is the dimensionless pressure of the gas. 
If we equate the last two terms of Equation (1), viz.  

( ) ( )2 ,1, ,
v x z

x z
x x

τ
∂

=
∂

                        (4) 

then this is an intrinsic solution [4] [5] provided that the rest of the equation also va-
nishes:  

( ) ( )2 2 ln , 0.x z x zτ∇ +∇ =                         (5) 

Equations ((4) and (5)) form a system in which ( ),v x z  is determined from ( ),x zτ  
which, in turn, is determined by solving the Laplace Equation (5). 

We now introduce the following scaling relations in the z-direction:  
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( ) ( ) ( )
( ) ( ) ( )

,
,

,

x z y x f z

v x z s x f z

τ =


=
                       (6) 

where the three new functions ( )y x , ( )s x , and ( )f z  are to be determined self- 
consistently from Equations (4) and (5). Combining Equations (4) and (6), we find that 
at every height z, the radial variation of the rotation velocity ( )s x  is determined from 
an integral of the radial density function ( )y x  using the equation  

( ) ( )2d1 .
d

s x
y x

x x
=                           (7) 

This is precisely the equation that was solved by [5] on the symmetry plane 0z =  of 
the disk. We proceed now to solve for the z-dependence in Equations ((1) to (6)). Subs-
tituting the first of Equations (6) into Equation (5), we find that  

( ) ( )2 2ln ln 0.x zy x f z∇ +∇ =                       (8) 

The two terms are independent, thus they must be constant and the constants should 
combine to produce zero. We can then write  

( ) ( )2 2 2ln ln ,x zy x f z µ∇ = −∇ =                      (9) 

where the separation constant 2µ  is taken to be positive (or zero) to ensure that 
( )f z  is a decreasing function of z . Integrating these two equations separately, we 

find for ( )0 1f =  that  

( ) ( )2 21exp 0 ,
2

f z z c z cµ = − + < 
 

                 (10) 

where the integration constant c is taken to be negative to guarantee monotonically de-
creasing density profiles away from the symmetry plane 0z = ; and that  

( ) ( )1 2 21exp 0, 1 ,
4

ky x Ax x A kµ−  = + > < 
 

               (11) 

where , 1A k −  are the integration constants. Because of the exponential term, the 
function ( )y x  is asymptotically increasing with x, and this leads to radially increasing 
density profiles. These solutions are unphysical and we are forced to choose  

0,µ =                               (12) 

in which case the solutions become  

( ) ( )exp ,f z cz= −                          (13) 

and  

( ) ( )1 0, 1 .ky x Ax A k−= > <                      (14) 

Equation (14) was derived by [5] for 0z = , whereas in this treatment, equation (13) 
describes the solutions for heights away from the equatorial plane. The solutions in the 
entire ( ,x z ) plane take the form  

( ) ( )

( ) ( )
( )

1, exp
0, 1 ,1, exp

2

kx z Ax cz
A k

v x z s x cz

τ − = −
 > <  = −  

 

               (15) 
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where ( )s x  is determined from Equations ((7) and (14)) as was done in [5], where it 
was shown that all rotation curves ( )s x  are slowly increasing or flat with radius x. 
This feature of the rotation profiles remains valid away from 0z =  despite the expo-
nential decay of the density ( ),x zτ  with z . 

Figure 1 shows the density profile ( )log ,x zτ  of the isothermal Lane-Emden equa-
tion for 1k = −  and 10c = −  (Equation (15)). The choice 10c = −  causes a rapid 
decline of the densities with height and gives the model the appearance of a disk-like 
structure that is centrally condensed because of the steep 21 x  radial dependence of 
the density. The rotation curve of this solution was shown in [5] where ( )2s x  in-
creases logarithmically with radius for 1x ≥ . 

3. Polytropic Self-Gravitating Newtonian Gaseous Disks  

The 2-D axisymmetric polytropic Lane-Emden equation with rotation [1] [2] [5] can be 
written in dimensionless form as  

( )
2

2 2 2 1 1 ,n
o x z

vnc
x x

τ τ ∂ ∇ +∇ + =  ∂
                   (16) 

where 0n >  is the polytropic index and the dimensionless constant sound speed oc  
was defined for oρ ρ= . (In general, the square of the sound speed ( )2 , d dc x z p τ≡  
varies as 1 nτ  across the medium, where, again, ( ),p x z  is the dimensionless pressure 
of the gas.) This equation describes the axisymmetric equilibrium of a rotating, self- 
gravitating, gaseous disk in which the gas obeys a polytropic equation of state of the 
form 1 1 np τ +∝ . 

We repeat the procedure outlined in Section 2 in order to obtain the intrinsic solu-
tion of Equation (16): If we equate the last two terms of Equation (16), viz.  

( ) ( )2 ,1, ,
v x z

x z
x x

τ
∂

=
∂

                       (17) 

then this is an intrinsic solution [4] [5] provided that the rest of the equation also va-
nishes:  

( ) ( )2 2 1 , 0.n
x z x zτ∇ +∇ =                        (18) 

 

 
Figure 1. Density solution ( )log , 0x zτ ≥  of the isothermal Lane-Emden equation for 1k = −  

and 10c = −  (Equation (15)). Ten contours are plotted with the colors in the red part of the 
spectrum representing higher densities. The aspect ratio of the plot is set to : 5 :1x z = . 
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Equations (17) and (18) form a system in which ( ),v x z  is determined from 
( ),x zτ  which, in turn, is determined by solving the Laplace Equation (18). 
We now introduce the scaling relations (6) in the z-direction, where the three func-

tions ( )y x , ( )s x , and ( )f z  are to be determined self-consistently from Equations 
((17) and (18)). Combining Equations ((17) and (6)), we find that at every height z, the 
radial variation of the rotation velocity ( )s x  is determined from an integral of the 
radial density function ( )y x  using the equation  

( ) ( )2d1 ,
d

s x
y x

x x
=                          (19) 

as was also found in the isothermal case of Section 2. 
Substituting the first of Equations (6) into Equation (18) and diving all terms by 

( )1 nyf , we find that  

( ) ( )1 2 1 1 2 1 0.n n n n
x zy y x f f z− −∇ + ∇ =                   (20) 

The two terms are independent, thus they must be constant and the constants should 
combine to produce zero. We can then write  

( ) ( )1 2 1 1 2 1 2 ,n n n n
x zy y x f f z µ− −∇ = − ∇ = −                 (21) 

where the separation constant 2µ−  is taken to be negative to ensure that ( )y x  is 
not a monotonically increasing function of x and is not singular at 0x = . Such solu-
tions (the zeroth-order modified Bessel functions of the first kind ( )0I xµ  described 
in [31]) are obtained for positive separation constants, whereas the case 0µ =  pro-
duces the singular solutions found in [5]. Integrating the two Equations (21) separately, 
we find for ( )0 1f =  that  

( ) ( ) ( )exp 0 ,f z n zµ µ= − >                     (22) 

where the particular solution with the minus sign was chosen so that ( )f z  decreases 
with z ; and that  

( ) ( ) ( )0 0 ,
n

y x A J x Aµ= >                       (23) 

where A is the integration constant and the Bessel function of the first kind was chosen 
because it does not diverge at 0x = . These solutions are monotonically decreasing 
with x and terminate at the first zero of the Bessel function ( )0J xµ , viz. [12] 

1
2.4048 ,x
µ

=                            (24) 

except in cases of even polytropic indices n in which they produce rings touching one 
another at consecutive zeroes of ( )0J xµ . 

The solutions in the entire ( ,x z ) plane take the form  

( ) ( ) ( )

( ) ( )
( )

0, exp
, , 0 ,1, exp

2

n
x z A J x n z

A n
v x z s x n z

τ µ µ
µ

µ

 = −  
>  = −  

 

            (25) 

where ( )s x  is determined from Equations (19) and (23), viz.  
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( ) ( )00
d ,

x n
s x A x J x xµ=   ∫                      (26) 

where ( )0 0s = . The integral in Equation (26) can be written analytically in terms of 
the Bessel functions of the first kind ( )0J xµ  and ( )1J xµ  for some integer values of 
n as follows [31] [32]:  

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

00

1
1 1

2 2 2
0 1

1 2 3 3
0 1 1 1 1

d

, for 1,
1 , for 2,
2

2 4 d , for 3,
3 3

x n
x J x x

xJ x x x n

x J x J x n

xxJ x J x J x J x x x x n

µ

µ µ

µ µ

µ µ µ µ µ

−

−

  


 ≤ =

  = + =  

  + + ≤ =   

∫

∫

 (27) 

where 1x  is given by Equation (24). 
Figure 2 and Figure 3 show the density and rotation profiles, respectively, of the 

2n =  Lane-Emden equation for 0.1µ =  (Equation (25)). These profiles are repre-
sentative of other solutions as well with 0.1µ < , whereas for even values of n, larger  

 

 
Figure 2. Density solution ( )log , 0x zτ ≥  of the 2n =  polytropic Lane-Emden equation for 

0.1µ =  (Equation (25)). Eleven contours are plotted with the colors in the red part of the spec-
trum representing higher densities. The aspect ratio of the plot is set to : 5 :1x z = . 

 

 
Figure 3. Rotation profile ( ), 0v x z ≥  of the 2n =  polytropic Lane-Emden equation for 

0.1µ =  (Equation (25)). Eleven contours are plotted with the colors in the red part of the spec-
trum representing higher rotation speeds. The aspect ratio of the plot is set to : 5 :1x z = . 
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Figure 4. Ring-like density solution ( )log , 0x zτ ≥  of the 2n =  polytropic Lane-Emden equa-

tion for 1µ =  (Equation (25)). Ten contours are plotted with the colors in the red part of the 
spectrum representing higher densities. The aspect ratio of the plot is set to : 5 :1x z = . 

 

 
Figure 5. Rotation profile ( ), 0v x z ≥  of the 2n =  polytropic Lane-Emden equation for 1µ =  

(Equation (25)). Eleven contours are plotted with the colors in the red part of the spectrum 
representing higher rotation speeds. The aspect ratio of the plot is set to : 5 :1x z = . 

 
values of µ  produce differentially rotating ring-like structures in which the rings 
touch one another at the zeroes of the Bessel function ( )0J xµ . An example of such a 
ring solution with 2n =  and 1µ =  and its rotation profile are shown in Figure 4 
and Figure 5. 

In the inner region of the rotation profile of Figure 3, the contours are nearly vertical 
as expected from measurements of the rotation profile of the Milky Way [33]. In the 
outer region where the rotation speeds are larger, the contours are however tilted and 
the tilt becomes more pronounced for larger values of µ . In this region, nearly vertical 
contours can, however, be produced for smaller values of 0.1µ < , so it does not appear 
to be difficult to produce a Newtonian rotation profile such as that observed in our Ga-
laxy for heights 100z ≤  pc [33]. An example of such a rotation profile with nearly 
vertical contours at all radii is shown in Figure 6 for 2n =  and 0.01µ = . 

Figure 7 shows the radial rotation curve ( )s x  for 0.1µ =  and 1A = , and for the 
cases 1,2,n =  and 3 (Equations ((26) and (27))). The 1n =  and 3n =  curves ter-
minate at the first zero of the Bessel function 1x  (Equation (24)). These curves rise in 
the inner region and then they become asymptotically flat. The flat segments can be ex-
tended farther out in radius if values of 0.1µ <  are used. In contrast, the 2n =  curve  
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Figure 6. Rotation profile ( ), 0v x z ≥  of the 2n =  polytropic Lane-Emden equation for 

0.01µ =  (Equation (25)). Eleven contours are plotted with the colors in the red part of the spec-
trum representing higher rotation speeds. The aspect ratio of the plot is set to : 5 :1x z = . Com-
pared to Figure 3, the smaller value of µ  causes the contours here to become nearly vertical at 
all radii. 

 

 
Figure 7. Polytropic rotation curve ( )s x  as a function of radius x for 1,2,n =  and 3, 

0.1µ = , and 1A =  (Equations ((26) and (27))). The zeroes of the Bessel function ( )0J xµ  are 

shown by dashed lines. The first zero 1x  is given by Equation (24), 2 5.5201x µ= , and 

3 8.6537x µ= . The 1n =  and 3n =  solutions terminate at the first zero 1x  where the den-
sity goes to zero. 

 
continues to increase with radius as it passes through a sequence of inflection points. 
Each jump in the profile represents the rotation curve inside the next outward ring. 

4. Discussion 

In this work, we derived exact axisymmetric solutions of the 2-D Lane-Emden equations 
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with rotation. In the isothermal case, the solutions show a power-law dependence on 
the radius x and an exponential decline with height z . In the general polytropic case 
with index 0n > , the radial solutions depend on powers of the zeroth-order Bessel 
function of the first kind ( )0

nJ  and they also decline with z . Both families of solu-
tions are intrinsic to the differential equations themselves; any solutions that obey 
physical boundary conditions will have to remain close to these solutions and they will 
be forced to oscillate about them if the boundary conditions will be different than the 
conditions that produced the intrinsic solutions [4] [5]. 

The gaseous disk equilibria produced in Sections 2 and 3 are Newtonian in nature 
and they all have rising or asymptotically flat radial rotation curves. Such rotation pro-
files are demanded by the analytic solutions for self-consistency. The resulting Newto-
nian models argue against the need to assume the existence of dark matter in spiral ga-
laxies in order to produce the observed flat rotation curves and against the need to 
modify the Newtonian dynamics to achieve the same effect (references were given in 
Section 1). The same models may also prove useful in studies of the rotation curves in 
protoplanetary disks [34] [35] [36] at their very early stages of evolution and before the 
central star is formed. 

It is important to note that the flat and rising rotation profiles were not prescribed as 
input to the Lane-Emden equations; instead, they were the result of the intrinsic equili-
brium solutions. Similar types of rotation profiles have been previously found in mod-
els of Newtonian gaseous disks [37] [38] [39] [40] but they were dismissed because they 
were thought to be peculiar in nature. We now find that these models were giving us 
clues as to the true behavior of the gas in self-gravitating astrophysical disks. 

The main obstacle in understanding the dynamical behavior of gas in spiral galaxies 
is an old argument [7] that relies solely on particle dynamics—that an orbiting particle 
at radius r enclosing mass ( )M r  must experience a rotation speed of ( )v GM r r=  
in equilibrium, thus only a mass ( )M r r∝  can produce a flat rotation curve. This 
argument is invalid for gaseous disks where the enthalpy of the gas controls the dy-
namics absolutely [5]. The intrinsic solutions derived here and in [5] show that the spe-
cific enthaply of the gas ( ), dh x z p τ≡ ∫  arranges the local density profile ( ),x zτ  in 
equilibrium and, subsequently, it is this density that sources and manipulates both the 
self-gravitational potential (via Poisson’s equation) and the rotational potential (via 
Equation (17)). Thus, naive arguments that rely on massless particles reacting to a pre-
scribed gravitational potential simply do not describe the dynamics of the gas which is 
entirely determined by the local distribution of the thermodynamical potential ( ),h x z .  
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