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Abstract 
We make a number of observations on Conway surreal number theory which may be 
useful, for further developments, in both mathematics and theoretical physics. In 
particular, we argue that the concepts of surreal numbers and matroids can be linked. 
Moreover, we established a relation between the Gonshor approach on surreal num-
bers and tensors. We also comment about the possibility to connect surreal numbers 
with supersymmetry. In addition, we comment about possible relation between sur-
real numbers and fractal theory. Finally, we argue that the surreal structure may pro-
vide a different mathematical tool in the understanding of singularities in both high 
energy physics and gravitation. 
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1. Introduction 

Surreal numbers are a fascinating subject in mathematics. Such numbers were invented, 
or discovered, by the mathematician John Horton Conway in the 70’s [1] [2]. Roughly 
speaking, the key Conways idea is to consider a surreal number in terms of previously 
created dual sets LX  and RX . Here, L stands for left and R for right. One of the in-
teresting things is that such numbers contain many well known ordered fields, includ-
ing integer numbers, the dyadic rationals, the real numbers and hyperreals, among 
other numerical structures. Moreover, the structure of surreal numbers leads to a sys-
tem where we can consider the concept of infinite number as naturally and consistently 
as any “ordinary” numbers. 

It turns out that in contrast to the inductive Conway definition of surreal numbers, 
Gonshor [3] proposed in 1986 another definition which is based on a sequence of dual 
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pluses and minuses { },+ − . Gonshor itself proves that his definition of surreal numbers 
is equivalent to the Conway definition. 

In this article, we shall make a number of remarks on surreal number theory which 
we believe can be useful in both scenarios: mathematics and physics. In particular, we 
shall established a connection between surreal numbers and tensors. Secondly, we shall 
show that surreal numbers can be linked to matroids. Moreover, we shall argue that 
surreal numbers may be connected with spin structures and therefore may provide an 
interesting development in supersymmetry. We also comment about the possibility that 
surreal numbers are connected with fractal theory. Finally, we also mention that con-
cepts of infinitely small and infinitely large in surreal numbers may provide a possible 
solution for singularities in both high energy physics and gravitation. 

Technically, this work is organized as follows. In Section 2, we briefly review the 
Conway definition of surreal numbers. In Section 3, we also briefly review the Gonshor 
definition of a surreal number. In Section 4, we established a connection between sur-
real numbers and tensors. In Section 5, we comment about the possibility that surreal 
numbers and matroids are related. Moreover, in Section 6 we mention number of 
possible applications of the surreal number theory, division algebras, supersymmetry, 
black holes and cosmology. 

2. Conway Formalism 

Let us write a surreal number by 

{ }|L Rx X X=                            (1) 

and call LX  and RX  the left and right sets of x, respectively. Conway develops the 
surreal numbers structure   from two axioms: 

Axiom 1. Every surreal number corresponds to two sets LX  and RX  of previous-
ly created numbers, such that no member of the left set L Lx X∈  is greater or equal to 
any member Rx  of the right set RX . 

Let us denote by the symbol   the notion of no greater or equal to. So the axiom 
establishes that if x is a surreal number then for each L Lx X∈  and R Rx X∈  one has 

L Rx x . This is denoted by L RX X . 
Axiom 2. One number { }|L Rx X X=  is less than or equal to another number 
{ }|L Ry Y Y=  if and only the two conditions LX y  and Rx Y  are satisfied. 

This can be simplified by saying that x y≤  if and only if LX y  and Rx Y . 
Observe that Conway definition relies in an inductive method; before a surreal num-

ber x is introduced one needs to know the two sets LX  and RX  of surreal numbers. 
Thus, since each surreal number x corresponds to two sets LX  and RX  of previous 
numbers then one wonders what do one starts on the zeroth day or 0-day? If one de-
notes the empty set by ∅  then one defines the zero as 

{ }0 | .= ∅ ∅                             (2) 

Using this, one finds that in the first day or 1-day one gets the numbers 

{ } { }1 | 0 , 0 | 1.− = ∅ ∅ = +                      (3) 
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In the 2-day one has 

{ } { } { } { }1 12 |1 , 1 | 0 , 0 |1 , 1 | 2.
2 2

− = ∅ − = − = ∅ = +            (4) 

While in the 3-day one obtains 

{ } { } { } { }3 13 | 2 , 1 | 0 , 0 |1 , 2 2 | .
2 2

− = ∅ − = − = + = ∅           (5) 

The process continues as the following theorem establishes: 
Theorem 1. Suppose that the different numbers at the end of n-day are 

1 2 .mx x x< < <                           (6) 

Then the only new numbers that will be created on the ( )1n + -day are 

{ } { } { } { }1 1 2 1| , | , , | , | .m m mx x x x x x−∅ ∅                  (7) 

Furthermore, for positive numbers one has 

{ }| 1m mx x∅ = +                            (8) 

and 

{ } 1
1| .

2
m m

m m
x x

x x +
+

+
=                         (9) 

While defining  

{ }| ,R Lx X X− = − −                          (10) 

for negative numbers one gets 

{ } ( )| 1m mx x∅ = − +                         (11) 

and 

{ } ( )1
1| .

2
m m

m m

x x
x x +

+

+
− − = −                     (12) 

Thus, at the n-day one obtains 2 1n +  numbers all of which are of form 

 ,
2n

mx =                              (13) 

where m is an integer and n is a natural number, 0n > . Of course, the numbers (13) 
are dyadic rationals which are dense in the reals R. Let us recall this theorem: 

Theorem 2. The set of dyadic rationals is dense in the reals R. 
Proof: 
Assume that a b< , with a and b elements of the reals R. By Archimedean property 

exist n N∈  such that 
10 ,b a
n

< < −                            (14) 

which implies 

1 10 .
2n b a

n
< < < −

 
Thus, one has 
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1 2 2 .n nb a< −                            (15) 

As the distance between 2n b  and 2n a  is grater than 1, there is an integer m such 
that 

2 2n na m b< <                            (16) 

and therefore 

.
2n

ma b< <                             (17) 

So, the set of dyadic rationals are dense in R. 
The sum and product of surreal numbers are defined as 

{ }, | ,L L R Rx y X y x Y X y x Y+ = + + + +                  (18) 

and 

{ }, | , .L L L L R R R R L R L R R L R Lxy X y xY X Y X y xY X Y X y xY X Y X y xY X Y= + − + − + − + −  (19) 

The importance of (18) and (19) is that allow us to prove that the surreal number 
structure is algebraically a closed field. Moreover, through (18) and (19) it is also possi-
ble to show that the real numbers R are contained in the surreals   (see Ref. [1] for 
details). 

3. Gonshor Formalism 

In 1986, Gonshor [3] introduced a different but equivalent definition of surreal num-
bers. 

Definition 1. A surreal number is a function µ  from initial segment of the ordin-
als into the set { },+ − . 

For instance, if µ  is the function so that ( )1µ = + , ( )2µ = − , ( )3µ = − , 
( )4µ = +  then µ  is the surreal number ( )+ + − + . In the Gonshor approach the ex-

pressions (3)-(5) becomes: 1-day 

( ) ( )1 , 1,− = − + = +                         (20) 

in the 2-day 

( ) ( ) ( ) ( )1 12 , , , 2,
2 2

− = − − − = − + + − = + + + = +            (21) 

and 3-day 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3 13 , , ,
2 4 4

1 3 3, , , 3,
4 4 2

− = − − − − = − − + − = − + − − = − + +

+ − − = + + − + = + + + − = + + + + = +
         (22) 

respectively. Moreover, in Gonshor approach one finds the different numbers through 
the formula 

1 ,
2 2

q
i

i
i i

cb
n a +

=

+ +∑                          (23) 

where { }1, , , , ,qa b c c ∈ + −  and a b≠ . Furthermore, one has + = +  and − = − . 
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As in the case of Conway definition through (23) one gets the dyadic rationals. Observe 
that the values in (20), (21) and (22) are in agreement with (23). Just for clarity, let us 
consider the additional example:  

( ) 1 1 1 1 272 .
2 4 8 16 16

+ + − + − + = − + − + =                 (24) 

By the defining the order x y<  if ( ) ( )x yα α< , where α  is the first place where 
x and y differ and the convention 0− < < + , it is possible to show that the Conway and 
Gonshor definitions of surreal numbers are equivalent (see Ref. [3] for details). 

4. Surreal Numbers and Tensors 

Let us introduce a p-tensor [4], 

1 2
,

p
tµ µ µ                              (25) 

where the indices 1 2, , , pµ µ µ  run from 1 to 2. Of course p indicates the rank of 

1 2 p
tµ µ µ . In tensorial analysis, (25) is a familiar object. One arrives to a link with surreal 
numbers by making the identification 1→ +  and 2 → − . For instance, the tensor 

1121t  in the Gonshor notation becomes 

( )1121 .t t++−+→ → + + − +                       (26) 

In terms of 
1 2 p

tµ µ µ , the expressions (18), (19) and (20) read 

2 11 , 1,t t− = = +                          (27) 

in the 2-day 

22 21 12 11
1 12 , , , 2,
2 2

t t t t− = − = = =                   (28) 

and 3-day 

111 112 121 122

211 212 221 222

3 3 13 , , , ,
2 4 4

1 3 3, , , 3,
4 4 2

t t t t

t t t t

− = − = − = − =

= + = + = + = +
               (29) 

respectively. 
Formally, one note that there is a duality between positive and negative labels in sur-

real numbers. In fact, one can prove that this is general for any n-day. This could be an-
ticipated because according to Conway definition (1) a surreal number can be written 
in terms of the dual pair left and right sets LX  and RX . Further, the concept of dual-
ity it is even clearer in the Gonshor definition of surreal numbers since in such a case 
one has a functions µ  with codominio in the dual set { },+ − . In terms of the tensor 

1 2 p
tµ µ µ  in (25) such a duality can be written in the form 

( ) 1 2

1 2 1 1 2 2
1 0,p

p p p

qt tν ν ν
µ µ µ µ ν µ ν µ νε ε ε+ − =



                 (30) 

where 

0 1
.

1 0µνε
 

=  − 
                          (31) 
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It is interesting to observe that the 2-day corresponds to 

1 2

1 0 0 112 .
0 1 1 02

tµ µ
   

= +   − −   
                    (32) 

If one introduces the notation 

1 0
,

0 1µνη
 

=  − 
                          (33) 

one discovers that (32) can be written as 

12 .
2

tµν µν µνη ε= +                          (34) 

It is worth mentioning that, in general any 2 2× -matrix µνΩ  can be written as 

.x y r sµν µν µν µν µνδ ε η λΩ = + + +                    (35) 

Here, one has 
1 0
0 1µνδ
 

≡  
 

                           (36) 

and 
0 1

.
1 0µνλ
 

≡  
 

                           (37) 

The set of matrices (31), (33), (36) and (37) determine a basis for any 2 2× -matrix 
belonging to the set of 2 2× -matrices which we denote by ( )2,M R . 

It is interesting that by setting 0r =  and 0s =  in (4) one gets the complex struc-
ture zµν µνΩ → , namely 

.z x yµν µν µνδ ε= +                          (38) 

In fact, in the typical notation of a complex number (38) becomes z x iy= + . Ob-
serve also that when det 0Ω ≠  one obtains the group ( )2,GL R  from ( )2,M R . If 
one further requires that det 1Ω = , then one gets the elements of the subgroup 

( )2,SL R . It is worth mentioning that the fundamental matrices , ,µν µν µνδ η λ  and 

µνε  given in (31), (33), (36) and (37) not only form a basis for ( )2,M R  but also de-
termine a basis for the Clifford algebras ( )2,0C  and ( )1,1C . In fact, one has the 
isomorphisms ( ) ( ) ( )2, ~ 2,0 ~ 1,1M R C C . There exist a theorem that establishes that 
all the others higher dimensional algebras of any signature ( ),C a b  can be con-
structed from the building blocks ( )2,0C , ( )1,1C  and ( )0,2C  (see Ref. [5] and 
references therein). So a connection of these developments with surreal numbers seems 
to be a promising scenario. 

5. Surreal Numbers and Matroids 

For a definition of a non-oriented matroid see Ref. [6] and for oriented matroid see Ref. 
[7] (see also Refs. [8] [9] [10] [11] [12] and references therein). Here, we shall focus in 
some particular cases of oriented matroids. First, assume that µνχ  satisfies the 
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Grassmann-Plücker relation 

[ ] 0.µ ν αβχ χ =                            (39) 

Here, the bracket [ ]ναβ  means completely antisymmetric. In this case, the ground 
set of a 2-rank oriented matroid ( ),M E µνχ=  is  

{ }, , , ,E = 1 2 3 4                           (40) 

and the alternating map becomes 

{ }1,0,1 .µνχ → −                           (41) 

The µνχ  function can be identified with a 2-rank chirotope. The collection of bases 
for this oriented matroid is 

{ } { } { } { } { } { }{ }, , , , , , , , , , , ,= 1 2 1 3 1 4 2 3 2 4 3 4               (42) 

which can be obtained by just given values to the indices µ  and ν  in µνχ . Actual-
ly, the pair ( ),E   determines a 2-rank uniform non-oriented ordinary matroid. 

Let us consider the underlying ground bitset (from bit and set) [13] [14] 

{ }1,2=                              (43) 

and the pre-ground set 

( ) ( ) ( ) ( ){ }0 1,1 , 1, 2 , 2,1 , 2,2 .E =                     (44) 

One finds a relation between 0E  and E  by comparing (40) and (44). In fact, one 
has 

( ) ( )
( ) ( )
1,1 , 1,2 ,

2,1 , 2,2 .

↔ ↔

↔ ↔

1 2

3 4
                       (45) 

This can be understood considering that (45) is equivalence relation by making the 
identification of indices { },a b µ↔ , ..., etc. Observe that considering this identifica-
tions the family of bases (42) becomes 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }{
( ) ( ){ } ( ) ( ){ } ( ) ( ){ }}

0 1,1 , 1, 2 , 1,1 , 2,1 , 1,1 , 2,2 ,

1,2 , 2,1 , 1,2 , 2,2 , 2,1 , 2,2 .

=
            (46) 

It turns out that the chiritope µνχ  can be associated with a 2-qubit system. So the 
pair ( )0 0,E B  can be identified with a qubitoid (a combination of qubit and matroid). 

The procedure can be generalized to higher dimensions. For instance, consider the 
pre-ground set 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )}

0 1,1,1,1 , 1,1,1, 2 , 1,1, 2,1 , 1,1, 2,2 ,

1,2,1,1 , 1,2,1,2 , 1,2,2,1 , 1,2,2,2

2,1,1,1 , 2,1,1, 2 , 2,1, 2,1 , 2,1, 2, 2

2,2,1,1 , 2,2,1,2 , 2,2,2,1 , 2,2,2,2 .

E =

             (47) 

It is not difficult to see that by making the identifications 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

1,1,1,1 1,1,1,2 1,1,2,1
1,1,2,2 1,2,1,1 1,2,1,2
1,2,2,1 1,2,2,2 2,1,1,1
2,1,1,2 2,1,2,1 2,1,2,2
2,2,1,1 2,2,1,2 2,2,2,1
2,2,2,2 ,

↔ ↔ ↔
↔ ↔ ↔
↔ ↔ ↔
↔ ↔ ↔
↔ ↔ ↔
↔

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16

           (48) 

one obtains a relation between the pre-ground set 0E  given in (47) and the ground set  

{ }, , , , .E = 1 2 15 16                         (49) 

This can be again understood by considering that (49) is equivalent to make the 
identification of indices ( ), , ,a b c d µ↔ ,… etc. It turns out that considering these rela-

tions one finds that the collection of bases   contains 
16

120
2

 
= 

 
 two-element sub- 

set of the 16-element set E, given in (49). This 2-element subset can be obtained by 
considering a lexicographic order of all 120 two-subsets of { }, , , ,1 2 15 16 . One finds 
that the first terms of 0  look like 

( ) ( ){ } ( ) ( ){ }{ ( ) ( ){ }
( ) ( ){ } ( ) ( ){ } }

0 1,1,1,1 , 1,1,1,2 , 1,1,1,1 , 1,1,2,1 , 1,1,1,1 , 1,1,2,2 ,

1,1,1,1 , 1,2,1,1 , 1,1,1,1 , 1,2,1,2 , .

=




    (50) 

(See Refs. [13] and [14] for details.) 
The method, of course, can be extended to 2 12 n+ -dimensions, 0,1,2,n =   and can 

be connected to N-qubit system. However, it is worth mentioning that the complete 
classification of N-qubit systems is a difficult, or perhaps an impossible task. In refer-
ence [15] an interesting development for characterizing a subclass of N-qubit entan-
glement has been considered. An attractive aspect of this construction is that the 
N-qubit entanglement can be understood in geometric terms. The idea is based on the 
bipartite partitions of the Hilbert space in the form 2N L lC C C= ⊗ , with 2N nL −=  
and 2nl = . Such a partition allows a geometric interpretation in terms of the complex 
Grassmannian variety ( ),Gr L l  of l-planes in LC  via the Plücker embedding. In this 
case, the Plucker coordinates of the Grassmannians are natural invariants of the theory. 

There are a number of ways in which one can connect matroids with surreal num-
bers. First, one may think in the bitset given in (43) in the Gonshor form 

{ } { }1,2 , .= → − +                          (51) 

Second, the numbers of any the ground set in matroid theory 

{ }, , , ,E = 1 2 3                           (52) 

can be written in terms of the surreal numbers as 

{ } { } { }{ }0, , 1, , 2, , .∅ ∅ ∅                       (53) 

In this context the basis set   will be also written in terms of the surreal numbers. 
Third, another possibility is also to identify the chirotope map { }1,0,1χ → −  in terms 
of the surreal numbers { } { } { }{ },0 , , , 0,χ → ∅ ∅ ∅ ∅ . 
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Of course, it will interesting to fully develop these possible links between matroids 
and surreal numbers. But even at these stage one note that the key concept in both ma-
troid theory and surreal numbers theory is duality. This is because in matroid theory it 
is known that in matroid theory there is a key theorem that every matroid   has a 
dual ∗ , while in surreal number theory duality is everywhere. In a sense this is be-
cause a surreal numbers { },L Rx X X=  is defined in terms of two dual sets LX  and 

RX . So one wonders whether in surreal number theory exist a theorem establishing 
that for every surreal number set   there exist a dual surreal number set ∗ . 

6. Various Mathematical and Physical Possible Applications 

In this section we shall describe an additional number of possible applications of sur-
real numbers in mathematics and physics. Although such a description will be brief the 
main idea is to stimulate further research in the area. One may think that our proposals 
are in a sense for experts in the topic but in fact the main intention is to call the atten-
tion of mathematicians and physicist telling them look here are a number of subjects in 
which you have the opportunity to participate. 

I. Applications in mathematics: 
(a) Division algebras 
There is a celebrated Hurwitz theorem: 
Theorem (Hurwitz, 1898): Every normed algebra over the reals with an identity is 

isomorphic to one of following four algebras: the real numbers, the complex numbers, 
the quaternions, and the Cayley (octonion) numbers. 

Moreover, the Hurwitz theorem is closely related with the parallelizable spheres 
1 3,S S  and 7S  [16] and the remarkable theorem that only exist division algebras in 1, 

2, 4 and 8 dimensions [17] [18]. So, one wonders what could be the corresponding 
Hurwitz theorem and these remarkable developments on division algebras if one ex-
tend the real numbers to surreal numbers. In this context, it has been proved in Refs. 
[19] [20] [21] that for normalized qubits the complex 1-qubit, 2-qubit and 3-qubit are 
deeply related to division algebras via the Hopf maps, 

13 2SS S→ , 
37 4SS S→  

and 
715 8SS S→ , respectively. It seems that there does not exist a Hopf map for 

higher N-qubit states. So, from the perspective of Hopf maps, and therefore of division 
algebras, one arrives to the conclusion that 1-qubit, 2-qubit and 3-qubit are more spe-
cial than higher dimensional qubits (see Refs. [22] [23] for details). Again one wonders 
whether surreal numbers can contribute in this qubits theory framework. 

II. Applications in physics: 
(a) Supersymmetry: For finite sets LX  and RX , one of the key tools in surreal 

numbers are integers n and dyadic rationals 
2k

md = . For 0,1n =  and 2 and 1 3,
2 2

d =  

one recalls the spin structure of supersymmetry. So one wonders if for instance spin 1
4

  

may be a prediction of surreal number theory. Remarkable, this spin has been proposed 
in 1N =  supersymmetry in connection with anyons (see Refs. [24] [25] and refer-
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ences therein). Thus, for finite sets LX  and RX , surreal numbers { },L Rx X X=  and 
in the Gonshor approach, one finds that bosons can be identified with s integer spin 
and fermions with dyadic rational with spin 

1
1

,
2 2

q
i

i
i

cb
n a +

=

+ +∑
 

given in (23). One can even think in this expression as the eigenvalues of a ket 

1 2 3, , , ,n s s s  . Here we made the associations 

1 2
1 2 3, , ,

2 4 8
b c c

s s s→ → →                      (54) 

and so on. Thus, in this framework, it seems the whole structure of surreal numbers can 
be identified with a kind of supersymmetric approach. 

(c) Black-holes  
Consider the Schwarzschild metric [26] 

( )
2

2 2 2 2 2 2
2

2

2 dd 1 d d sin d ,
21

GM rs t r
GMc r
c r

θ θ φ = − − + + +     − 
 

        (55) 

where M is the source mass, G is the Newton gravitational constant and c is the light 
velocity. There are a number of observations that one can make about (55). First, notice 
that in this expression all quantities are real numbers. Second there are two type of 

singularities, namely in 2

2
s

GMr r
c

= =  and 0r = . It is known that using Kruskal  

coordinates it is possible to show that the singularity at sr r=  is simply a coordinate 
singularity. However the singularity at 0r =  is a true physical singularity of space-
time. First of all, in this context, when one referes about singularity in terms of real  

numbers one means that in the limit 0r →  one obtains the expression 2

2GM
c r

→∞  

(see Ref. [26] and references therein for details). 

From the point of view of surreal numbers theory the singularity 2

2GM
c r

→∞ , when  

0r → , is not a real problem because in such a mathematical theory all kind of infinite 
large and infinite small are present. So by a assuming that all quantities in the line ele-
ment given in (55) is written in terms of surreal numbers 

( )
2

2 2 2 2 2 2
2

2

2 dd 1 d d sin d ,
21

G
Gc
c

θ θ φ = − − + + +     − 
 

 
  




      (56) 

the problem of singularities in black-hole physics no longer exist! 
(d) Cosmology 
In the Friedmann cosmological equation [26] 

( )
2 2

d 8π 8π1 0,
d 3 3

m ra t k
ta a

ρ ρ
+ − − =                   (57) 

one assumes that the matter density is given by 
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0
3 ,m

m a
ρ

ρ =                             (58) 

while the radiation energy density is 

0
4 ,r

r a
ρ

ρ =                             (59) 

where 0, mk ρ  and 0rρ  are constants. So, even if one does not consider the solution of 
(57) the expressions (58) and (59) tell us that there is a ‘big-bang’ singularity at 0a → . 
In fact, when 0a →  one has 

mρ →∞                              (60) 

and 

.rρ →∞                              (61) 

Just as in the case of black-holes these singularities are related to the fact that one is 
considering real numbers structure in the length scale a as well as in the time evolution 
parameter t. Again, one wonders what formalism one may obtain by replacing a by 
some kind of surreal length scale   and the time parameter t by a surreal time para-
meter  . Of course, this in turn will imply that the whole gravitational theory must 
be modified with surreal numbers structure. 

Another possibility is to identify the whole evolution of the surreal numbers struc-
ture with a cosmological model in the sense that in 0-day one has the scalar field par-
ticle of 0-spin (the Higgs field?), in the 1-day one has (-1) -spin and 1-spin (the pho-

ton?) and the 2-day one obtains the (-2) -spin, 
1
2

 − 
 

-spin, 1
2

-spin 2-spin (graviton  

and fermion?) and so on. Following this idea one may even identify the 0-day and 
0-spin with the big bang and since { }0 ,= ∅ ∅  one can say that everything in our un-
iverse started with vacuum state ∅ . 

(e) Fractals 
It is known that fractals and dyadic fractions are deeply related. Much of this rela-

tionship can be explained by infinite binary tree which can be viewed as a certain subset 
of the modular group ( )2,PSL Z  (the general linear group of 2 by 2 matrices over the 
integers). The subset is essentially the dyadic grupoid or dyadic monoid. This in turn 
provides the natural setting for the symmetry and self-similarity of many fractals. 
Moreover, it is also that these groups and the rational numbers can be connected with 
dyadic subsets [27]. 

7. Final Remarks 

Due to the fact that duality is the underlying concept in both surreal numbers and ma-
troid theory, we believe that it is a matter of time that these two mathematical scenarios 
are considered as important tools in physics and in particular in high energy physics 
and gravity. 

From the serious difficulties with infinities in black-hole physics and cosmology as 
well as in higher energy physics it seems to us that surreal numbers theory offers a new 
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view for a solution, instead of thinking that the infinities are the enemies in quantum 
and classical physical theory incorporate them in a natural way as surreal numbers 
framework suggests. 

It turns out that surreal numbers can be understood as a particular case of games [2] 
(see also Ref. [28]) which is a fascinating mathematical theory. In fact, games can be 
added and substracted forming an Abelian group and a sub-group of games is identi-
fied with surreal numbers which can also be multiplied and form a field. As we men-
tioned before, this field contains the real numbers among many other numbers struc-
tures. The key additional condition for reducing a game { }, , ,L Rx x x=    to a surreal 
number is that Lx  and Rx  are surreal numbers and satisfy L Rx x< . So, one won-
ders whether game theory may lead to even more interesting applications that those 
presented in this work. 

Finally, we believe that it is just a matter of time for the recognition of the surreal 
numbers structure as one of the key mathematical tools in superstring theory [29] [30] 
[31]. This is because although the problems of some infinities are solved there remain 
always additional problems with the emergency of new infinities. This phenomena may 
be traced back to the fact that the action in superstring theory is written in terms of real 
functions (target space-time coordinates) rather that surreal functions. 
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