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Abstract 
We derive the differential equation, which is satisfied by the ITER scalings for the dynamic energy 
confinement time. We show that this differential equation can also be obtained from the differen-
tial equation for the energy confinement time, derived from the energy balance equation, when 
the plasma is near the steady state. We find that the values of the scaling parameters are linked to 
the second derivative of the power loss, estimated at the steady state. As an example of an applica-
tion, the solution of the differential equation for the energy confinement time is compared with 
the profile obtained by solving numerically the balance equations (closed by a transport model) 
for a concrete Tokamak-plasma. 
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1. Introduction 
Global scaling expressions for the energy confinement time, Eτ , or the stored energy, W, are powerful tools for 
predicting the confinement performance of burning plasmas [1]-[3]. The fusion performance of ITER is 
predicted using three different techniques: statistical analysis of the global energy confinement data in the 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.712130
http://dx.doi.org/10.4236/jmp.2016.712130
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


G. Sonnino et al. 
 

 
1430 

parameters (simple (multivariate) linear regression tools can be used to determine the parameters from a set of 
data) [4] [5], a dimensionless scaling analysis, based on dimensionless physics parameters [5]-[7], and theory- 
based on transport models and modelling the plasma profiles [8]-[10]. Although the three methods give 
overlapping predictions for the performance of ITER, the confidence interval of all of the techniques is still 
quite wide [11]. The Confinement Database and Modelling Expert Group recommended for ITER design the 
so-called ( )98 , 2ITERH P y−  confinement scaling [5] [12]:  

( )98 ,2 0.93 1.97 0.58 0.78 0.15 0.41 0.69 0.19
00.0562H y

E p eI R B n P Mφτ κ −=                        (1) 

Here, the parameters are the plasma current pI , the major radius R, the inverse aspect ratio a R=  (with a 
denoting the minor radius of the Tokamak), the elongation κ , the toroidal magnetic field (at the major radius R) 

0B φ , the central line averaged electron density en , the loss power P, and the ion mass number M, respectively. 
The expression (1) is valid for the ELMy H-mode thermal energy confinement time. The 2log-linear interval 
was determined to be 20%. By recent analyzing the enlarged . 3ITERH DB  dataset, the practical reliability of 
the ( )98 , 2ITERH y−  scaling was confirmed and 2log-linear interval was reduced to 14% [13]. Tables showing 
some of the most generally used sets of scaling parameters for the ELMy H-mode and L-mode can be found in 
Refs [5] [14]-[16]. 

For stellarators, a similar scaling has been obtained [17] [18]  
0.64 2.33 0.55 0.85 0.41 0.61

00.148E eR a n B Pφτ ι −=                              (2) 

where 2πι  is the rotational transform (or the field line pitch). 
The confinement time is defined as  

e e
E

tot e Q

W W
P W P

τ = =
− 

                                     (3) 

where eW , QP  and totP  are the internal energy, the power loss and the power source, respectively. From 
Equation (3) results that when the tokamak is not in the steady state the quantity Eτ  is a time dependent 
quantity. Hence, Eτ , given by Equations (1) and (2), is viewed as a time-dependent variable, which depends on 
a collection of variables dependent on time (e.g., n , P, etc.). The value of Eτ  at the steady state condition 

0Eτ = , attained at some time moment 0t , corresponds to the numerical value provided by the database. For 
example, the point prediction for the thermal energy confinement time in ITER is ( ) ( ), 3.6 sec,0E Eτ τ = . 

The main objective of this work is to estimate the energy confinement time, close to the steady state. Eτ  at 
the steady state condition is calculated by using the expression  

0 .

.

estat
E

Qstat

W
P

τ =                                         (4) 

where .estatW  and .QstatP  are obtained by solving the stationary balance equations. An example of calculation 
can be found in Ref. [19]. To estimate the dynamic confinement time we should solve the evolutive balance 
equations. However, this is a very complex task. An alternative strategy (which is the one that we shall adopt 
here) consists in deriving the time differential equation for the energy confinement time, with 0

Eτ , estimated by 
using Equation (4), playing the role of the initial condition. We show that Eτ  is the solution of a nonlinear 
differential equation of second order in time, obtained by combining Equation (3) with the (dynamic) balance 
equations. The critical fact which makes our approach useful is that in the vicinity of the stationary state, this 
differential equation depends only on one coefficient which varies very slowing in time  

( )2 2

0 .

.

; 0

E E E E

estat
E E

Qstat

t
W
P

τ τ τ χ τ

τ τ

 − =

 = =


 



                                    (5) 

where ( ) ( )0 0t t tχ χ − , and 0χ  is a numerical coefficient estimated at the steady state. Hence, at the 
“leading order”, all of the dependence on the machine is reduced to just a number, 0χ , which can be determined. 
This is the real advantage of this approach. As an example of calculation, we have considered the simplest case 
of IGNITOR-plasmas. In this case, we solved the time differential equation for Eτ  where the parameters (i.e., 
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the initial condition as well as the coefficient appearing in the differential equation) have been estimated at the 
steady state. The solution of this equation is in agreement with the one obtained by solving numerically the 
dynamic balance equations, with the aid of a transport model [20]. 

In this work, we shall also justify the dynamic scaling laws, like  
31 2 4 ,a

E p eCI n P Mα α ατ =                                     (6) 

where C is a constant and M is the effective mass, respectively (note that when the plasma is a mixture, due to 
the dependence of particle transport properties on particle mass and charge, M is also time dependent). In 
particular, we shall prove that the dynamic expression for the energy confinement time, like Equation (6), is 
solution of the differential equation for Eτ , which can be obtained by combining Equation (3) with the energy 
balance equation. 

The paper is organized as follows. In Section (2), we show that Equation (6) satisfies a nonlinear differential 
equation of the second order in time, tacking into account the (experimentally established) slow variation in time 
of the coefficient entering in this equation. Successively, we show that this equation can also be derived from 
the energy balance equation, combined with definition (3). This will allow a linking of the scaling coefficients 
with the (measurable) second time derivatives of the heat power loss, which at the leading order may also be 
estimated at the stationary state. These tasks will be accomplished in the Section (3). As an example of an 
application, in the Section (4), we compare the solution obtained by solving the differential equation for the 
energy confinement time with the numerical simulations obtained using the code JETTO [20], for the specific 
case of IGNITOR-plasmas. Concluding remarks can be found in Section (5). 

2. Differential Equation Satisfied by the ITER Scalings  
The expression for the energy confinement time, obtained by scaling laws, raises several questions. Firstly, 
Equation (1) applies quite well to a large number of Tokamaks (ASDEX, JET, DIII-D, ALCATOR C-Mod, 
COMPASS, etc.) and it is currently used for predicting the energy confinement time for Tokamaks, which are 
presently in construction (ITER) or will be constructed in the future (DEMO). Hence, the first objective of this 
work is to understand the main reason for such a “universal” validity. Secondly, it is legitimate to ask “where 
does this expression originate from ?”. More concretely, “Is it possible to determine the (minimal) differential 
equation which is satisfied by expression (6)?”. In case of a positive answer, “Is it possible to re-obtain this 
(minimal) differential equation from the balance equations and, in particular, from the energy balance 
equations ?”. Finally, “How can we estimate the values of the scaling coefficients iα ?”. In this Section, we 
shall determine the (minimal) differential equation satisfied by Equation (6). In the next Section we shall prove 
that, near the stationary state, this differential equation can be re-obtained from the energy balance equation. 

The equations of one-dimensional plasma dynamics, in toroidal geometry, assuming the validity of the 
standard model, can be brought into the form (see, for example, [21])  

( )1 ee
r

n r
t r r

γ∂ ∂
= −

∂ ∂
 

( )

( )

1

2
0 0

gain-loss

3 1 5 1
2 2

4π

e
e i e r

p r q q Z T
t r r

E Bc r S
Rr r q r

φ

γ−∂ ∂   + + + +  ∂ ∂   
 ∂

= +  ∂  

                      (7) 

with r and ( )q r  denoting the radial coordinate and the safety factor, respectively. p, en , eT  and Z are the 
total plasma pressure, the electron density, the electron temperature and the ion charge number, respectively. 
Here,   denotes the surface-average operation. qζ  and e

rγ  are the averaged radial heat flux of 
species ζ  ( eζ =  for electrons and iζ =  for ions) and the averaged electron flux, respectively. c and 0E  
are light speed and the external electric field, respectively, and gain-lossS  is the source term, i.e. the loss and 
energy gain. Equation (7) must be completed with the transport equations, i.e. with the thermodynamic flux- 
force relations, in order to close the plasma dynamical equations. The 0 D−  power balance equation is now 
derived as follows. Equation (7) is integrated over the volume of the plasma and then divided by the plasma 
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volume V. We obtain  

e

e Q tot

N

W P P

 = −Γ


+ =





                                       (8) 

with  

( )

( )

( )

1 1

2
0 01 1

gain-loss

1 1

1d ; d

3 d ;
2 4π

1 5 1 d
2

e
e e r

e tot

e
Q e i e r

N V n V V r V
r r

E Bc rW V p V P V S dV
Rr r q r

P V r q q Z T V
r r

φ

γ

γ

− −

− −

− −

∂
≡ Γ ≡

∂
  ∂

≡ ≡ +   ∂   
 ∂   ≡ + + +   ∂    

∫ ∫

∫ ∫

∫

                (9) 

where the “dot” over the variables stands for the (total) time derivative ( d dt ). 
The energy confinement time is defined as  

e e
E

tot e Q

W W
P W P

τ = =
− 

                                   (10) 

From definition (10), we find  

0E Q E Q eP P Wτ τ+ − = 

                                   (11) 

Note that the stationary state is reached when Q totP P= . Hence, at the steady state (corresponding to 0t t= ) 
we have  

0

0 0e et t
W W

=
≡ =                                      (12) 

At the steady state, we find  

( )
0

0
0 0

0 0
d; 0
d

e E
E E E

t ttot

Wt
tP
ττ τ τ

=

≡ = ≡ =                            (13) 

where 0
eW  and 0

totP  indicate the values of eW  and totP , estimated at the steady state, respectively. 
Equation (6) may be re-written in the generic form:  

1 2
1 2

n
E nCX X X αα ατ =                                   (14) 

where 1 2, ,X X   are a positive and independent system of variables iX , and iα  the scaling parameters, 
respectively. For simplicity, we firstly suppose that in Equation (14) all the variables iX  are time-dependent. 
The case whereby iX  is a collection of variables dependent on time, as well as variables not-dependent on 
time, will be treated in the following sub-Section Analysis in the Physics Variables. Note that C is a (dimensional) 
constant satisfying the condition  

( ) ( ) ( )1 20
1 0 2 0 0

n
E nC X t X t X tα α ατ − − −=                            (15) 

Unless stated otherwise, in the sequel we shall adopt the summation convention on the repeated indexes. By 
taking the logarithm of Equation (14) we find  

1 1 2 2log n ny C α ξ α ξ α ξ= + + +                             (16) 

with log Ey τ≡  and logi iXξ ≡  (with 1, ,i n=  ). The first and the second derivatives of y, with respect to 
variable iξ , read respectively  

2

; 0i
i i j

y yα
ξ ξ ξ
∂ ∂

= =
∂ ∂ ∂

                               (17) 

In terms of variable Eτ , instead of y, we get  
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2

; 0E E E E
E i E

i i j i j

τ τ τ ττ α τ
ξ ξ ξ ξ ξ

∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂ ∂
                         (18) 

The differential equation with respect to time is easily obtained by tacking into account the identities  
2

;E E E
E i E i i i j E i E E i i

i i j i

τ τ ττ ξ τ α ξ ξ ξ τ ξ τ τ α ξ
ξ ξ ξ ξ

∂ ∂ ∂
= = = − = −
∂ ∂ ∂

     

                    (19) 

By multiplying the second equation of Equation (18) by i jξ ξ   and by summing over indexes, we finally 
obtain the differential equation satisfied by the ITER scaling laws  

( )2 2

1

n

E E E i i E
i

tτ τ τ α ξ τ
=

 − =  
 
∑ 

                                  (20) 

Equation (20) should be solved with the initial conditions (13):  

( )2 2

0
0 0

0 ; 0

E E E E

e
E E

tot

t

W
P

τ τ τ χ τ

τ τ

 − =



= =


 



                                  (21) 

with ( ) ( )( )1
n

i iit tχ α ξ
=

≡ ∑  . We have derived two differential equations for the time derivatives of τ , the first  

equation of Equation (19) which is first order and also Equation (20) which is second order. It may appear 
hopeless to solve these equations, as they depend on ( )i i tα ξ  and ( ) ( )i it tχ α ξ=   respectively, which in turn 
depend on the full dynamics of the system. The critical fact which makes our approach useful is that the second 
time derivatives of the logarithm of iX  are generally weakly dependent on time. As a result, one may 
approximate ( )tχ  to be a constant, 0χ . In this sense, all of the dependence on the machine is reduced to just a 
number, which can be determined. The evolution of Eτ  can then be obtained uniquely by integrating Equation 
(20) with the initial conditions (13). Such an approach would not work for the first equation of Equation (19) as 

( )i i tα ξ  depends strongly on time, indeed it vanishes at the initial stationary state and then becomes nonzero as 
the state evolves. 

It is not difficult to check that the nonlinear Equation (21) is the “minimal” differential equation, in the sense 
that Equation (21) admits one, and only one, solution (i.e., the nonlinear differential Equation (21) does not 
generate additional solutions). 

It may appear hopeless to solve Equation (21), as it depends on the coefficient 1

..
logn

i ii Xχ α
=

 =  
 
∑ , which in  

turn depend on the full dynamics of the system. The critical fact which makes our approach useful is that the 
second time derivatives of the logarithm of iX  are generally weakly time-dependent. In all the cases examined 
by the authors, ( )tχ  is very well approximated (numerically) by a linear function in time  

( ) ( ) ( )0 0 0 0
10

1with
n

i i
i

t t t t
t

χ χ χ α ξ
=

− = − ∑ 

                         (22) 

Hence, all of the dependence on the machine is reduced to just a number, 0χ , which can be estimated at the 
steady state. 

3. Differential Equation for the Energy Confinement Time  
The aim of this Section is to obtain the differential equation for the energy confinement time from the balance 
equations. In analogy with Equation (21), the coefficients of this differential equation should be expressed only 
in terms of the internal energy eW  and the total power totP . To this end, let us reconsider the energy balance 
equation Equation (8) and the definition of the energy confinement time, Equation (10). Taking the derivative of 
Equation (11) with respect to time, after a little algebra, we get  

( ) ( )2 2
E E E E E Ef t g tτ τ τ τ τ τ− = − −                                 (23) 

with  
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( ) ( )

( )

tot e e

tot e e

tot e e

tot e e

P W Wf t t
P W W

P W Wg t
P W W

χ−
≡ − = −

−

−
≡ +

−

  



  



                               (24) 

Note that the dimensions of ( )f t  and ( )g t  are [ ] 2t −  and [ ] 1t − , respectively. Finally, the differential 
equation for the energy confinement time reads  

( ) ( )2 2

0
0 0

0

0

; 0

E E E E E E

e
E E

tot

f t g t

W
P

τ τ τ τ τ τ

τ τ

 − + + =



= =


  



                            (25) 

We might object that the previous equation has the same degree of difficulty as the initial expression, 
Equation (10). However, as we shall see more in detail in the next Subsection, the coefficients ( )g t  and ( )f t  
possess special properties: close to the steady state ( )g t  tends to vanish and ( )f t  is a function varying very 
slowing in time. So, at the leading order, ( ) 0g t ≈  and ( )f t  may be estimated at the stationary state [see 
Equation (22) and the discussion after Equation (21)]. This is the real advantage of Equation (25) with respect to 
Equation (10): Equation (25) allows determining the dynamic behaviour of the energy confinement time when 
the system is close to the steady state, solely by the knowledge of one coefficient estimated at the stationary 
state. Moreover, from the previous Section we know that this equation admits one (and only one) solution 
corresponding to the ITER scalings. A concrete application of Equation (25) can be found in the Section (4). 
Note that Equation (25) may be re-written in the more convenient form  

( ) ( )

( ) ( )
0

0 00

0

; 0

E E

e
E

tot

y
y g t y f t

Wt y t
P

τ τ

τ

=
 + + =

 = =





                                (26) 

showing that the differential equation for the energy confinement time may be expressed as two quasi-decoupled 
differential equations of first order in time derivative. The general solution of Equations (26) may be brought 
into the form  

( ) ( )( ) ( ) ( )( )
0 0 0 0

0 exp d exp d d exp d
t x x x

E E t t t t
t x xg x x f x xg xτ τ

′′ ′′ ′   ′′ ′ ′= − −      ∫ ∫ ∫ ∫              (27) 

By taking into account that ( ) 1
n

i iif t α ξ
=

= −∑   (with logi iXξ = ), solution (27) generalizes the ITER scaling  
laws out of the steady state, reducing to Equation (14) close to the stationary state. Equation (27) shows that 
close to the steady state, the leading contribution to the mathematical expression for the energy confinement 
time is provided by the power laws. However, when we deviate from the steady state, supplementary con- 
tributions, which are different from the power ones, may modify the mathematical form of the power laws 
significantly. Generally, for ITER, these contributions tend to lower the numerical value of the energy con- 
finement time. This can be easily checked by setting in Equation (27) ( ) 1ˆg x α  , with 1  and α̂  denoting a 
very small parameter and a positive constant having dimension [ ] 1t − , respectively. By developing expression 
(27) up to the first order in 1 , we find the power laws at the leading order, corrected by a (small) negative 
expression at the first order in 1 . 
• Differential Equation for the Energy Confinement Time Near the Steady State  

The term totP  is specified as follows  

( ) ( ) ( ),tot b AuxP P T P T P r tα= − +                               (28) 

where ( )P Tα  is the alpha power, ( )bP T  is the power radiation loss (Bremsstrahlung) and auxP  is the 
external heating power density supplied to the system (e.g. ohmic heating power or external RF), respectively. 
The alpha power and the Bremsstrahlung power loss depend explicitly on the temperature of the plasma. The 
auxiliary heating power is operational during both the transient and steady states. This is the dominant source of 



G. Sonnino et al. 
 

 
1435 

external heating power, and it is assumed to be deposited in the plasma with a known profile, independent of p 
and T. Hence, ( ),Aux AuxP P r t= . The time derivative of totP  reads  

b
tot Aux

P PP T T P
T T
α∂ ∂

= − +
∂ ∂

                                     (29) 

At the steady state ( )0 0T t =  and ( ) ( )0 0 0Q AuxP t P t= =  . Consequently, from the energy balance equation 
we find that also ( )0 0eW t = . By taking into account Equations (12) and (24), we get ( ) 0g t →  as the system 
approaches the steady state. Hence, near the stationary state, we find  

( )2 2

0
0 0

0 ; 0

E E E E

e
E E

tot

t

W
P

τ τ τ χ τ

τ τ

 −



= =


 




                                  (30) 

with  

( ) ( ) ( )0 0
1

n
tot e

i i
itot

P Wt t t t
P

χ α ξ χ
=

−
= − = −∑

 



                          (31) 

where Equation (22) has been used. As shown in the Section (2), Equation (30) admits one (and only one) 
solution, corresponding to the ITER scalings Equation (6). Note that Equation (31) provides the desired relation 
between the exponent coefficients iα  and the macroscopic quantities totP  and eW . If we have n free ex- 
ponent coefficients iα , we can set the following n relations  

( ) ( ) ( )
( )1

with 0,1, , 1
n

tot k e k
i i k

i tot k

P t W t
t k n

P t
α ξ

=

−
= − = −∑

 



                    (32) 

Equation (32) link the exponent coefficients with variables which, at least in principle, are under the control 
of the experimental physicist.  
• Analysis in the “Physics” Variables 

As mentioned, Equations (1) and (2) are composed by several variables independent of time (e.g., major and 
minor radii, elongation etc.). In this case, it is more convenient to express the energy confinement time only in 
terms of the time-dependent variables. Let us suppose that m variables are time-dependent and the remaining 
n m−  not. In this case, the energy confinement time takes the form [see Equation (15)]  

( ) ( ) ( )
1 2

1 2

0 1 2

1 0 2 0 0

m

m

n
E E

m

XX X
X t X t X t

αα α

α α ατ τ
   

=        
    

                         (33) 

where, now, the independent variables ( ) ( )0
i i

i iX t X tα α  are dimensionless. Note that in this case variables iξ  
are defined as ( )( )0logi i iX X tξ =  (no summation convention over the repeated indexes). Of course, this 
operation reduces the number of independent variables. However, this number may be reduced further if, instead 
of “engineering variables”, the confinement time is expressed in terms of “physics” parameters such as ρ   
(normalized Larmor radius), β  (normalized pressure), ν   (collisionality), etc. Indeed, according to the 
observation of Kadomtsev, the transport in the plasma core should be fundamentally governed by three physical 
dimensionless plasma parameters ρ  , β  and ν   [22]. In this respect, an interesting paper is Ref. [23]. In [23] 
the authors show that, due to the Kadomtsev constraint, the final expression for the ELMy H-mode thermal 
confinement time has only one free exponent coefficient, according to the law:  

( )6 8 153 12π 10 n nebest
E p eI n Pα ατ − +− −= ×                             (34) 

with P  denoting the density of the power loss (i.e., P P V≡ ). With the choice 1 2
enα = , in “physics” 

variables, scaling (34) goes as 1
ρ

α = −  (i.e. a gyro-Bohm-like scaling), 0.5βα = −  and 0
ν

α = . This choice 
may be tested by using Equation (32) which, in this particular case, reads  

( )
0

0
0 0 0

.. ..
15 log 6 8 log 15

e e
tot e

n e n
tot

P Wn P
P

α α −
− + = −

 

                       (35) 

where Equation (33) has been taken into account. We find  
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( )0
0 0 0

0
0 0

..

.. ..
6 log 15

15log 8log
e

tot tot e
n

tot e

P P P W

P n P
α

− −
=

 − 
 

 




                            (36) 

4. Comparison with the Numerical Simulation of the Balance Equations for an  
L-Mode Tokamak-Plasma  

As an example application, we consider in this Section the case of one of the simplest L-mode Tokamak-plasma 
where the evolution of the energy confinement time has been estimated by solving numerically the balance 
equations, completed with a transport model. In [20] we find the profile of Eτ  against time for Ignitor-plasma. 
The numerical solution has been obtained by using the code JETTO. To compare this profile with the numerical  

solution of Equation (21), we should firstly estimate 0t , 0
Eτ  and ( ) ( )0 0 0

0

1
Q totP t P t

t
χ =   [see Equation (22)  

and (24)]. In [19], we have estimated the values of these parameters for Ignitor subject to ICRH power (i.e., 
Aux ICRHP P= ). The scenario is considered where IGNITOR is led to operate in a slightly sub-critical regime by 

adding a small fraction of 3He to the nominal 50 - 50 Deuterium-Tritium mixture. The difference between power 
lost and alpha heating is compensated by an additional ICRH power equal to 1.46 MW, which should be able to 
increase the global plasma temperature via collisions between 3He minority and the background D T−  ions. 
The analytical expression for the ICRH power profiles inside the plasma has been deduced by fitting the 
numerical results giving an expression for ( )Aux ICRHP P r= , which is essentially independent of the bulk 
temperature. Denoting the ICRH power-density as ICRHP , we have  

( ) ( ) ( )2
0 2 0exp expICRH ICRH ICRH ICRHP r P B r B r rφα   = − − ∆   



                  (37) 

with 6 3
0 6.59126 10 MW mICRHP −= × , 2 15.3478α =  and 0.0477032∆ = , respectively. 

The value of 0
Eτ  has been estimated by the expression [19]  

0
2 2 1 2

12
4 4

e
E

e B e ICRHD T

n T
E n v C n T Pα

τ
σ

−

=
− +                          (38) 

with Eα  and BC  denoting the energy at which the alpha particles are created (3.5 MeV), and the Brems- 
strahlung constant, respectively. σ  is the reaction cross section giving a measure of the probability of a fusion 
reaction as a function of the relative velocity of the two reactant nuclei. D Tvσ

−
 provides an average over the dis- 

tributions of the product of cross section and velocity v. In the core of the plasma we found [19] 0 0.43 secEτ = , 
0 3.5 sect =  and 3

0 0.171429 secχ −= . Figure 1 reports on the energy confinement time, Eτ , against time for 
Ignitor-plasmas in the above mentioned conditions. The profiles have been obtained by solving (with the code 
JETTO) the balance equations and refer to the ITER scalings ITER97L (full dots), ITER97L  (open dots) and 
ITER97L [20]. Figure 2 shows the solutions of the differential equation for the ITER scalings, Equation (21), at 
the three values of ( 0

0 , Et τ ): ( ) ( )0
0 , 0.35 sec,0.43 secEt τ =  (ITER97L-blue line),  

( ) ( )0
0 , 0.35 sec,0.625 secEt τ =  ( ITER97L -green line) and ( ) ( )0

0 , 0.35 sec,0.825 secEt τ =  =  
(ITER97L(P_red)-brown line). 

Note that in [20] the authors evaluate the ITER scalings by using the reduced power red tot RadTotP P P= − , 
whereas in our work we use totP , which includes the Bremsstrahlung radiation loss. This may explain the little 
difference between the numerical [20] and the analytical slopes. 

5. Conclusions  
A large database on plasma energy confinement in Tokamaks can be summarized in single empirical value of 

Eτ , referred to as the ITER-scalings. These expressions are “Universal”, in the sense that they apply to a large 
number of Tokamaks. Scalings are expressed in terms of product of powers of independent variables [see 
Equation (14)] and correspond to the L-mode as well as the H-mode confinements. The recommended scaling 
for ITER operation remains the IPB98 scaling law, while this issue is further investigated. In this work we have 
shown that the ITER scalings satisfy a general non-linear differential equation of second order in time. The 
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value provided by the database for ITER scaling laws, coincides with 0
Eτ , estimated by Equation (4), with 

.estatW  and .QstatP  evaluated by solving the stationary balance equations. To estimate the dynamic confinement  
 

 

Figure 1. Solutions of Equation (21) at the three values of ( )0
0,E tτ . Blue line: ( )0

0 , Et τ =  (0.35 sec,                            

0.43 sec) (ITER97L), green line: ( ) ( )0
0 , 0.35 sec,0.625 secEt τ =  ( ITER97L ) and Brown line: 

( ) ( )0
0 , 0.35 sec,0.825 secEt τ =  = (ITER97L(P_red)).                                               

 

 
Figure 2. Energy confinement time evolution estimated in [20] by solving with JETTO the 
balance equations (completed with a transport model): ITER97L scaling (full dots-blue line), 
ITER97L  scaling (open dots-green line) and ITER97L(P_red) scaling (brown line).                                               
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time, we determined the differential equation for Eτ  by combining the energy balance equation with definition 
(3). We found Equations (25). We have solved this equation by taking into account that, in vicinity of the steady 
state, the coefficient ( )g t  tends to vanish and, at the leading order, ( )f t  is (almost) a constant independent 
of time, which may be evaluated at the stationary state. This is the real advantage of the proposed approach: 
close to the steady state, the differential equation for the energy confinement time Eτ  reduces to  

( )2 2

0
0

0 ; 0

E E E E

e
E E

tot

t

W
P

τ τ τ χ τ

τ τ

 − =



= =


 



 

where “at the leading order” ( )tχ  is a numerical constant, which may be estimated at the stationary state. As 
a result, one may approximate ( )tχ  to be a constant, 0χ  or better, by a linear function ( ) ( )0 0t t tχ χ= − . In 
this sense, all of the dependence on the machine is reduced to just a number, 0χ , which can be estimated at the 
steady state. Far from the stationary state the differential equation for Eτ  contains a nonlinear extra term, 
which behaves as ~ E Eτ τ . This extra term tends to modify the mathematical form of the power laws. For ITER, 
the main effect of this nonlinear extra term is to lower the numerical value of the energy confinement time. The 
general solution is given by Equation (27), which reduces to the one admitting the ITER scaling power laws as 
the system approaches the steady state. We have also seen that the scaling coefficients may be linked to the 
variables which, at least in principle, are under the control of the experimental physicist. The validity of our 
approach has been tested by analyzing a concrete example of Tokamak-plasma where the profile of the energy 
confinement time has been previously determined by solving the balance equations (with the auxilium of a 
transport model). The solution of the differential equation for the ITER scaling is in a fairly agreement with the 
numerical finding. 
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