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Abstract 
By using kinetic theory, we derived the general dispersion relations for ordinary mode (O-mode) 
and Extra-ordinary mode (X-mode) in anisotropic magnetized plasma. The effects of energy 
anisotropy, magnetic field to density ratio ( p0 ωΩ ) and the plasma beta β



 on the propagation 
characteristics, have been analyzed. The stability analysis and the growth rates have been 
presented. The marginal threshold condition for oscillatory and purely growing mode has been 
obtained for higher harmonics and we have also calculated their growth rates in terms of plasma 
beta β



 and energy anisotropy T T⊥ 

. The X-mode satisfies the instability condition according to 
difference of geometry with the O-Mode. These modes are important for spherical tokamaks, and 
their coupling leads to the generation of the Bernstein mode, which causes the heating effects. 
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1. Introduction 
The ordinary mode (O-mode) is a linearly polarized electromagnetic perpendicularly propagating wave, which 
propagates only when wave frequency is greater than the plasma frequency. The work is related to the 
electromagnetic cyclotron harmonic instability for its possible role in solar and interplanetary radio emission 
processes where the ratio 0pω Ω  (where pω  is the electron plasma frequency and 0Ω  is the electron 
cyclotron frequency) is relatively high i.e., the ratio is of the order of 10 or can be as high as 50 or even 100 near 
1 a.u. It may be useful for the heating and current drive mechanism in the spherical tori like the NSTX [1] and 
MAST [2] where the 0.pω > Ω  

It is found that extraordinary mode (X-mode) power is not absorbed at the cyclotron resonance but uniquely at 
the upper hybrid resonance, displaced to the low field side of the cyclotron resonance. O-mode power, however, 
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is absorbed at the cyclotron resonance as well. The displacement of the upper hybrid resonance to the low field 
side with O-mode launch is significantly smaller than that with X-mode launch because of the lower densities 
produced by O-mode launch at the same microwave power level [3]. Hamasaki [4] [5] investigated the 
electromagnetic o-mode instability with perpendicularly propagating waves for a two temperature Maxwellian 
distribution function. Lee [6] studied the same mode in counterstreaming plasmas and showed that the ordinary 
mode became unstable as the magnetic field changed. Later Bornatici and Lee [7] worked on O-mode and 
determined that for counterstreaming plasmas an instability occurred if the streaming velocity exceeded a certain 
threshold value which can be below the required velocity to excite the electrostatic two-stream instability. They 
also concluded that whereas the perpendicular temperature stabilized the effect the parallel temperature 
enhanced the instability. Shivamoggi [8] also discussed the destabilization of the O-mode due to magnetic field 
and thermal effects. Ibscher et al. [9] investigated the nonresonant Wieble mechanism which can drive the 
O-mode unstable. They studied the instability on the basis of a threshold which gave the instability conditions 
and upper limits of the growth rate. Their problem was restricted for fundamental harmonic only. Iqbal et al. [10] 
studied the O-mode in degenerate anisotropic plasmas and proposed the excitation of a new banded type of 
instability which grew at some particular values of temperature anisotropy. Hadi et al. [11] also revised the 
analysis of the O-mode instability with Maxwellian parallel distribution coupled with thermal ring perpendicular 
distribution. They demonstrated that O-mode for thermal ring distribution may be excited for cyclotron 
harmonics as well as for the purely growing branch, depending on the value of the normalized ring speed. Lazar  

et al. [12] concluded that O-mode instability was driven by an excess of parallel temperature where 1
TA
T
⊥= <


  

for 1.β >


 Vafin et al. [13] derived the analytical marginal instability condition for magnetized plasmas when 
charged particles were distributed in counter-streams with equal temperatures. They confirmed the O-mode 
instability at small plasma beta values, when the parallel counter-stream free energy exceeded the perpendicular 
bi-Maxwellian free energy. Farrell [14] presented a theory in which he described the direct generation of 
electromagnetic O-mode emission via mildly energetic electron beams in a highly dense and warm plasma. 

In this manuscript, the energy anisotropic Heaviside distribution function is used for understanding the 
behavior of O-mode and X-mode. Such distribution function provides the detailed information about banded 
emission of O-mode instability. Such type of emission has been observed in space plasmas, where 0 10pω Ω >  
e.g. solar wind. Satellite wave instruments commonly detect banded magnetospheric emissions between har- 
monics of the electron gyrofrequency in the outer magnetosphere [15]. This type of banded emission has been 
observed in the terristial magnetosphere. Frequency-banded electromagnetic waves up to 2000 Hz are observed 
concurrently with warm energy-banded ions in the low latitude auroral and sub-auroral zones during every large 
geomagnetic storm, observed by the FAST and DEMETER satellites. The appearance of the banded wave activity 
suggests that there may be distinct changes in the geospace system that characterize large magnetic storms [16]. 

Coupling of the O-mode and X-mode is a necessary tool for generation of the bernstein mode which is a 
powerful source of heating in spherical tokamaks. Literature shows the different methods of their coupling. But 
their unstable regions are a major problem in the coupling. Padoba et al. [17] first time demonstrated the 
conversion from an O-mode to an X-mode by probe measurements of amplitude and phase of the wave field in 
the conversion region. Cairns et al. [18] used sheared magnetic field to calculate the linear conversion of the 
O-mode to the X-mode. Because electron Bernstein waves are analyzed as possible candidates for heating 
spherical tokamaks. Ram et al. [19] developed a kinetic model for studying the energy flow transfer between the 
X-mode, the O-mode and the EBW in the mode conversion region in the vicinity of the cold plasma upper 
hybrid resonance. Sodha et al. [20] derived the dispersion relation for modulational instabilities of a Gaussian 
electromagnetic beam propagating in the two modes: O-mode and X-mode, along the externally applied d.c. 
magnetic field, in a homogeneous magnetoplasma. 

The layout of this paper is as follow. Section 2 gives information about the mathematical model of O-mode 
and X-mode. This section presents the stability analysis and calculates the maximum growth rate. A brief 
summary of results and discussions is given in Section 3. Section 4 will conclude the results. 

2. Mathematical Model 
2.1. The Ordinary Mode (O-Mode) 
By using kinetic model, the general dispersion relation for perpendicularly propagating O-mode with 0k =



 in 
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collionless plasma is as follow [21] 
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Here 0
1

f
p

χ
⊥

∂
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 and 0f  is distribution function. 

The energy anisotropic Heaviside distribution function is [22] [23] 
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2
, ,p mT⊥ ⊥=
 

 

where T⊥  and T


 are the effective temperatures in the perpendicular and parallel directions defined as follows 
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and their corresponding integrations yields the results 
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Using Equations (1) and (2), we obtain 
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For principle harmonic i.e., n = 1, we get the following linear dispersion relation  
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We note that 
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 is the condition for instability. 

However, for higher harmonics, the linear dispersion relation takes the form 
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2.2. The Extra-Ordinary Mode (X-Mode) 
The general dispersion relation of the X-mode is as 

( )
( )
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By using the simple mathematical analysis, the dispersion relation of the X-mode is  
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In terms of A and β


, the relation can be expressed as  
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where 
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3. Results and Discussion 
In this section we will discuss the stability condition and calculate the growth rate for different combinations of 
A and β



. 
We first numerically discussed the results obtained for the O-mode from Equation (3). Lee [12] has calculated 

O-mode for three harmonics with the Maxwellian distribution function and concluded that the mode is stable for 
the Maxwellian distribution. Ichimaru [24] has discussed the O-mode for higher harmonics with nonlocal effects 
and confirmed the existence of Azbel-Karner resonance when the wave frequency is multiple of electron cy- 
clotron frequency. 

The banded emission is observed in plots of A vs ẑ  in the case of energy anisotropic Heaviside distribution 
Figure 1. This banded emission strongly agrees with the results of Iqbal et al. [10] where the anisotropic Fermi 
Dirac distribution function was used. The wave provides a wide range of stable and unstable regions. 

In Figure 1, the relation of β


 and anisotropy A is plotted, it provides a marginal threshold value. The  

dotted curve shows that 
2ˆ

1 Oz
A A

η
β

+ =


, this curve plays the role of threshold value between stable and unstable  

O-mode. Below the dotted curve the condition 
2ˆ

1 Oz
A A

η
β

+ <


 satisfies and mode is unstable which is presented 

by dashed curve. Above that dotted curve the condition is 
2ˆ

1 ,Oz
A A

η
β

+ >


 it means that there is a stable region  

i.e., the solid curve. The comparison of plots defines that for small 2ẑ  the β


 contains large value, this is the 
region where β



 is large enough to provide a growth rate much larger than the oscillatory frequency r iω ω  
so these results strongly agree with the environment i.e., solar wind. For large anisotropy, 10T T⊥ >



, or for 
large 10β >



, the O-mode instability is faster than the firehose instability. Larger values of β


 means low 
magnetic fields or more dense and hotter plasma, these conditions can come across at different altitudes in the 
solar wind regime. 

In series of Figures 2-5, growth rates of higher harmonics have been plotted. For analytical threshold we 
consider complex form ( )22 ,r iiω ω ω= +  in plots the solid lines represent the rω  and dashed shows the ,iω  
where 4.0β =



 for Figures 2-5. 
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Figure 1. Marginal stability condition.                                                

 

 

Figure 2. A = 0.1, 2 2
0 0.37pωΩ = .                                                                 
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Figure 3. A = 0.1 2 2
0 0.43pωΩ = .                                                                 

 

 

Figure 4. A = 0.6 2 2
0 0.9pωΩ = .                                                                 
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Figure 5. Growth rate for different A.                                                                 

 
In Figure 2, there is a stable form of O-mode but at A = 0.1 and 2 2

0 0.37pωΩ =  the harmonics start to 
intersect with each other. 

Figures 3-5 show the real part of dispersion relation and dependence of O-mode on magnetic field. As we 
increase values of magnetic field, 2 2

0 0.43pωΩ =  it becomes unstable and the first unphysical state generates as 
in Figure 3. These results also satisfy the marginal instability condition as discussed earlier numerically. In 
above plots, noticeable thing is the value of A = 0.1. The parallel streaming is dominating in O-mode and 
playing a role to destabilize the wave. The plasma beta is greater than one so these effects satisfy the high 
plasma beta regimes. 

On further increasing the magnetic field, unstable regions are obtained and at 2 2
0 0.6pωΩ =  and A = 0.9, the 

wave becomes totally unstable as in Figure 4. 
The growth rate shows that parallel streaming responsible to grow the wave. The complex part of the 

dispersion relation tells that the wave is growing in the gaps. Figure 5 shows the growing parts of the first two 
gaps. 

The O-mode instability divides in two branches for complex ω . First branch is oscillatory when 0iω =  and 
second branch is aperiodic or purely growing when 0rω =  as in Figure 6. Further increasing the value of  
parallel streaming, the aperiodic branch is obtained. For oscillatory branch the magnetic field plays a role to 
destabilize the wave and increase the growth of the wave. 

For second branch, which is aperiodic or purely growing, the trend totally reverses . The growth rate increases 
with the decreasing value of A. The result proves that the anisotropy stabilizes the purely growing part. Figure 7 
shows the increasing growth rate of aperiodic mode with decreasing value of A. The noticeable thing is that this 
part also satisfies the condition of the firehose instability i.e., T T⊥>



 and 1β >


. The purely growing wave is 
also called non-propagating firehose instability [25] The study of variation of anisotropy tells us that with the 
increasing value of A, the growth rate is also increases that means by increasing value of A destabilizes the 
wave. When T T⊥>



 and 1β >


, then wave becomes more unstable this result proves that O-mode instability 
satisfies the condition of the firehose instability. 

For number of harmonics, the X-mode is also unstable but for this mode perpendicular temperature is  
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Figure 6. A = 0.09 2 2
0 0.9pωΩ = .                                                                 

 

 
Figure 7. Growth rate for aperiodic branch.                                                                 
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dominating. The wave becomes unstable for larger value of A. In Figure 8 when A = 6.5, the wave is stable. But 
after that when A = 6.96, the harmonics overlap each other and wave starts to be unstable as in Figure 9. 
 

 

Figure 8. A = 6.5 2 2
0 0.09pωΩ =  4.0β = .                                                                 

 

 

Figure 9. A = 6.69 2 2
0 pωΩ  4.0β = .                                                     
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On further increasing the value of A the mode becomes more unstable as in Figure 10 the value of A is 8 and 
2 2
0 0.09pωΩ = . The solid curves show the real part of the wave and dashed curves show the growth of the said 

wave. The increasing value of A shows that in X-mode instability perpendicular streaming is dominating. At A = 
11, it becomes totally unstable Figure 11. 

Figure 12 discusses that the growth rate increases with the increasing value of anisotropy. Anisotropy de- 
stabilizes the X-mode, the X-mode follows the same trend as that of the O-mode. 

 

 

Figure 10. A = 8.0 2 2
0 0.09pωΩ =  4.0β = .                                  

 

 

Figure 11. A = 11 2 2
0 0.09pωΩ =  4.0β = .                                    
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Figure 12. Growth rate of X-mode for different values of A.                          

4. Conclusion 
O-mode instability, for principle harmonic, depends upon the magnetic field even it is weaker. The instability 
generates due to temperature anisotropy and free energy of anisotropy converted in the magnetic induction 
which is the reason of growing wave. The growth rate varies directly with the value of ratio of anisotropy. Here 
we have calculated the marginal threshold condition in form of plasma parameters A and β



 for principle 
harmonic. For higher harmonics, oscillatory branch satisfies the statement and purely growing part inverts the 
condition. It varies inversely with the anisotropy. The oscillatory and purely growing mode both satisfies the 
conditions of firehose instability i.e., T T⊥>



 and 1β >


 as 0B E  in O-mode. The stability analysis of the 
X-mode tells that perpendicular temperature is dominating. The mode is unstable for ,T T⊥ >



 according to 
geometry of the X-mode that is 0B E⊥  . Coupling of these two modes converts them into the Bernstein mode 
which is responsible of heating effects in tokamak. The O-X conversion is the method of achieving the 
Bernstein mode. 
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