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Abstract 
It is a long-held tenet of nuclear physics, from the early work of Rutherford and Soddy up to 
present times that the disintegration of each species of radioactive nuclide occurs randomly at a 
constant rate unaffected by interactions with the external environment. During the past 15 years 
or so, reports have been published of some 10 or more unstable nuclides with non-exponential, 
periodic decay rates claimed to be of geophysical, astrophysical, or cosmological origin. Deviations 
from standard exponential decay are weak, and the claims are controversial. This paper examines 
the effects of a periodic decay rate on the statistical distributions of 1) nuclear activity measure-
ments and 2) nuclear lifetime measurements. It is demonstrated that the modifications to these 
distributions are approximately 100 times more sensitive to non-standard radioactive decay than 
measurements of the decay curve, power spectrum, or autocorrelation function for corresponding 
system parameters.  
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1. Introduction 
1.1. Violations of the Radioactive Decay Law 
Radioactivity refers to the spontaneous transformation of one kind of atomic nucleus (designated a “nuclide” in 
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the terminology of nuclear physics) into a different kind of atomic nucleus, ordinarily with the emission of a he-
lium-4 nucleus (alpha particle), fast electron or positron (beta particle), high-energy electromagnetic radiation 
(gamma photon) or, more rarely, some other particle or cluster [1]. In a sample initially comprising N0 radioac-
tive nuclei, the number surviving after a time interval t is given by the exponential survival law—designated the 
Law of Radioactive Change by Rutherford and Soddy [2] 

0e t
tN N λ−=                                        (1) 

with decay rate parameter λ. 
The salient feature of standard radioactive decay, irrespective of the particular process by which the transmu-

tation of nuclear identity occurs, was described by Rutherford and Soddy in 1903 [2]. 

“The radioactive constant λ has been investigated under very widely varied conditions of temperature, and 
under the influence of the most powerful chemical and physical agencies, and no alteration of its value has 
been observed. The law forms in fact the mathematical expression of a general principle…” 

The Law of Radioactive Change and its underlying statistical foundations have been the basis for practical 
nuclear metrology for more than a century from the discovery of radioactivity up to present times. For example, 
taking account of the enormous developments in nuclear physics in the years following Rutherford and Soddy’s 
early discovery, one still finds in influential nuclear science textbooks a confirmation of the same general prin-
ciple that 

“No change in the decay rates of particle emission has been observed over extreme variations of conditions 
such as temperature, pressure, chemical state, or physical environment.” [3] 

Actually, there are a few known physical processes such as electron-capture decay [4] in which the decay rate 
of a particular radioactive nuclide depends on the electron density near the nucleus and can therefore be affected 
(usually very weakly) by its chemical environment [5] or (possibly very strongly) by laser-induced ionization [6]. 
These exceptional processes are reasonably well understood and in conformity with known physical laws. 
However, during the past 15 years or so, the constancy of the radioactive decay rate has been called into ques-
tion in other ways apart from these known exceptions on both theoretical and experimental grounds. 

With regard to theory, it has in fact been known since the early development of quantum electrodynamics that 
the exponential decay law is an approximate result that follows from neglect of the energy-dependence of cer-
tain terms in the Green’s functions from which the associated decay amplitudes are calculated [7]. The approxi-
mation leading to a constant decay rate (as well as to an energy level shift [8]) is essentially equivalent to the 
“Fermi golden rule” in first-order perturbation theory. Mathematically, poles of the Green’s functions in the 
lower half of the second Riemann sheet give rise to exponential decay, whereas the branch line gives rise to 
corrections to exponential decay [9]. Deviations from exponential decay derivable from quantum theory were 
predicted to occur for time intervals very short or very long compared with the mean lifetime. Experimental 
evidence of non-exponential decay in the atomic/molecular domain consistent with quantum theory was first 
reported in 1997 for quantum tunneling [10] and has since been reported for spontaneous transitions from ex-
cited states with emission of optical photons such as in [11]. 

However, more recent model-dependent calculations with a focus on the decay of nuclear states have pre-
dicted non-exponential behavior at intermediate times as well, including the possibility of oscillatory behavior 
throughout the entire decay transient [12]-[14]. Moreover, a number of experimental studies, of which [15]-[17] 
are representative, independently claimed to have observed non-exponential decay of diverse radioactive nuc-
lides, in particular beta emitters. Some of these publications were based on meta analyses of data collected years 
earlier by scientists at other laboratories, whereas other publications reported the outcomes of contemporaneous 
experiments. Collectively, the non-standard radioactive decay processes reportedly manifested time-varying de-
cay transients with geophysical or astrophysical periodicities including, for example, diurnal, monthly, seasonal, 
and annual variations. Several of the experimental papers attributed the alleged effects to novel interactions of a 
cosmological nature. Among the nuclides claimed to violate the standard radioactive decay law are 7 Be , 
54 Mn , 32Si , 55 Fe , 125m Te , 152 Eu , 154 Eu , 222 Rn , 226 Ra , 239 Pu , and perhaps others. 

Claims of radioactivity exhibiting periodic decay rates and extra-nuclear environmental correlations are high-
ly controversial, and refutations have been published in specific cases, e.g. [18]-[20]. At present, the issue re-
mains ambiguous but with far-reaching theoretical consequences. If reported phenomena like these turn out to 
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be physically real and not instrumental artifacts, an explanation will almost surely require an extension of the 
currently known laws of physics. 

1.2. Statistical Basis of a New Search Procedure 
Experimentally, claims of non-standard radioactive decay have been drawn primarily from perceived deviations 
from the exponential decay law (1), which follows from a Poisson distribution of decay events as expressed by 
the probability function 

( )Poi e !xt
t tP x xµµ µ−=                                    (2) 

for x decays within a counting interval (bin width) Δt, given a mean count 

0 e t
t N t λµ λ −= ∆ .                                     (3) 

The reported deviations were very weak, typically a few tenths of a per cent. 
A much more sensitive method by which to search for a time-dependent nuclear decay rate was recently pro-

posed by Silverman [21]. The method involves examining, not the decay transient itself, but the statistical dis-
tribution of decay events—i.e. the sample activity—recorded in a long time series of discrete counts. As shown 
in [21], a periodic time dependence in the intrinsic radioactive decay rate can lead to a pattern of maxima and 
minima in the theoretical probability density function (pdf) and therefore in the corresponding histogram of 
chronologically recorded experimental activities. 

In order to search for non-standard radioactive decay based on the statistical distribution of decay events, it is 
first necessary to understand better the statistics of standard radioactive decay (i.e. at constant decay rate). In 
Section 2 of this paper the statistics of a time series of radioactive decays are investigated in greater detail first 
for standard radioactive decay with constant decay rate λ (mean lifetime 1

0T λ−≡ ) and second for a variable 
decay rate ( )tΛ  

( ) ( )( )11 cos 2πt t Tλ αΛ = +                                 (4) 

with constant decay parameter λ, amplitude 1α  , and period T1. The probability density function (pdf) is 
examined as a function of the initial mean count per bin 0µ  (in effect, the strength of the source activity), the 
duration T of the time series of measurements, and, in the case of non-standard decay, the parameters α , T1 of 
the periodic component of ( )tΛ . 

In Section 3 the effect of a variable nuclear decay rate on a different statistical distribution—the distribution 
of mean lifetime measurements—is examined and shown to provide another sensitive statistical method by 
which to search for non-standard radioactive decay. This novel method of determining nuclear half-lives was 
first discovered empirically [22] and subsequently derived and explained theoretically [23]. For radioactive de-
cay in accord with the Rutherford-Soddy law, the distribution of mean lifetime measurements is a symmetric 
Cauchy function centered on the true value of the mean lifetime T0, which is related to the half-life τ  by 

( )0 ln 2 ln 2Tτ λ= = .                                   (5) 

For a time-dependent decay rate, however, the distribution is displaced, widened, and no longer of Cauchy form. 
In Section 4 the effects of a time-varying decay rate on the power spectrum and autocorrelation function of a 

time series of nuclear activities are discussed. 
Conclusions are summarized in Section 5. 

2. Distribution of Nuclear Decay Events 
2.1. Radioactivity at Constant Decay Rate λ 
The quantitative detection of radioactivity is ordinarily made by counting emitted particles in discrete time win-
dows or bins. (Sometimes the detected signal is an ionization current which, when necessary, can be converted 
to a particle count per unit time.) In nuclear terminology “activity” ( )x t  is proportional to the count rate 

( ) ( )( ) ( )d dx t c N t t c N tλ= − = ,                               (6) 

where the constant c denotes the instrumental detection efficiency. The fundamental SI unit of activity is the 
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Becquerel (1 Bq = 1 decay/s). As used in this paper—the primary objective of which is theoretical, i.e. to eluci-
date the statistics of nuclear decay—the bin width Δt is taken to be 1 time unit (e.g. second, hour, day, etc.), c is 
taken to be 100%, and the activity xt at discrete time t is therefore a pure number (no units or dimensions) equal 
to the number of counts in Δt. The temporal index t is an integer denoting the number of unit intervals Δt. Simi-
larly, the total duration TΔt of counting is simply the integer T. 

From a statistical perspective the counting of particles emitted from a radioactive source that decays at a con-
stant rate is tantamount to sampling a population of independent Poisson variates of some mean value tµ  given 
by Equation (3). Each measurement of activity constitutes an independent sample. The activity tx  at time t is 
then a random variable symbolized by the expression ( )t tx Poi µ= . In a Poisson distribution the variance 

( )22 xσ µ= −  equals the mean xµ = , where the angular brackets  signify an expectation value. This 
paper is concerned primarily with the statistics resulting from a high initial activity and long counting time such 
as employed in many measurements in nuclear metrology [24]. For a Poisson population with mean 1µ  , the 
discrete pdf (2) is very closely approximated by a Gaussian (or normal) pdf 

( ) ( ) ( )( )1 2 22 2 2
G , 2π exp 2P x xµ σ σ µ σ

−
= − −                         (7) 

with 2σ µ= . A normal variate is symbolized by ( )2,x N µ σ= . Thus the count xt from a high-activity ra-
dioactive source may be represented as a Poisson-Gauss (PG) variate ( ),t t tx N µ µ= . 

Over a time interval 0T T t> ∆ , the T independent samples { }tx  ( )0,1, , 1t T= −  are all, to good ap-
proximation, variates from the same Poisson population. However, when the total duration T of counting ex-
tends over a substantial part of one or more half-lives, the activity measurements are no longer from the same 
Poisson population because the mean count per bin tµ  is decreasing in time. The time series of samples { }tx  
constitute a “mixed distribution” (also referred to in the statistical literature as a “contagious distribution” [25]). 
The normalized pdf of the mixed Poisson-Gauss (MPG) distribution describing radioactive decay with constant 
decay parameter takes the form [21] 

( ) ( )( )1 2

MPG 0 0 0
0 0

1 1, , exp e 2 e
2π e

T
t t

tt
p x T x

T
λ λ

λ
µ λ µ µ

µ

−
− −

−=

= − −∑                 (8) 

with 0 0N tµ λ= ∆  from Equation (3), or, equivalently, 

( ) ( )( )1 20
MPG 0 0

0

e1, , exp e e 2
2π

tT
t t

t
p z T z

T

λ
λ λµ

µ λ µ
−

−

=

= − −∑                    (9) 

under a transformation 

( ) ( )( ) ( )d
dZ X

x z
p z p x z

z
=                                (10) 

to the dimensionless variate 0z x µ=  whose range, 0 1z≤ ≤ , is narrower and more convenient compared 
with 00 x µ≤ ≤  (since 0 1µ  ). Note that the practical upper limit to the range is approximate because x 
(and therefore z) are random variables. Thus, although 0tx µ≤ , an individual sample xt at any time t could 
exceed 0µ . 

In marked contrast to the pictorial representations of Poisson distributions frequently seen in nuclear science 
textbooks as well as in the research literature, the true pdf (8) or (9) of a long time series of radioactive decays 
bears no resemblance to a Poisson distribution. Figure 1 shows the variation in form of pdf (9) for radioactive 
decay with lifetime T0 = 100 and initial mean activity (A) μ0 = 100 or (B) μ0 = 1000 as the number of samples 
comprising the time series increases from T = 1 (plot a) to T = 450 (plot g). Plot a is the distribution that would 
result from drawing numerous samples all from a pure Poisson population of initial mean activity μ0. However, 
in a time series of radioactive decay measurements, ordinarily only the first measurement is drawn from distri-
bution a, and each subsequent measurement is drawn from a residual population of lower mean activity. As the 
number of measurements increases and the residual mean activity decreases, the pdf of the distribution skews 
markedly to the left—i.e. in the direction of decreasing μt. 

Although there is no closed form for the mixed Poisson-Gauss pdfs (8) or (9), a very accurate expression can 
be derived for ( )0 , 1Tµ   by approximating the sum in (8) by the integral 
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( ) ( )( )2

MPG 0 0 00
0

1 1, , exp e 2 e d
2π e

T t t

t
f x T x t

T
λ λ

λ
µ λ µ µ

µ
− −

−
= − −∫                (11) 

(since the sum extends over all integer values of t from 0 to 1T T− ≈  in unit intervals t∆ ), and then trans-
forming the integration variable by 0e ty λµ −=  to obtain 

( ) ( )2

0

0 23 2
MPG 0 1e

1 1 1, , e d
2π T

y x y
Tf x T y y

T Txλµ
µ λ

λ λ−
− −−= →∫  ,                (12) 

which reduces to a x−1 power-law in the long-time limit. The exact calculations (solid curves) of pdf (9) in Fig-
ure 1(A) and Figure 1(B) are identically color coded according to duration of sampling T. Superposed on the 
exact plots of 1A, however, are the values (dotted black curves) obtained from the integral approximation (12). 
The visually perfect overlap illustrates how closely the integral expression (12) approximates the exact expres-
sion (9). (For easier color identification, the superposed black plots of pdf (12) were omitted from Figure 1(B), 
but the approximate and exact plots overlapped just as closely as in Figure 1(A)). With increasing T, the plots in 
Figure 1 (e.g. plots e, f, g) increasingly manifest the long tail of the x−1 power law (12) before plunging to 0 at x 
= 0. It is interesting to note that the integrand in Equation (12) has the form (to within a normalization constant) 
of an Inverse Gaussian (also known as a Wald) distribution, which arises in the analysis of Brownian diffusion 
processes [26]. 

In comparing corresponding plots (i.e. of the same color) in Figure 1(A) and Figure 1(B), it is to be noted 
that the pure Poisson distribution a (red) of mean activity μ0 = 1000 is narrower than Poisson distribution a (red)  
 

 

Figure 1. Variation of probability density ( )MPG 0 0, ,p z T Tµ  (solid 

curves) and integral approximation ( )MPG 0 0, ,f z T Tµ  (dotted curves) 
as a function of normalized activity 0z x µ=  for initial mean activ-
ity (A) μ0 = 100, (B) μ0 = 1000, lifetime T0 = 100, and time series du-
ration (i.e. number of samples, each from an independent Poisson 
distribution) T = (a) 1 (red), (b) 50 (blue), (c) 100 (green), (d) 200 
(orange), (e) 300 (violet), (f) 400 (cyan), (g) 450 (black). T0 and T are 
in units of sampling time Δt. 
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defined by μ0 = 100, in contrast to what one might expect, since the variance of a Poisson distribution equals the 
mean μ0. The explanation is that the distributed variate in the figure is not x but 0z x µ= . The maximum and 
width of pdf (9) are respectively 1 2

0max µ∝ , 1 2
0width µ−∝ , and therefore the ratio ( ) 0max width µ∝ . The 

sharpness of a PG distribution in z, therefore, increases with the initial mean activity μ0. Apart from the two 
Poisson plots a, an examination of the other corresponding plots in Figure 1(A) and Figure 1(B) suggests that, 
all other parameters remaining fixed, a higher initial activity leads to a more skewed pdf with flatter peaks and 
steeper rise and decline. This observation is basically true, but will be formulated more quantitatively, when the 
moments of the distribution are calculated. 

Figure 2 shows the variation in MPG probability density for a fixed total counting time T as the initial source 
activity increases from μ0 = 102 (red) to μ0 = 105 (orange). The higher the value of μ0, the more sharply the pdf 
sides drop to the horizontal baseline, as indicated in Figure 1. The gray curve traces the pdf (12) in the power 
law limit. The increasingly sharp drop in the sides of the MPG pdf with increasing mean initial activity is attri-
butable entirely to the Gaussian exponent in relations (8) or (9). In the limit of a very high value of μ0, the func-  

tion ( )2

0
1exp e e
2

t tzλ λµ − − − 
 

 acts like a Dirac delta function, dropping rapidly to zero at all values of z ex-  

cept in the immediate vicinity of e tz λ−=  over the range 0T t≥ ≥  of sampling times t. Thus, the expected 
limits in Figure 2 would be 0e 1=  and 1e e ~ 0.37Tλ− −= =  as shown. 

The apparent oscillatory structure of the orange plot (μ0 = 105) in Figure 2 requires an explanation since there 
is no intrinsic periodicity in the case of a constant decay rate λ. (We will come to the statistics of a periodic de-
cay rate in Section 3.) From pdf (9) one infers that the center-to-center displacement of the PG distributions of 
two samples taken respectively at times tn and 1n nt t t+ = + ∆  is ~z tλ∆ ∆ , whereas the full width (standard 
deviation) of either distribution is 1 2

0~ 2zδ µ . Therefore the individual distributions in the sum in expression (9) 
are resolved when z zδ∆ >  or 

1 2
0

0

1
2

t
T

µ ∆
>                                      (13) 

in terms of the lifetime 1
0T λ−= . Figure 3 shows the results of superposing 1 (red), 2 (green), 3 (blue), and 5 

(black) time-sequential Poisson-Gauss distributions of initial activity μ0 = 105 of a radioactive source with life-
time T0 = (A) 50, (B) 125, and (C) 200. The increasing lifetimes lead to a progression of MPG distributions with 
(A) completely resolved, (B) partially resolved, and (C) unresolved individual PG maxima. Application of crite-
rion (13) to Figure 3(A) yields ( )1 2 5/2

0 02 10 1 100 3.2 1t Tµ ∆ = = >  (resolved maxima), whereas application to  
 

 

Figure 2. Variation of probability density ( )MPG 0 0, ,p z T Tµ  as a 
function of normalized activity 0z x µ=  for lifetime T0 = 100, time 
series duration T = 100, and initial mean activity μ0 = 102 (red), 103 
(blue), 104 (black), 105 (orange). The apparent oscillatory structure of 
the plot in orange arises from the superposition of Poisson-Gaussian 
distributions of width narrower than the separation of their maxima. 
The plot in gray shows the limiting power law density (12) for high- 
activity and long-duration ( )0 0, 1T Tµ  . 
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Figure 3. Variation of probability density ( )MPG 0 0, ,p z T Tµ  as a 
function of normalized activity 0z x µ=  for initial mean activity μ0 
= 105, lifetime T0 = (A) 50, (B) 125, (C) 200, and number of Pois-
son-Gauss (PG) samples (i.e. duration) T = (a) 1, (b) 2, (c) 3, (d) 5. 
As T0 increases, the width of each sampled PG distribution widens 
relative to the sampling interval and the distributions overlap when 

1 2
0 02 1t Tµ ∆ >  as seen in the progression from (A) to (C). 

 
Figure 3(C) yields ( )1 2 5/2

0 02 10 1 400 0.8 1t Tµ ∆ = = <  (unresolved maxima). 
We conclude this section by examining the statistical moments of a mixed Poisson-Gauss random variable 

with probability density (8), which can be obtained by summation of the moments of the independent PG va-
riates. The kth moment k

tx  ( )0,1,2,k =   of a PG variate observed at time t can be expressed in the form 
[27]. 

( ) ( ) 21 2 21 e d
2π

k kk k zt
t t tm x z z

µ
µ

∞ − −

−∞
= = +∫ .                        (14) 

Summation of (14) over the range of t and expansion of ( )1 21
k

t zµ−+  in a binomial series leads to the kth mo-
ment of the MPG random variable 
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( ) ( ){ }
1

1 1 21
2 2

0 1
0 0 2

1 1 1 1 e2 1 1
22π

1 e

k j TjT k k j jk
k t

k jt j

k jM m
jT T

λ

λ
µ

 − − −−  −

 − − = =  

 
   + − = = Γ + −         − 

∑ ∑            (15) 

in which ( )xΓ  is the standard gamma function, and the last factor in Equation (15) arises from the sum of a 

geometric series 
11
2

0
e

T k j t

t

λ − − − 
 

=
∑ . It is seen from (15) that only even values of the index j contribute to the MPG 

moments. 
Expansion of Equation (15) leads to the series 

( ) ( )

( )
( )( )( ) ( )

( )

1 2
0

21 2
0 0

1 1 2 31 e 1 e 1 e
1 e 2 81 e 1 e

k T k Tk k T

k k k k

k k k k k k
M

T

λ λλ

λ λ λ

µ
µ µ

− − − −−

− − − − −

    − − − − − − −
= + + +         − − −       

       (16) 

in which sequential terms decrease by powers of 1
0µ
− . Consequently, under conditions of high initial activity, 

0 1µ  , the most significant contribution by orders of magnitude is just the first term. The first term, itself, can 
be further approximated, depending on the values of λ and λT compared with 1: 

( ) ( )

( )

( )

10

0
0

0

1 e 1
1 e~ 1, 1
1 e

1, 1

k
k

k k T
k

k k
k

T
T

M T
T

T
k T

λ

λ

λ

µ λ
µ µ λ λ

µ λ λ
λ

−−

−

−


−

 − →  −  





 

 

                    (17) 

From the moments Mk given by (15), one can calculate the variance 2σ  (or standard deviation σ ), 

( )22 2
1 2 1x M M Mσ ≡ − = − ,                              (18) 

the skewness Sk 

( )3
31 3 2 1 1

3 3

3 2x M M M M M
Sk

σ σ

− − +
≡ = ,                         (19) 

and kurtosis K 

( )4
2 41 4 3 1 2 1 1

4 4

4 6 3x M M M M M M M
K

σ σ

− − + −
≡ = ,                     (20) 

which are the statistics most commonly used to characterize a probability distribution in atomic and nuclear 
physics. Skewness describes the asymmetry about the mean, and kurtosis is a measure of the concentration of 
probability around the shoulders (i.e. at about ±1σ from the mean) and tails. A distribution with high kurtosis 
would be sharply peaked with fat tails, i.e. with higher than normal probability of outliers (such as produced by 
a Cauchy distribution). Thus, the shapes of the pdfs plotted in Figure 2 appear to have a higher skewness and 
lower kurtosis than a normal or Poisson distribution whose statistics, for comparison, are 

1 2
Gauss Poisson

1
Gauss Poisson

0

3 3 .

Sk Sk

K Sk

µ

µ

−

−

= =

= = +
                             (21) 

Explicit expressions for relations (18)-(20) are complicated and will not be given here. It is to be noted, how-
ever, that from the form 0

k
kM µ∝  of (17), the initial activity 0µ  divides out of the expressions for skewness 

and kurtosis, which therefore depend only on λ and T. Figure 4 shows plots of the standard deviation, skewness, 
and kurtosis as a function of duration T for fixed decay rate 310λ −= . For total sampling time T short with re-
spect to mean lifetime ( )1Tλ < , the three functions all increase approximately linearly with T; kurtosis remains 
below 3, the Gaussian standard of comparison. For large durations T such that ( )1Tλ  , skewness and kurtosis 
again vary roughly linearly with T, although at different rates than previously; the standard deviation has  
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Figure 4. Plot of (A) standard deviation (black), (B) skewness (red), 
and (C) kurtosis (blue) of a mixed Poisson-Gauss distribution as a 
function of total measurement time T for decay rate λ = 10−3. 

 
reached a maximum at around ~ 3Tλ  and then decreased at an approximately linear rate. The decrease in σ  
with T in the domain of high T is consistent with the narrowing of the peak of the probability density (9) plotted 
in Figure 1(A) and Figure 1(B) (e.g. plots e, f, g) as the pdf approaches the limiting expression (12). 

2.2. Radioactivity at Time-Varying Decay Rate ( ) ( )( )11 cos 2t t TΛ = + πλ α  
A characteristic of non-standard radioactive decay predicted or reported in publications cited in Section 1 is the 
harmonic variation of the decay rate. This feature leads to a time-dependent mean activity of the form 

( )( )1
0

1 cos 2π

0 e
t t T

T
t

α
µ µ

− +

=                                  (22) 

in the simplest case of a single harmonic component. The statistical consequences of relation (22) are examined 
in detail in this section for various relative values of the lifetime T0, periodicity T1, and count duration T (which 
is equal to the number of PG samples in the time series), and for amplitude 1α < . The latter condition on am-
plitude—in particular the stronger statement 1α  —must obviously pertain, since otherwise violations of the 
Rutherford-Soddy law would have been noticed unambiguously many years ago. 

Figure 5 shows the variation in the MPG probability density 

( ) ( )( )1 2
MPG 0 0 1

0

1 1, , , , exp 2
2π

T

t t
t t

p x T T T x
T

µ α µ µ
µ

−

=

= − −∑ ,                  (23) 

with μt given by Equation (22), as a function of normalized activity 0z x µ=  for initial mean activity μ0 = 104, 
lifetime T0 = 100, duration T = 100 and period T1 = (A) 10, (B) 50, (C) 200. In each panel the color of the indi-
vidual plots denotes the value of the amplitude:  0α =  (red), 0.005 (blue), 0.010 (green), 0.015 (black). The red 
curves serve as standard radioactive decay baselines against which to compare the visibility of the harmonic 
deviations. One sees from the progression of panels that the presence of a harmonic component to the decay rate 
leads to oscillations in the probability density (23). The amplitude of the oscillations increases with increasing 
α  and decreases with increasing T1. 

The explanation of the second property is reasonably self-evident from the form of expression (22). In the li-
miting case of 1T T , the maximum value of the argument of the cosine is 12π 1T T  , and therefore the 
mean activity would appear to vary in accord with the Rutherford-Soddy law, ( ) 01

0~ e t T
t

αµ µ − + , but with a de-
cay rate given by ( )1λ α λ′ = + . 

The manifestation of the first property may likewise seem unsurprising, but there is a subtlety to the question 
why oscillations occur in the first place. It is important to keep in mind that the function ( )MPG tp x  in Equation  
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Figure 5. Variation of probability density ( )MPG 0 0 1, , , ,p z T T Tµ α  
as a function of normalized activity 0z x µ=  for initial mean activ-
ity μ0 = 104, lifetime T0 = 100, time series duration T = 100, and pe-
riodicity T1 = (A) 10, (B) 50, (C) 200 with amplitude α = 0 (red), 
0.005 (blue), 0.010 (green), 0.015 (black). 

 
(23)—or the transformed equivalent ( )MPG tp z —is a probability density function; i.e. it is the theoretical ex-
pression against which an empirical histogram of discrete nuclear disintegrations would be compared. Statisti-
cally, a histogram is a plot of frequency of occurrence against category in which all the events that make up a 
particular category (e.g. number of nuclear decays that fall within a certain range) may have been recorded at 
different times throughout the total period T of counting. In other words, reference to timing is ordinarily com-
pletely lost in a histogram. (This point was of major significance in one of the refutations to previous claims of 
observed non-standard nuclear decay [18].) Why, then, do oscillations occur in the plots of Figure 4? Note that 
the horizontal axis is not a time axis, and the period of the oscillations is not T1. 

The occurrence and number of periodic maxima and minima in a plot of pdf (23) as a function of activity can 
be accounted for by an explanation similar (but not identical) to the explanation of oscillatory structure in the 
orange plot of Figure 2. Because 0 1µ  , the Gaussian exponential in (23) acts like a Dirac delta function, va-
nishing rapidly for all values of x except in a very narrow time interval about those specific times t when tx µ= , 
or equivalently when 
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( )( )1
0

1 cos 2π

0

 e
t t T

Txz
α

µ

− +

= = .                                (24) 

Thus a histogram governed by pdf (23) with 0 1µ   actually does to a significant extent preserve temporal in-
formation regarding disintegration events. This point is demonstrated in Figure 6. 

Figure 6(A) shows two plots of the normalized mean activity 0tµ µ  as a function of time—i.e. the decay 
curve—for measurement conditions corresponding to Figure 5(A). The red transient in Figure 6(A) is the decay 
curve that would be produced by a time-varying radioactive decay rate with harmonic amplitude 0.05α =  and 
period T1 = 10. The horizontal solid black lines mark the numerical values of the activities z corresponding to 
the nine peaks in Figure 5(A). It is seen that these lines intersect the red decay curve along segments that, at the 
scale of the figure, look nearly flat. Figure 6(B) shows four of the intersections more clearly over the expanded 
time range from 50 to 90 time units. The horizontal lines intersect each horizontal sinusoidal segment precisely 
at the midpoint, i.e. at the point of inflection where the curvature changes from positive to negative. In other 
words, the most significant contributions to the sum in pdf (23) come from narrow regions about stationary 
points of the decay transient. 
 

 
Figure 6. (A) Plot of mean activity 0tµ µ  as a function of time t 
for μ0 = 104, T0 = 100, T1 = 10, T = 100 and amplitude α = 0.05 (red), 
0.015 (blue) (displaced downward by 0.2 for visbility). Horizontal 
solid black lines mark the values of activity 0z x µ=  of the 9 peaks 
in Figure 5(A). (B) Expanded portion of panel A for the time interval 
between 50 and 90 units. Each peak activity intersects the 0tµ µ  
curve at the midpoint of a horizontal sinusoid where the cuvature 
changes from positive to negative, i.e. at a point of inflection.  
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Another important feature to note is illustrated by the blue trace in Figure 6(A) (which has been displaced 
downward by 0.2 for visibility). This is the decay curve associated with the pdf of largest harmonic amplitude 

0.015α =  shown in Figure 5(A). Although the periodic structure of the pdf in Figure 5(A) is strikingly large, 
the oscillations at period T1 = 10 in the blue transient of Figure 6(A) are barely visible. This suggests that the 
distribution of decay events is a much more sensitive indicator of radioactive decay with time-dependent decay 
rate than is the decay transient (21). 

It is a well-known principle of time series analysis that one cannot measure the period T1 of a harmonic com-
ponent if the duration T of the series is shorter than the period ( )1T T< . However, it is possible to detect the 
presence of such a component. For example, a partial-period component, if present in the decay rate of a ra-
dioactive nuclide, would be equivalent to a trend and therefore contribute to low-frequency oscillations in the 
power spectrum. Such a signal was searched for (but not found) as part of a recent comprehensive experimental 
investigation of the β +  decay of 22Na [18]. The presence of a partial-period component is also manifested in 
the distribution of decay events, as shown in Figure 7 for initial mean activity μ0 = 106, lifetime T0 = 1000, 
measurement time T = 1000 and increasing periods T1 = (A) 1500, (B) 2000, (C) 4000. The plots are col-
or-coded for amplitude: 0α =  (red), 0.05 (blue), 0.10 (green), 0.2 (black). One sees from the progression of  
 

 

Figure 7. Variation of probability density ( )MPG 0 0 1, , , ,p z T T Tµ α  
as a function of normalized activity 0z x µ=  for initial mean activ-
ity μ0 = 106, lifetime T0 = 1000, time series duration T = 1000, and 
periodicity T1 = (A) 1500, (B) 2000, (C) 4000 with amplitude α = 0 
(red), 0.05 (blue), 0.10 (green), 0.2 (black). 
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panels that relatively high amplitudes α  are required to see structure above the red base curve, and that this 
structure diminishes as the ratio 1T T  increases. As a practical matter, the period T1 need not be a significant 
experimental limitation, since it is often possible to increase the duration T of the time series. 

3. Statistics of Nuclear Lifetime Measurements 
3.1. Distribution of Two-Point Lifetimes at Constant Decay Rate λ 
A standard procedure for measuring the half-life τ  (5)—or, equivalently, the lifetime T0 (inverse decay rate)— 
of a radionuclide is to record the decay curve as a function of time. For a single unstable state decaying expo-
nentially, a log plot generates a straight line from whose slope the lifetime can be determined. An alternative 
procedure for determining nuclear lifetimes is based on the statistical distribution of two-point lifetime estimates 
obtained from a time series of measured activities ( )i iA A t= , it i t= ∆  ( )1,2, ,i T=   in the following way 
[23]. 

For each pair of activities ( ),i jA A  corresponding to measurement times j it t> , where ( 1, , 1;i T= −  
)1, ,j i T= +  , 

• calculate the lifetime from the two-point relation 

( ) ( )( )          0
ln

i j
i j i j j i

i j

t
T t t t

A A
= ≡ − > ;                             (25) 

• make a histogram of the ( )1 2tN T T= −  estimates given by Equation (25); 
• locate the center of the resulting distribution. 

Under the conditions that (1) the number of decays per sampling interval Δt is sufficiently high, (2) the num-
ber of sequential activity measurements is sufficiently large, and (3) the lifetime is sufficiently long compared to 
time intervals between pairs of samples, the probability density of two-point estimates is virtually indistinguish-
able from a Cauchy distribution centered on the true lifetime T0. 

Given that the activities Ai are (to excellent approximation) Poisson-Gauss (PG) variates, and that the inverse 
of the logarithm of the ratio of PG variates involves complicated transformations of the Gaussian probability 
density, it is perhaps highly surprising that the distribution of the variates Tij turns out to be described by a sim-
ple, symmetric Cauchy function. Actually, the exact density function is far more complicated than a Cauchy 
function, but reduces to the latter under the previously enumerated conditions, as derived in [23]. The derivation 
will not be repeated here, but a more exact expression for the theoretical pdf will be given below, followed by a 
brief explanation of how it was obtained and how it differs from the pdf published in [23]. 

Let θ be a continuous random variable whose realizations are the samples Tij in the population of Nt samples 
obtained from the sequential measurement of a time series of T activities. And let J be the “multiplicity” of a 
measurement, whose significance will be explained shortly. Then the probability density function of two-point 
lifetime estimates takes the form 
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∑ ∑

                (26) 

which will be denoted simply by ( )p θΘ  when there is no ambiguity regarding parameters. 
The derivation of relation (26) involves three sequential transformations of the pdfs of functions of the va-

riables ( ) ( ),X X XX Poi Nµ µ µ= ≈  and ( ) ( ),Y Y YY Poi Nµ µ µ= ≈ . 
Step 1: ( )1 ,Z X Y X Y= . 
Step 2: ( )2 1lnZ Z= . 
Step 3: 1

3 2Z Z −= . 
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in which the transformation at each step is implemented by a relation of the form of Equation (10) 

( ) ( ) ( )( ) ( )dd
d dZ Z Z

f zz
p z p z p f z

z zβ α α

βα
β α β

β β

= =                       (27) 

where ( )z f zα β= . Specific expressions for transforming functions of Poisson and Gaussian variates are given 
in [27] and [28], and tested experimentally by means of branched nuclear decay processes in [28]. 

There are three principal differences between Equation (26) and the corresponding pdf published previously 
in [23]. First, the variate in (26) is “lifetime”, not “half-life”, whereupon various factors of ln2 are absent. 
Second and of greater significance, the pdf of the quotient of two random variables (Step 1 above) was derived 
more exactly in (26) than in the pdf in [23]. Approximations were made in [23] to show how an empirically dis-
covered procedure for measuring nuclear half-lives resulted in a Cauchy distribution. The intent of the present 
paper is entirely different—namely, to examine the statistical basis of a measurement procedure by which to 
search for violations of a fundamental physical law, i.e. the law of radioactive decay. The two expressions for 
pdf ( )p θΘ  lead to nearly identical numerical results in the case of radioactive decay at constant decay rate, but 
small discrepancies could occur for radioactive decay at time-varying decay rate. 

The third difference is the inclusion of the multiplicity J in (26), which is absent from the analysis in [23]. 
Multiplicity refers to the number of activity measurements taken within a counting interval Δt and averaged to  

give the mean activity ( )1

1

J
j

t t
j

x J x−

=

= ∑  at time t. If the activity xt is a PG variate of variance tµ , then xt  is a  

PG variate ( ),t t tx N Jµ µ=  of variance t Jµ . Although the random variable θ for the two-point lifetime is 
not even approximately a PG variate, multiple sampling and averaging can nevertheless have a dramatic effect 
on reducing the width and altering the shape of the density function (26), as illustrated in Figure 8. 
 

 
Figure 8. Variation of two-point lifetime probability for μ0 = 106, T0 
= 500, T1 = 100, T = 250, and multiplicity J = (A) 1, (B) 25. Each 
panel shows two theoretical plots (solid lines) color-coded for ampli-
tudes α = 0 (red), 0.001 (black) and two histograms (points) generat-
ed from activities simulated by a random number generator of va-
riates ( ),t tN Jµ µ  for 1,2, ,t T=  . The total sample size is  

( )1 2 31,125tN T T= − = ; bin width is 0.0125. 
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The red plots in Figure 8 show the variation of the theoretical pdf ( )p θΘ  (solid lines) for standard radioac-
tive decay ( 0α = ) with initial mean activity μ0 = 106, lifetime T0 = 500, number of time bins T = 250, and sam-
pling multiplicity J = (A) 1 and (B) 25. From the relation following Equation (25) the total number of two-point 
estimates Tij is Nt = 31,125. The solid red traces in Figure 8(A) and Figure 8(B) strongly resemble Cauchy 
functions (and pass chi-square tests of goodness of fit). The trace in Figure 8(B), however, is narrower by a 
factor of about 5 (determined from the width at half-maximum). Superposed on the theoretical traces are com-
puter-simulated histograms (red points) obtained by (1) generating 250 PG variates ( ) ( ),  1, 2, , 250t tN tµ µ =   
for Figure 8(A) and (2) averaging 25 variates ( ),t tN µ µ  at each t over the preceding range for Figure 8(B), 
and then applying relation (25). As seen in the figure, the predicted and simulated distributions agree very 
closely in both panels, but the scatter of points about the theoretical curve is much less in Figure 8(B). The 
black plots will be discussed in the next section. 

An important point worth noting because of its experimental consequences is that a Cauchy distribution, in 
contrast to Poisson and Gaussian distributions, has no finite moments (apart from the 0th moment, which equals 
1 as required by the completeness relation for probability). The moment-generating function does not exist, and 
although the characteristic function (Fourier transform of probability density) does exist, it does not lead to finite 
moments [29]. One could, of course, calculate a sample mean and variance for any finite sample of data go-
verned by a Cauchy distribution, but repeated sampling would not result in reduced variance and more sharply 
determined mean. It may be surprising to many physicists, but the mean of 100 measurements of a Cauchy-dis- 
tributed variate is no more precise than 1 measurement [27]. The reason for this striking violation of the Central 
Limit Theorem [30] is due to the so-called fat tails of the Cauchy distribution. Whereas a Gaussian function falls 
off exponentially with distance from the mean, the tails of a Cauchy function ( ) ( ) 121f θ θ

−
∝ +  fall off more 

slowly as a power law ( ) 21f θ θ −∝ . Thus, the higher probability of obtaining an outlier upon repeated sam-
pling effectively negates the benefit accruing from multiple samples. A Cauchy distribution, however, does have 
a finite median (and variance of the median). The median, in fact, is the statistic corresponding to the center of 
the histogram of two-point lifetime measurements. 

In view of the preceding remarks, the question may arise as to why, if relation (26) reduces for all practical 
purposes to a Cauchy distribution in the case of standard radioactive decay, does a multiplicity 1J >  sharpen 
the distribution, as is evident in Figure 8(B). The answer is this: the narrower distribution shown in Figure 8(B) 
did not arise because the statistics of the population { }ijT  distributed in Figure 8(A) are now better known, but 
because multiple sampling increased the precision of knowledge of the activities { }tA , thereby creating a new 
and different population of two-point lifetime measurements { }ijT . 

3.2. Distribution of Lifetime Measurements at Variable Decay Rate 
( ) ( )( )11 cos 2t t TΛ = + πλ α  

The derivation of pdf (26) does not depend on the form of the decay rate, but is valid for any non-pathological 
functional form for the mean activity tµ , including relation (22). Figure 8 and Figure 9 illustrate compara-
tively the shape of the plots (solid black) of pdf (26) for a suite of increasing values of amplitude α  for the 
experimental parameters cited previously for the red plots of Figure 8. 

Figure 8(A) and Figure 8(B) illustrate the advantage of multiple sampling and averaging for discerning the 
difference between standard nuclear decay (solid red) 0α =  and non-standard nuclear decay (solid black) with 
harmonic amplitude 0.001α =  and period T1 = 100. Whereas the two plots are virtually indistinguishable in 
Figure 8(A) ( )1J = , they are observably different in Figure 8(B) ( )25J = . Superposed over each theoretical 
plot are points comprising the corresponding computer-simulated histograms constructed in the manner de-
scribed in the previous section. Agreement between the black histogram and black theoretical curve bear out the 
statement above that the validity of pdf (26) is not limited to nuclear decay at constant decay rate. A minor point 
to note is that the plots in Figure 8 (and also in Figure 9) are of probability, rather than probability density. The 
former differs from the latter only by a constant factor equal to the histogram bin width Δ = 0.125. In plots of 
histograms the ordinate is usually probability, but this distinction is immaterial since only relative shape, and not 
scale, is of importance here. 

Figure 9 shows the evolution of the distribution of two-point lifetimes (black) with increasing α  for fixed 
multiplicity J = 25 (other parameters also remaining fixed) in comparison with the distribution for standard ra-
dioactivity with 0α =  (red). To enhance clarity of the figures, the points of computer-simulated histograms  
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Figure 9. Variation of two-point lifetime probability (solid black) 
with harmonic amplitude α = (A) 0.003, (B) 0.005, (C) 0.010 for the 
same parameters as in Figure 8(B). Superposed is the corresponding 
pdf (solid red) for standard radioactive decay (α = 0). 

 
were omitted although, as in Figure 8, the histograms were generated and agreed closely with theoretical pre-
dictions. With increasing values of α , the black curves become increasingly bimodal and distinguishable from 
a Cauchy distribution. The sensitivity of this statistical method for probing non-standard radioactive decay is 
seen to be of order 10−3 in the figure, but higher sensitivities are achievable. 

Figure 10 shows the content of pdf (26) from a different perspective: the variation in shape as a function of 
multiplicity J for fixed amplitude α =  (A) 10−3, (B) 5 × 10−4, (C) 0. In each panel, the plots are color-coded for 
increasing values of J from a minimum of 1 to maximum of 225. Comparison of plots of the same color shows 
that with increasing J, the differences between distributions for non-standard and standard radioactive decay 
becomes readily discernible even at values of the harmonic amplitude α  of order 10−4. 

4. Power Spectrum and Autocorrelation Function 
Deviations from standard nuclear decay due to a periodic decay rate of amplitude 1α   are scarcely discerni-
ble, if at all, in the decay curve, as demonstrated in Figure 6. We examine in this section the sensitivity of two 
commonly employed tools for probing the spectral content of a time series of data: power spectral analysis and 
autocorrelation. 
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Figure 10. Variation of two-point lifetime pdf (26) for parameters μ0 
= 106, T0 = 500, T1 = 50, T = 250, and amplitude α = (A) 0.001, (B) 
0.0005, (C) 0. In each panel the color code of the multiplicity is J = 1 
(red), 25 (blue), 100 (green), 225 (black). 

 
A discrete time series { } 0,1, , 1tx t T= −  can be represented by a Fourier series 

( ) ( )( )
2

0
1

cos 2π sin 2π
T

t j j
j

x a a jt T b jt T
=

= + +∑                         (28) 

with 2T  independent power spectral amplitudes (apart from a0) in accordance with the Shannon sampling 
theorem [31] 

( )2 2        0,1, , 2j j jS a b j T= + =  .                              (29) 

To any time series of finite length T sampled at intervals Δt there is a fundamental frequency 
1

0 Tν −=                                        (30) 

and a cut-off frequency 

c 1 2 tν = ∆ .                                      (31) 
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If the series contains a periodic component at frequency 1
0j jT jν ν−= = , then the period and harmonic number 

are related by 

( )c 0
0

         j
j

j

Tj
T

ν
ν ν ν

ν
= = ≥ > .                                (32) 

The discrete autocorrelation function rk of lag k (in units of Δt) is defined by 

( )( ) ( )2

0 0

T k T k

k t t k t
t t

r x x x x x x
− −

+
= =

= − − −∑ ∑                            (33) 

with series mean 
1

1

0

T

t
t

x T x
−

−

=

= ∑ .                                     (34) 

It is usual procedure to detrend a series, i.e. transform to a series of zero mean and zero trend, before performing 
the operation (33). This also leads to 0 0a =  in (28). The maximum lag number maxk  is somewhat arbitrary, 
but there are statistical reasons for setting maxk  to be less than about 5T  [32]. 

The left suite of panels in Figure 11 shows the variation in power spectrum (black) of a time series of non-
standard radioactive decay with parameters μ0 = 106, T0 = 500, T1 = 50, T = 1000, as a function of increasing 
amplitude α =  (A) 0.01, (B) 0.10, (C) 0.30. The red plots, displaced downward for visibility, show the 0α =   
 

 
Figure 11. Double-log plot of power spectral amplitudes Sj (A)-(C) (black) as a function of harmonic number j and corres-
ponding autocorrelation coefficients rk (D)-(F) (black) as a function of lag interval k for parameters μ0 = 106, T0 = 500, T1 = 
50, T = 1000, and α = (A), (D) 0.01, (B), (E) 0.10, (C), (F) 0.30. Plots in red, displaced downward for visibility in panels 
(A)-(E), are α = 0 (standard radioactive decay). Arrows show incipient spectral lines at lnj ≈ (A) 3.0 and (C) 3.7, corres-
ponding respectively to fundamental T1 and first harmonic T1/2. Best-fit lines to the power spectra have a slope very close 
to −2, corresponding to Brownian noise. 
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spectrum (standard radioactive decay) for comparison. The theoretical power spectrum of the decay curve gen-
erated from the time-dependent activity (22) contains spectral lines corresponding to periods 1nT T n=  for in-
tegers 1, 2,n =  As shown in Figure 11(A), the harmonic contribution to the decay rate is virtually undetecta-
ble in the power spectrum for α  less than about 0.01, and the first harmonic (Figure 11(C)) becomes detecta-
ble only at 0.3α ≈ . 

Since the autocorrelation is calculable from the power spectrum by means of the Wiener-Khinchine relations 
[33] (the power spectrum and autocorrelation constitute a Fourier transform pair), one might expect autocorrela-
tion to yield results of comparable sensitivity. That this is effectively the case is shown by the right suite of pa-
nels in Figure 11 in which are plotted (black) the autocorrelation functions for the same set of fixed parameters 
and amplitudes α =  (D) 0.01, (E) 0.10, (F) 0.30. As before, the plots in red refer to standard nuclear decay, 

0α = . Theoretically, the autocorrelation as a function of lag time k of the time series of activities { }tx  go-
verned by pdf (23) should display a sinusoidal oscillation at fundamental period T1. The barest indication of os-
cillatory structure is seen in Figure 11(E) at an amplitude 0.10α = . By about 0.30α =  the oscillations are 
sufficiently developed that it is no longer necessary to displace the 0α =  curve downward for visibility. 

To summarize, analysis indicates that a periodic contribution to the radioactive decay rate would be detectable 
in the power spectrum and autocorrelation of the decay curve for harmonic amplitudes α  of a few parts in 100. 
It is to be noted that in a previous use of power spectral analysis to search for a periodic component to the β +  
decay rate of 22Na a sensitivity of one part in 1000 was demonstrated [18]. There is no inconsistency here. 22Na 
has a half-life of approximately 2.6 y, or lifetime 0 3.8T ≈  y. The total counting time T of the reported experi-
ment was 167 h, which constituted only about 0.5% of the lifetime. Thus, the ~106 measurements were to a large 
extent samples from the same population of Poisson variates. The decay factor e tλ−  differed measurably but 
insignificantly from unity, and the experiment did not probe a mixed Poisson-Gauss distribution. The sensitivity 
reported in [18] applied to power spectral analysis of a time-varying mean of the form ( )( )0 11 cos 2π t Tµ β+ , 
not that of relation (22). 

5. Conclusions 
Violations of the standard radioactive decay law, such as cited in Section 1, are weak at best and controversial. It 
is this author’s opinion that, at the present stage of investigation, alleged correlations, if indeed they exist, be-
tween the disintegration of radioactive nuclei and external events of a geophysical, astrophysical, or cosmologi-
cal nature are more likely to be attributable to unanticipated instrumental effects resulting from known physical 
interactions than to violations of current physical laws or to the manifestation of some new physical interaction. 
Nevertheless, physicists have been surprised before by unexpected violations of principles thought to have been 
previously well-established. The violation of parity conservation [34] first demonstrated in the beta decay of 
60Co [35] is one such memorable example. 

Because non-random nuclear decay, or nuclear decay influenced by environmental conditions external to the 
nucleus (apart from known processes such as electron capture), has far-reaching fundamental implications, it is 
important to search for such phenomena by sensitive methods that have the potential to yield reliable, unambi-
guous results. In this paper two such methods were investigated and found to be capable of yielding a higher 
sensitivity than any method yet tried: 1) the statistical distribution of nuclear activities and 2) the statistical dis-
tribution of two-point estimates of nuclear lifetime (or half-life). 

Theoretical analyses and numerical simulations of non-standard radioactive decay processes undertaken for 
this paper and an earlier brief report [21] indicate that the preceding two statistical methods have the capacity to 
reveal a harmonic component to the nuclear decay rate with amplitude α  of the order of a few parts in 104, 
which exceeds the corresponding sensitivities of the decay curve, power spectrum, or autocorrelation function 
by at least two orders of magnitude. Implementation of these statistical methods requires 1) a radioactive source 
of initial high activity and 2) measurement of a sufficiently long time series of decay events so that the activities 
comprise a population of mixed Poisson-Gauss variates. Both conditions are readily achievable in nuclear me-
trology labs for some of the nuclides (listed in Section 1) claimed to violate the standard radioactive decay law. 

The statistical methods reported here are most sensitive and quantitatively revealing when the harmonic con-
tribution to the decay rate has a period T1 shorter than the duration T of the time series of measured activities. 
However, this ought not to be a serious constraint in effecting a search for violations of the radioactive decay 
law since 1) the periods T1 of primary interest are already known (i.e. they are the periods claimed to have been 
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observed in published papers), and 2) the length of the time series is an experimentally adjustable parameter, 
which can be made larger by taking more data. 
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