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Abstract 
Quantum electrodynamics (QED) is built on the original Dirac equation, an equation that exhibits 
perfect symmetry in that it is symmetric under charge conjugation (C), space (P) and time (T) re-
versal and any combination of these discrete symmetries. We demonstrate herein that while the 
proposed Lorentz invariant Curved Spacetime Dirac Equations (CSTD-equations) obey C, PT and 
CPT-symmetries, these equations readily violate P, T, CP and CT-symmetries. Realising this viola-
tion, namely the T and CT-violation, we take this opportunity to suggest that the Curved Spacetime 
Dirac Equations may help in solving the long standing riddle and mystery of the preponderance of 
matter over antimatter. We come to the tentative conclusion that if these CSTD-equations are to 
explain the preponderance of matter over antimatter; then, photons are to be thought of as de-
scribed by the spherically curved version of this set of equations, while ordinary matter is to be 
explained by the parabolically and hyperbolically curved spacetime versions of this same set of 
equations. 

 
Keywords 
Antimatter Asymmetric, CP-Violation, Curved Spacetime Dirac Equation 

 
 

“Science is a way of thinking much more than it is a body of knowledge.” 

—Carl Edward Sagan (1934-1996) 

1. Introduction 
The Dirac equation is a relativistic quantum mechanical wave equation serendipitously discovered by the emi-
nent British physicist, Professor Paul Adrien Maurice Dirac [1] [2]. This equation possesses perfect symmetry in 
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that it is invariant under charge (C), space (P), time (T) reversal operations and any combination of these dis-
crete symmetries i.e. CP, CT, PT and CPT-symmetries. The fact that it is symmetric under C-symmetry implies 
that the Universe must constitute matter and antimatter in equal proportions, the resultant meaning of which is 
that the Universe must be a radiation bath since matter and antimatter annihilate to form photons. The fact that 
this prediction of the successful Dirac equation is completely at variance with physical and natural reality has 
worried scientists ever-since this dearth came to notice. This reading works-out the symmetries of the proposed 
curved spacetime Dirac equations [3] and uses them to make a suggestion on this riddle of why the Dirac equa-
tion’s predictions on matter-antimatter proportions are at odds with physical and natural reality. 

The Dirac equation was discovered as part of an effort (by Dirac) to overcome the criticism levelled against 
the Klein-Gordon equation [4]. The Klein-Gordon equation [4] gave negative probabilities and this was consi-
dered to be physically meaningless. Despite this fact, this equation [the Klein-Gordon equation] accounts very 
well for spin-zero Bosons. Though this criticism levelled against the Klein-Gordon equation could be overcome 
without the need for the Dirac equation [5], this criticism motivated Dirac to successfully seek an equation de-
void of negative probabilities, whereupon he discovered the Dirac equation. By giving the correct gyromagnetic 
ratio of the Electron which at the time was a mystery, the Dirac equation gave an accurate description of the 
Electron and was thus largely believed to be an equation for the Electron. 

The Dirac equation applies to a flat Minkowski spacetime. Thus, it was born without the corresponding 
curved spacetime version. Realising this gap to be filled, several researchers proposed their own versions of the 
curved spacetime versions of the Dirac equation [6]-[14]. In our modest view, save for the introduction of a 
seemingly mysterious four vector potential Aµ , what makes the curved spacetime version of the Dirac equa-
tions presented in the reading [3] stands-out over other attempts in that the method used in arriving at these 
curved spacetime Dirac equations [3] is exactly the same as that used by Professor [1] [2]. As will be demon-
strated shortly, this method used in [3] appears to us as the most straight forward and logical manner in which to 
arrive a curved spacetime version of the Dirac equation. All that has been done in [3] is to decompose the gener-
al metric gµν  in a manner that allows us to apply Professor [1] [2]’s prescription at arriving at our proposed 
curved spacetime Dirac equation. 

As is well known, Dirac [1] [2]’s original equation is arrived at from the famous Einstein momentum-energy 
equation, namely 2 4

0 p p m cµ ν
µνη =  where µνη  is the usual Minkowski metric, ( )0,p m cµ  are the four mo-

mentum and rest mass of the particle in question respectively and c is the usual speed of light in a vacuum. In 
curved spacetime, we know very well that the equation 2 4

0p p m cµ ν
µνη =  is given by 2 4

0g p p m cµ ν
µν =  where 

gµν  is the general metric of a curved spacetime manifold. If a curved spacetime version of the Dirac equation 
is to be derived, shouldn’t it be derived from the fundamental equation 2 4

0g p p m cµ ν
µν =  in the same way the 

flat spacetime Dirac equation is derived from the fundamental equation 2 4
0p p m cµ ν

µνη = ? Dirac derived his 
equation by taking the “square-root” of the equation 2 4

0p p m cµ ν
µνη = : like Dirac, shouldn’t we derive the 

curved spacetime Dirac equation by taking the “square-root” of the equation 2 4
0g p p m cµ ν

µν = ? I think so—if it 
is possible, we must! 

Along the same line as that Dirac used in his derivation, it is a fundamental mathematical fact that a two-rank 
tensor (such as the metric tensor gµν ) can be written as a sum of the product of a vector Aµ , i.e.: 

( ) ( ) ( ){ } ( ) ( ){ } ( )1 1, , ,
2 2

a a a a a ag A A A A A Aµν µ µ ν ν µ ν µ ν µν µ νγ γ γ γ σ= = =                      (1) 

where the matrices ( )a
µνσ  are 4 × 4 matrices such that ( ) ( ) ( ){ }1  ,

2
a a a
µν µ νσ γ γ=  and ( )aγ -matrices1 are defined such 

that: 

( ) ( )
2

2 2
0

22 2

0 2 11and ,
0 2 1 2

k
a a

k
k

i

i

λ

λ

λ λ σ
γ γ

λ σ λ

 +   = =   −  − + − 

 
 

                  (2) 

where 2  is the 2 × 2 identity matrix, matrices kσ  are the usual 2 × 2 Pauli matrices and the 0’s are 2 × 2 null 

 

 

1In Equation (1) above, the term ( )aAµ µγ  must be treated as a single object with one index µ . This is what this object is. One can set 
( ) ( )a aAµ µ µγΓ = . The problem with this setting (i.e. ( ) ( )a aAµ µ µγΓ = ) is that we need to have the objects, Aµ  and ( )a

µγ , clearly visible in our 

Curved Spacetime Dirac Equation (5). This issue of why we need the term ( )aAµ µγ  appearing with the double-µ index is well explained in 
[3]. 
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matrices and ( )1,2,3a =  such that for: 

( )
( )
( )

1, then 0 : Spherically CurvedSpacetime.
2, then 1 : Parabolically CurvedSpacetime.
3, then 1 : Hyperbolically CurvedSpacetime.

a
λ
λ
λ

=
= = +
 = −

                    (3) 

The index “a” is not an active index as are the Greek indices—its an index which labels a particular representa-
tion of the metric—it labels a particular curvature of spacetime i.e. whether spacetime is spherically2, paraboli-
cally or hyperbolically curved. Written in full, the three metric tensors ( )1gµν , ( )2gµν  and ( )3gµν  are given by: 

( )

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

,a

A A A A A A A A
A A A A A A A A

g
A A A A A A A A
A A A A A A A A

µν

λ λ λ
λ λ λ
λ λ λ λ
λ λ λ

 
 −   =   −
 

− 

                        (4) 

Especially for a scientist and/or mathematician, there is little if anything they can do but accept facts as they  

stand and present them-self thus the writing of gµν  as ( ) ( ){ }1 ,
2

a ag A Aµν µ µ ν νγ γ=  is to be accepted as a legiti-  

mate mathematical fact for as long as gµν  is a tensor. Since Aµ  is a vector and the ( )aγ -matrices are all con-
stant scaler matrices, gµν  is a tensor. Therefore, it follows that the equation 2 4

0g p p m cµ ν
µν =  can now be  

written as ( ) ( ){ } 2 4
0

1 ,
2

a aA A p p m cµ ν
µ µ ν νγ γ = . As clearly demonstrated in [3], if we are to have the equation 

2 4
0g p p m cµ ν

µν =  written in the decomposed form ( ) ( ){ } 2 4
0

1 ,
2

a aA A p p m cµ ν
µ µ ν νγ γ = , and one where to follow Di-

rac [1] [2]’s original derivation method, they will arrive at the three curved spacetime Dirac equations, namely: 
( )

0 0.ai A m cµ
µ µγ ψ ∂ − = 

                                 (5) 

It is not a difficult exercise to show that multiplication of (5) from the left hand-side by the conjugate operator 

( )
†

0ai A m cµ µ
µγ ∂ −   leads us to the Klein-Gordon equation, ( )22

0g m cµ ν
µν ψ ψ∂ ∂ =  , provided we have the  

gauge condition     A Aµ µ
µ µ κ∂ = ∂ = , where κ  is a non-zero constant (see, [15]-[17], for an exposition of the 

this modified Lorenz gauge). The condition     A Aµ µ
µ µ κ∂ = ∂ = , should be taken as a gauge condition restricting 

this four vector. For the case ( )1a = , if 1Aµ = , we have the original Dirac equation. 
As it stands, Equation (5) would be a horrible equation insofar as its solutions are concerned because the vec-

tor Aµ  is expected to be a function of space and time i.e. ( ),A A tµ µ= r . Other than a numerical solution, there 
is no foreseeable way to obtain an exact solution is if that is the case. However, we found a way round the prob-
lem; fortunately, in the readings [18] [19], we realised that this vector could actually be used to arrive at a gen-
eral spin Dirac equation thereby drastically simplifying the equation so that it now was given by: 

( ) 0 0,asi m cµ
µγ ψ ∂ − = 

                                 (6) 

where now the matrices ( )as
µγ  were such that: 

( ) ( )

2
2 20

22 2

0 2 11, ,
0 2 1 2

k
k

kas as k

i
s

i

λ

λ

λ λ σ
γ γ

λ σ λ

 +   = =   −  − + − 

 
 

                 (7) 

where ( )0, 1, 2, 3,ks = ± ± ±   was the spin quantum number [18] [19]. In Equation (6), the vector Aµ  has 
completely disappeared from our midst thus drastically simplifying the resultant equation in the process. For the 
purposes of the present reading, we will consider (6) and not (5). The vector Aµ  appearing in (5) will be taken 
as presenting this electromagnetic of the particle. This idea finds support from our on-going work on an all-  
encompassing Unified Field Theory of all the Forces of Nature (see [17]). 

 

 

2By spherically curved, it here is not meant that the metric has no off diagonal terms. On the same footing, by parabolically curved space-
time, it meant that metric has positive off diagonal terms and likewise, a hyperbolically curved spacetime, it meant that metric has negative 
off diagonal terms. 
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2. Symmetries 
Now, on the main business of the day: we shall work-out the symmetries of the curved spacetime Dirac equa-
tions for the case ( )2,3a = . We shall assume as is the case with the Dirac equation that the electromagnetic 
four potential Aµ  is a real function and that the components of this vector are zero-rank objects. Before that, 
we need to consider first how the electric (E) and magnetic fields (B), currents (J) and charges (ρ) behave under 
C, p and T-transformations. Under a P-transformation, the positions of electrical charges will be interchanged 
and so the electric field will change sign as a consequence. Currents will flow in opposite direction so they also 
will change sign as a result. Since the magnetic field is proportional to J × r, its sign will be preserved. All this 
can be summarised as: 

( ) ( )
( ) ( )
( ) ( )

P : , ,
P : , ,
P : , ,
P :

t t
t t
t t

− −
−

− −
−

E r E r
B r B r
J r J r







∇ ∇

                                (8) 

Under a T-transformation, the charges and positions will remain unchanged, whereas the currents will flow in 
opposite direction, in which case we will get: 

( ) ( )
( ) ( )
( ) ( )

T : , ,
T : , ,
T : , ,
T :

t t
t t
t t

t t

−
− −
− −

∂ ∂ −∂ ∂

E r E r
B r B r
J r J r









                                (9) 

Using similar arguments as above, we will get for the C-transformation, the following: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

C : , ,
C : , ,
C : , ,
C : , ,

t t
t t
t t
t t

ρ ρ−
−
−
−

r r
E r E r
B r B r
J r J r









                                (10) 

Finally under the combined CPT-transformation the charges and currents change sign and the electric and 
magnetic fields will retain their signs. These properties can be summarised in terms of the four vector potential 

( )ex ex ex
0 , kA A Aµ =  of the ambient electromagnetic field as: 

( ) ( )
( ) ( )
( ) ( )

ex ex ex ex
0 0

ex ex ex ex
0 0

ex ex ex ex
0 0

C : , ,

P : , ,

T : , ,

k k

k k

k k

A A A A

A A A A

A A A A

→ − −

→ −

→ −

                             (11) 

Of particular importance here is the transformations (11) of the four vector potential ( )ex ex ex
0 , kA A Aµ = , this the 

reader will have to know as we will not remind them in the derivations that follow. 

2.1. C-Symmetry Observance 
To demonstrate the symmetries of the CSTD-equations under charge conjugation, we proceed as usual, that is, 
we bring the curved spacetime Dirac particle ψ  under the influence of an ambient electromagnetic magnetic 
field exAµ  (which is a real function). Having done this, the normal procedure of incorporating this ambient elec-
tromagnetic magnetic field into the Dirac equation is by making the transformation exD iAµ µ µ µ∂ = ∂ + , hence 
Equation (6) will now be given by: 

( ) ( )ex
0 0.asi iA m cµ

µ µγ ψ ∂ + − = 
                              (12) 

Equation (12) represents the curved spacetime Dirac particle ψ  which is immersed in an ambient electromag-
netic magnetic field. If we are to reverse the particle’s electromagnetic field and that of the ambient electromag-
netic magnetic field i.e. ex exA Aµ µ− , then, (12) becomes: 
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( ) ( )ex
0 0.asi iA m cµ

µ µγ ψ ∂ − − = 
                               (13) 

If the CSTD-equations is symmetric under charge conjugation, then, there must exist some mathematical trans-
formation, which if applied to (13) would lead us back to an equation that is equivalent to (12). 

Starting from (13), in-order to revert back to (12), the first mathematical operation to be applied to (13) the 
complex conjugate operation on the entire equation. So doing, we will have: 

( ) ( )* ex *
0 0.ai iA m cµ

µ µγ ψ − ∂ + − = 
                              (14) 

If (12) is invariant under charge conjugation, then, there must exist a matrix cΩ , such that: 

( ) ( )
* .c ca a

µ µγ γΩ = − Ω                                      (15) 

If such a matrix cΩ  where to exist, then, multiplying (14) from the left by cΩ , will lead us to the equation: 

( ) ( )ex
0 0,casi iA m cµ

µ µγ ψ ∂ + − = 
                               (16) 

where *
c cψ ψ= Ω . We shall prove in the section “Proof” below, that the matrix 1Ω  exists, hence, the 

CSTD-equations for which ( )2,3a =  are symmetric under charge conjugation. 

Proof 
We shall prove that the matrix cΩ  does exist. First we must realise that the matrices ( )

k
asγ  can be written as: 

( )
0 21 .k k

k kas s s iλγ λ γ λ γ= + +                                 (17) 

Taking the complex conjugate on both-sides of (17) and knowing that 0* 0γ γ= , we will have: 

( )
* 0 2 *1 .k k

k kas s s iλγ λ γ λ γ= − +                                (18) 

By some legitimate mathematical operation, we need to remove the complex conjugate on *kγ  in (18). We 
know that 2 * 2k kγ γ γ γ= −  and as-well that 2 0 0 2  γ γ γ γ= − , therefore: 

( )
2 * 0 2 2 21 .k k

k kas s s iλγ γ λ γ γ λ γ γ= − + +                             (19) 

Multiplying both-sides of (19) by 0γ  and knowing that 0 0 k kγ γ γ γ= − , it follows that: 

( )
0 2 * 0 0 2 2 0 21 ,k k

k kas s s iλγ γ γ λ γ γ γ λ γ γ γ= − − +                           (20) 

so that: 

( ) ( )
0 2 * 0 2 ,k k

as asγ γ γ γ γ γ= −                                    (21) 

and from this, it follows that we must have 0 2
c γ γΩ = . For this cΩ  acting on ( )

0*
asγ , we will have: 

( ) ( )
0 2 0* 0 0 2 ,as asγ γ γ γ γ γ= −                                    (22) 

therefore: 

( ) ( )
* ,c cas as

µ µγ γΩ = − Ω                                     (23) 

as desired in (15). 

2.2. P-Symmetry Violation 
A parity transformation requires that we reverse the space coordinates i.e. ( )  k kx x−  and this implies that 
( )  k k∂ − ∂ . So doing, we will have (6) now being given by: 

( ) ( )
0

0 0 .k
kas asi i m cγ ψ γ ψ ψ∂ − ∂ =                                (24) 

If (6) is invariant under a parity transformation, then, there must exist a matrix pΩ , such that: 
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( ) ( )

( ) ( )

0 0

.

p pas as

k k
p pas as

γ γ

γ γ

Ω = Ω

Ω = − Ω
                                   (25) 

There does not exist such a matrix pΩ  that fullfils the conditions (25) because this would require that 
{ }0, 0p γΩ = , 0, 0p γ Ω =   and { }, 0k

p γΩ = , which is impossible for non-null matrix pΩ . Therefore, the 
CSTD-equations for the case ( )2,3a =  are not symmetric under space reversal. 

2.3. T-Symmetry Violation 
A time reversal transformation requires that we reverse the time coordinate i.e. ( )  t t−  and this implies 
( )0 0∂ −∂ . So doing, we will have (6) now being given by: 

( ) ( )
0

0 0 0,k
ka ai i m cγ ψ γ ψ ψ ′− ∂ + ∂ − =                              (26) 

If (6) is invariant under a time reversal transformation, then, there must exist a matrix tΩ , such that: 

( ) ( )

( ) ( )

0 0

.

t ta a

k k
t ta a

γ γ

γ γ

Ω = − Ω

Ω = Ω
                                    (27) 

There does not exist such a matrix tΩ  that fullfils the conditions (27) because this would require that 
{ }0, 0t γΩ = , 0, 0t γ Ω =   and , 0k

t γ Ω =  , which is impossible for non-null matrix tΩ . Therefore, the 
CSTD-equations for the case ( )2,3a =  are not symmetric under time reversal. 

2.4. CP-Symmetry Violation 
A simultaneous charge conjugation and parity transformation requires that we reverse the particle’s electromag-
netic field and that of the ambient electromagnetic magnetic field i.e. ex exA Aµ µ−  and as-well the space coor-
dinates i.e. ( ) ( )  k k

k kx x− ⇒ ∂ −∂   and this will lead to ( ) ( )ex ex ex ex
0 0, ,k kA A A A→ − . Effecting all these 

transformations in (12), we will have: 

( ) ( ) ( ) ( )0 ex ex
0 0 0 .k

k kas asi iA i iA m cγ ψ γ ψ ψ∂ + − ∂ + =                         (28) 

If (12) is invariant under a simultaneous charge conjugation and parity transformation, then, there must exist a 
matrix cpΩ , such that: 

( ) ( )

( ) ( )

0 0

.

cp cpas as

k k
cp cpas as

γ γ

γ γ

Ω = Ω

Ω = − Ω
                                  (29) 

This matrix cpΩ  is the same matrix as pΩ , thus by the same arguments as those presented for pΩ , there does 
not exist this matrix cpΩ  that fullfils the conditions (29). Therefore, the CSTD-equations ( )  2,3a =  is not 
symmetric under a simultaneous reversal of charge and space. 

2.5. CT-Symmetry Violation 
A simultaneous charge conjugation and time reversal requires that we reverse the ambient electromagnetic 
magnetic field i.e. ex exA Aµ µ−  and as-well the time coordinate i.e. ( ) ( )0 0

0 0  x x− ⇒ ∂ −∂   and this ef-
fectively will lead to ( ) ( )ex ex ex ex

0 0, ,k kA A A A→ − . Effecting all these transformations into (12), we will have: 

( ) ( ) ( ) ( )0 ex ex
0 0 0 ,k

k ka ai iA i iA m cγ ψ γ ψ ψ− ∂ + + ∂ + =                        (30) 

If (12) is invariant under a simultaneous charge conjugation and time transformation, then, there must exist a 
matrix ctΩ , such that: 

( ) ( )

( ) ( )

0 0

.

ct cta a

k k
ct cta a

γ γ

γ γ

Ω = − Ω

Ω = Ω
                                   (31) 
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This matrix ctΩ  is the same matrix as tΩ , thus by the same arguments as those presented for tΩ , there does 
not exist this matrix ctΩ  that fullfils the conditions (31). Therefore, the CSTD-equations ( )2,3a =  is not 
symmetric under a simultaneous reversal of charge and time. 

2.6. PT-Symmetry Observance 
If we are to reverse the spacetime coordinates, that is ( ) ( )    x xµ µ µ µ− ⇒ ∂ −∂  , and thereafter multiply the 
resulting equation by 5γ  from the left and then make use of the fact that ( ) ( )

5 5
a a
µ µγ γ γ γ= − , it is seen that the 

resulting equation is equivalent to the original. Thus, the CSTD-equations for the case ( )2,3a =  are symmetric 
under PT-transformations. 

2.7. CPT-Symmetry Observance 
If we are to reverse the ambient electromagnetic magnetic field together with the spacetime coordinates i.e. 
( ) ( )   x xµ µ µ µ− ⇒ ∂ −∂  , then, for the ambient electromagnetic magnetic field we will have ex exA Aµ µ  i.e., 
it will remain invariant, thus inserting these transformations into (12), it is seen that for the resulting equation, if 
we take apply the complex conjugate operation on both-sides and the follows up with a multiplication on both- 
sides by 5γ , the resultant equation is exactly the same as the original. Thus, the CSTD-equations for the case 
( )2,3a =  are not only symmetric under CPT-transformations, but completely, wholly and totally invariant as 
no extra mathematical operations are required in-order to revert to the original equation. 

2.8. Summary 
In Table 1, we give a summary of the symmetries of all the three CSTD-equations. The flat CSTD-equations (in 
which the Dirac equation emerges on the condition 1Aµ = ) is in complete observance of all the symmetries 
while the parabolic ( )2a =  and hyperbolic ( )3a =  curved spacetime components of this set of equations on-
ly observe C, PT, CPT-symmetries and violate P, T, CP and CT-symmetries. Other than the C, P and the T 
symmetries and their different combinations, there is another symmetry that is allowed by the CSTD-equations 
and this is the symmetry under the reversal of the spin quantum number ks  i.e. ( )k ks s− . Let  be the oper-
ator corresponding to this symmetry. 

Now, without simultaneously acting on the CSTD-equations with the parity operator (P), the effect of acting 
exclusively on the CSTD-equations with the spin operator () is the same as exclusively acting on this same eq-
uation with the P-operator. What this effectively means is that the spherically curved CSTD-equations i.e., the 
case ( )1a =  is symmetric under a reversal of the spin of the particle because this same equation is symmetric 
under a reversal of the space coordinates and on the same footing, the parabolic and hyperbolically curved 
spacetime versions of this set of equations ( )2,3a =   , these equations will violate the -symmetry since this 
same equations are asymmetric under a reversal of the space coordinates. In the subsequent section, we shall  
 

Table 1. Symmetries of the CSTD-equations. 

Symmetry 

Case 

( )1a =  

( )0λ =  

( )2a =  

( )1λ = +  

( )3a =  

( )1λ = −  

C Yes Yes Yes 

P Yes No No 

T Yes No No 

CP Yes No No 

CT Yes No No 

PT Yes Yes Yes 

CPT Yes Yes Yes 

Lorentz Yes Yes Yes 
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demonstrate how the violation of the P, T, CP and -symmetries can be used harmoniously to explain Universe 
that we live in. These three CSTD-equations together with these symmetry violations neatly explain the exis-
tence of radiation and the preponderance of matter over antimatter. 

3. General Discussion 
The symmetries of the Lorentz invariant CSTD-equations have here been worked out and we have shown that 
the parabolic ( )2a =  and hyperbolic ( )3a =  curved spacetime components of this set of equations, while 
they are in complete and total observance of C, PT and CPT-symmetries, these same equations readily violate P, 
T, CP and CT-symmetries. Of particular interest to us here is the CPT-violation. In the present discussion, we 
would like to point out that these three equations combined, may help in unlocking and solving the long standing 
riddle and mystery of the preponderance of matter over antimatter. 

3.1. Problems with the Perfect Dirac Symmetries 
In our view—insofar as the preponderance of matter over antimatter is concerned, one of the problems with the 
original Dirac equation is that it was born solo, as an equation explaining a Minkowski flat spacetime particle 
with no curved spacetime version of it. Realising the clear evident gap, over the years, researches proposed 
curved spacetime versions of the Dirac equation (cf. Refs.: [6]-[14]). The problem with most of these proposed 
curved spacetime Dirac equations [6]-[14], is that they preserve the symmetries of the original Dirac equation. 
This means that insofar as the preponderance of matter over antimatter is concerned, these equations [6]-[14] do 
no better job than the original Dirac equation. 

If the predictions of the original Dirac equations together with its descendants [6]-[14] are to hold, then, it 
would mean that the Laws of Nature explaining the existence and production of matter, all but point to the fact 
that there must exist at the instant of creation of matter, equal positions of matter and antimatter. This obviously 
throws us into a conundrum because as far as experimental and observational evidence is concerned, we live in a 
matter dominated Universe. Our manned and unmanned exploration of the Solar system and the most distant 
portions of the heavens (using radio astronomy and cosmic ray detection), tell us that the Universe is made up of 
the same stuff as the Earth. The currently accepted and most favoured explanation as to how our Universe comes 
to be dominated by matter is that handed down to us by Professor Andrei Dimitriev Sakharov (1921-1989) in 
1967. 

3.2. Sakharov Conditions 
In 1967, Professor Andrei Dimitriev Sakharov described three minimum properties of Nature which are required 
for any baryogenesis to occur, regardless of the exact mechanism leading to the excess of baryonic matter. In his 
seminal paper, Sakharov [20] did not list the conditions explicitly. Instead, he described the evolution of a Un-
iverse which goes from a Baryon-excess (-excess) while contracting in a Big Crunch to an anti--excess after 
the resultant Big Bang. In summary, his three key assumptions are now known as they Sakharov Conditions, and 
these are: 

1) At least one -number violating process. 
2) C and CP-violating processes. 
3) Interactions outside of thermal equilibrium. 
These conditions must be met by any explanation in which ( )0=  during the Big Bang but is very high in 

the present day. They are necessary but not sufficient—thus scientists seeking an explanation of the currently 
obtaining matter asymmetry on this basis (Sakhorov conditions) must describe the specific mechanism through 
which baryogenesis happens. Much theoretical work in cosmology and high-energy physics revolves around 
finding physical processes and mechanism which fit the three Sakhorov pre-conditions and correctly predicting 
the observed baryon density. 

3.3. Current Research Efforts 
Therefore, the current thrust in research especially at CERN3 is to search for physical processes in Nature that 

 

 

3European Organization for Nuclear Research (CERN) is located at the France-Swiss border near Geneva Swirtherland. 



G. G. Nyambuya 
 

 
1449 

violate CP-symmetry. In 2011 during high-energy Proton collisions in the LHCb experiment [21], scientists 
working at CERN created 0

sB  mesons—i.e. hadronic subatomic particles comprised of one quark and one an-
tiquark—inside the LHCb experiment [21] and this experiment seems to have yeilded some very interesting re-
sults insofar as the Sakhorov conditions are concerned. By observing the rapid decay of the 0

sB , physicists of 
the LHCb-Collaboration [21] were able to identify the neutral particle’s decay products—i.e. the particles that it 
decayed into. After a significantly large number of Proton collisions and 0

sB  decay events, the LHCb-Colla- 
boration [21] concluded that more matter particles where generated than antimatter during neutral 0

sB  decays. 
The first violations of CP-symmetry was first documented in Brookhaven Laboratory in the US in the 1960s in 

the decay of neutral Kaon particles. Since then, Japanese and US labs forty years later found similar behaviour 
in B0-mesons systems where they detected similar CP-symmetry violations. LHCb-Collaboration [21] results in-
dicating that antimatter decays at a faster rate than antimatter only come in as further supporting evidence and 
from a [20] standpoint, these observations certainly provide key insights into the problem of the preponderance 
of matter over antimatter. 

3.4. Solution Inaccordance with the Present Work 
This is not the case with the CSTD-equations which clearly predict T, CT and CP-violation as a permissible 
Laws of Nature. That is to say, in as much as the Dirac equation is taken as a Law of Nature, here we have (if 
we accept these equations) these CSTD-equations standing as candidate Laws of Nature in which case they pre-
dict T, CT and CP-violation. If we accept them as legitimate equations of physics as is the case with the Dirac 
equation, then, we can use them to explain the apparent preponderance of matter without the need for the Sak-
horov conditions. 

The Sakhorov conditions assume that the Laws of Nature are symmetric with respect to matter and antimatter. 
According to these pre-conditions, the preponderance of matter will arise in a Universe whose laws are perfectly 
symmetric with respect to matter and antimatter if there exists physical mechanisms and processes satisfying 
these conditions. If however the Laws of Nature are asymmetric with respect to matter and antimatter, there is 
no need for the Sakhorov conditions to explain the preponderance of matter over antimatter. 

If all the three CSTD-equations are to operate simultaneously in the same Universe (there is nothing stopping 
this occurrence), then, the spherically curved spacetime version of the CSTD-equations, i.e., the case ( )1a =  
should lead to the production of equal portions of matter and antimatter. This matter-antimatter concoction 
should annihilate to form radiation i.e., to form a photon bath. The parabolic and hyperbolically curved space-
time version of the CSTD-equations, i.e., the case ( )2,3a =  will lead to the exclusive production of matter 
with no production of antimatter as the Laws of Nature leading to the production of this matter are asymmetric 
with respect to matter and antimatter. What is needed for this is T and CT-symmetry violation only. To see this, 
we provide the reasoning below. 

First we must realise that each of the four discrete symmetries C, P, T and  have two states. If all of them 
where obeyed, then, a shown in Table 2, there would be sixteen types of Electrons. For example, ( )Le− ↑ , is 
one of the states representing a left handed Electron that travels forward in time and has a positive spin. The 
up-arrow in the bracket ( )↑  indicates that this Electron travels forward in time and likewise a downward ar-
row would indicate that this Electron travels backwards in time; the arrow of time is a property of the T-opera- 
tion. The clockwise circular arrow in the bracket ( )↑  indicates a positive spin and likewise, an anticlockwise 
circular arrow would indicate a negative spin; spin is a property of the -operation. The subscript-L in ( )Le− ↑  
indicates a left handed Electron and likewise, a subscript-R indicates a left handed Electron; handedness a prop-
erty of the P-operation. The superscript in ( )Le− ↑  indicates the sign of the electrical charge whether it is pos-
itive or negative; charge is a property of the C-operation and all antimatter particle are represented in Table 2 
with an over-bar. We are now going to argue that of these sixteen Electrons, the symmetry violations of the 
CSTD-equations allow only one and only one of the sixteen Electrons to exist. 

1) Clearly, T-violation implies that only Electrons moving forward in time will be allowed to exist. This 
means the eight Electrons [ ( )Le− ↓ , ( )Le + ↓ ; ( )Re− ↓ , ( )Re + ↓ ; ( )Le− ↓ , ( )Le + ↓ ; ( )Re− ↓ , ( )Re + ↓ ] 
under the column with T  are all ruled out as candidate Electrons in our Universe. Only eight of the sixteen 
now remain as candidates and these are ( )Le− ↑ , ( )Le + ↑ ; ( )Re− ↑ , ( )Re + ↑ ; ( )Le− ↑ , ( )Le + ↑ ; 

( )Re− ↓ , ( )Re + ↑ . We should note that all the antiparticles appearing in Table 2 have their hand of time in the 
forward direction; this means that they must have negative energy. 
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Table 2. The sixteen possible electron states. 

 T T  

 C C  C C  

 P ( )Le− ↑  ( )Le + ↑  ( )Le− ↓  ( )Le + ↓  

 P  ( )Re− ↑  ( )Re + ↑  ( )Re− ↓  ( )Re + ↓  

  P ( )Le− ↑  ( )Le + ↑  ( )Le− ↓  ( )Le + ↓  

  P  ( )Re− ↓  ( )Re + ↓  ( )Re− ↓  ( )Re + ↓  

 
2) -violation implies that exclusively positive or negative spin Electrons will be allowed in the Universe. 

This means of the eight candidate Electrons [ ( )Le− ↑ , ( )Le + ↑ ; ( )Re− ↑ , ( )Re + ↑ ; ( )Le− ↑ , ( )Le + ↑ ; 
( )Re− ↑ , ( )Re + ↑ ], we have to drop four. We shall drop the negative spin Electrons, thus we will remain with 

only four candidate Electrons and these are ( )Le− ↑ , ( )Le + ↑ ; ( )Re− ↑ , ( )Re + ↑ . 
3) P-violation implies that exclusively left or right handed Electrons will be allowed in the Universe. This 

means of the remaining four candidate Electrons [ ( )Le− ↑ , ( )Le + ↑ ; ( )Re− ↑ , ( )Re + ↑ ], we have to drop 
two. We shall drop the right handed Electrons, thus we will remain with only two candidate Electrons and these 
are ( )Le− ↑ , ( )Le + ↑ . 

4) Finally, we must realise that of the two remaining Electrons ( )Le− ↑ , ( )Le + ↑ , one has positive energy 
( )( )Le− ↑  while the other has negative energy ( )( )Le + ↑ . Now, for a final answer, we appeal to Professor 

Richard Phillips Feynman (1918-1988)’s interpretation of antiparticles where instead of antiparticles having 
negative energy-mass as is the case here, they have positive energy and their hand of time is reversed [22]. With 
this intepretation, the Electron ( )Le + ↑  becomes a positive energy particle if we reverse its hand of time so 
that it is now given by ( )Le + ↓ . This Electron ( )Le + ↓  is a CT-symmetric partner to ( )Le− ↑ . According to 
CT-violation of the CSTD-equations ( )2,3a = , this particle ( )Le + ↓  can not exist simultaneously with 

( )Le − ↑  in the same Universe. This leaves us with just one Electron out a of possible sixteen. Thus, one can 
safely say that the CSTD-equations ( )2,3a =  lead to the exclusive production of matter while the case 
( )1a =  will lead to the productive of both matter and antimatter which will annihilate to produce radiation. In 
short, this can be summarised as follows: 

[ ]
[ ]
[ ]

1: Radiation

2 : Matter

3 : Matter

a




= 



                                  (32) 

Clearly, there here is no need for the Sakhorov conditions in-order for there to be a preponderance of matter 
over antimatter. We do not say nor make the claim that this is “The Solution” to the long-standing problem of 
the preponderance of matter over antimatter, but that, it is (perhaps) a viable solution worthy of consideration. 

4. Conclusions 
The present work is to be taken as work in progress toward a Unified Field Theory [17] that would encompass 
all the Forces of Nature; thus the conclusions we here make are only tentative. Be that it may, our strong feeling 
is that when the entire work is finally brought to its logical and final conclusion, the present conclusion regard-
ing the CSTD-equations will still hold; thus, assuming the correctness or acceptability of the ideas presented 
herein, we hereby make the following conclusion (tentative): 

1) The parabolic ( )2a =  and hyperbolically ( )3a =  curved spacetime components of Lorentz invariant 
CSTD-equations [3] uphold C, PT and CPT-Symmetries, and these same equations readily violate P, T, CP and 
CT-Symmetries. 

2) If the Lorentz invariant CSTD-equations are to explain the prepondarance of matter over antimatter, then, 
photons are to be thought of as obeying the flat CSTD-equations i.e., the CSTD-equations for which ( )1a = , 
while ordinary matter is to be explained by the parabolic ( )2a =  and hyperbolically ( )3a =  curved space-
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time versions of this set of equations. 
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