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Abstract 
We have calculated the intrinsic magnetic moment of a photon through the intrinsic magnetic 
moment of a gamma photon created as a result of the electron-positron annihilation with the an-
gular frequency ω. We show that a photon propagating in z direction with an angular frequency ω 
carries a magnetic moment of µz = ±(ec/ω) along the propagation direction. Here, the (+) and (−) 
signs stand for the right hand and left circular helicity respectively. Because of these two symme-
tric values of the magnetic moment, we expect a splitting of the photon beam into two symmetric 
subbeams in a Stern-Gerlach experiment. The splitting is expected to be more prominent for low 
energy photons. We believe that the present result will be helpful for understanding the recent 
attempts on the Stern-Gerlach experiment with slow light and the behavior of the dark polaritons 
and also the atomic spinor polaritons. 
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1. Introduction 
In an earlier study [1], we calculated the intrinsic quantum flux of a photon through the intrinsic quantum flux of 
the gamma photons created as a result of the electron-positron ( e− - e+ ) annihilation. By using the flux conser-
vation rule, which is an element of the conservation of the canonical angular momentum, we find that each 
gamma photon carries a magnetic flux quantum of 0 hc e±Φ = ±  with itself along the propagation direction. 
Here, the (+) and (−) signs stand for the right and left hand circular helicity respectively. The aim of the present 
work is to calculate the magnetic moment of any photon through the magnetic moment of a gamma photon and 
to find a unique relation between the intrinsic fluxes and the magnetic moments of electron, positron and photon. 
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The first experiment about the magnetic moment of a photon was done in 1896 by Zeeman [2], who discov-
ered the spectral lines from sodium. When it was put in a flame, the light emitted was split up into several com-
ponents in a strong magnetic field. A long period after Zeeman, experimental attempts about photon’s magnetic 
moment through the Stern-Gerlach experiment (SGE) with photons have started recently by Karpa et al. [3]-[5]. 

SGE was devised in 1922 to show that electron had a non-zero magnetic moment [6] and later it was also ex-
tended to the nuclei [7]. In general, in the SGE the magnetic field gradient serves as a detector for the particle’s 
magnetic moment vector: If the magnetic field is a non-uniform field along the z direction such as ( ) ˆzB z z=B , 
then because of the torque ( )= ×Bτ µ  on the particles, the magnetic moment vector can have z-component 
only: ˆz zµ=µ  (where 0zµ ≥  or 0zµ ≥ ). On the other hand, the potential energy U = − ⋅Bµ  produces a force  

ˆz
z

B z
z

µ
∂ = ∂ 

F  which has quantized values as zµ . Depending on whether ( 0zµ ≥  or 0zµ ≤ ), the particles  

are deflected upward or downward. In the SGE with electron, the electron beam is deflected into two sub-  

beams which means that zµ  takes only two possible quantized values which are equal to 
02z B

e
m c

µ µ= ± = ±
   

where Bµ  is called the Bohr magneton. Because of the negative charge of the electron, the relation between 
spin and the magnetic moment is set as Bgµ= − Sµ  where g is the Lande-g factor which is equal to 2 and S  
is the spin angular momentum vector. So in the SGE with electron, the z component of spin ( )zS  takes  

only two possible values which are: 1
2zS = ± . Therefore if 0zB

z
∂

>
∂

 then the spin-down electrons will be def-  

lected upward while the spin-up ones will be deflected downward. Similarly if we have SGE with a positron 
beam, because of the positive charge, the spin-down positrons will be deflected downward while the spin-up 
ones will be deflected upward. But when it comes to the gamma photons, which are the composite particles 
made up of an electron and a positron, the direction of the deflection is determined by the sign of the zµ∑ . 
Therefore, the magnetic moment of the gamma photon is an important property and it needs to be calculated in 
detail. We have calculated the magnetic moment of a photon through the magnetic moment of a gamma photon 
and found that the z-component of the magnetic moment is equal to ( )ec ω±  where ω  is the angular fre-
quency of photon. Here, the (+) and (−) signs correspond to the right and left hand circular helicity respectively. 

We have also found a unique relation between the intrinsic fluxes and the magnetic moments of the particles 
such as electron, positron and the photon. We show that for all these three particles the unique relation between 
the intrinsic fluxes and the magnetic moments is given by: ( )2 2

02π zm c e µΦ = . 
We argue that any photon propagating in z direction with an angular frequency ω  will have a non-zero 

magnetic moment of ( )z ecµ ω= ±  depending on the helicity. Since the intrinsic flux of a general photon is 
0 hc e±Φ = ± ; then for a general photon the relation between the intrinsic flux and the magnetic moment will be 
( )2

zh eω µΦ =  as well. 
Because of the two symmetric values of the magnetic moment of a photon, we expect a splitting (deflection) 

of the beam into two symmetric subbeams in a Stern-Gerlach experiment. We also expect that the splitting will 
be more prominent for lower energies. We believe that the present work will help to understand the Stern-Gerlach 
experiment of photons [3]-[5] in detail. In the theoretical side, the present work will bring a new insight to 
quantum mechanics as well. 

Electron-positron ( e− - e+ ) annihilation process has been known for almost about 75 years [8]-[16]. After the 
collision, we have two gamma photons with the same energy but with different helicities. In this collision, we 
have the conservation of charge, energy, linear momentum and the conservation of the canonical angular mo-
mentum which requires the conservation of the total quantum flux and the total magnetic moments. Magnetic 
flux quantization has been known for more than 60 years [17] [18]. Saglam and Boyacioglu [19], with a semic-
lassical method, calculated quantized magnetic fluxes through the Landau orbits of an electron including the ef-
fect of the spinning motion. They show that the spin contribution to the quantized magnetic flux is equal to  

0
1
2

 ± Φ 
 

 depending on the spin orientation. Here, 7 2
0 4.14 10 G cmhc

e
−Φ = = × ⋅ . Recently, Wan and Saglam  

[20] calculated the intrinsic magnetic flux of an electron due to its orbital motion in a non-relativistic hydrogen 
atom by using the Schrödinger equation and then extended their result to incorporate the spin angular momen-
tum as well. 
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Most recently Saglam and Sahin [1] calculated the intrinsic quantum fluxes of a free electron and free posi-
tron by a semi classical model in the absence of an external magnetic field. As the subject of present study is re-
lated to the intrinsic fluxes of ( )e−  and ( )e+  these fluxes must be calculated in the frame of the relativistic 
quantum mechanics as well. Since the above mentioned calculations use the non-relativistic Schrödinger equa-
tion, a rigorous proof has been needed also. In Appendix I, we calculate the intrinsic fluxes of ( )e−  and ( )e+  
by the spin dependent solutions [21] of the Dirac equation for a free electron (or positron) in a uniform magnetic  

field. We then prove that the intrinsic fluxes of ( )e−  and ( )e+  are 0
1
2

 ± Φ 
 

 which agree with the previous  

calculations [19] [20]. 
In Appendix II, we introduce the conservation of the quantum flux in collisions: We write the Lagrangian of 

an electron moving in a uniform magnetic field in z direction then calculate the z-component of the conserved 
canonical angular momentum Jc which has two elements: The conservation of the kinetic angular momentum 
and the conservation of the magnetic flux. Therefore in the electron-positron annihilation, the conservation of 
the canonical angular momentum requires both conservation of the spin angular momentum and the conserva-
tion of the quantum flux which is originated from the intrinsic fluxes of ( )e−  and ( )e+ . We also show that the 
conservation of the quantum flux can be replaced by the conservation of the magnetic moments as well. 

The outline of this paper is as follows: In Section 2, we derive the relation between the intrinsic fluxes and the 
magnetic moments of electron and positron. In Section 3, we calculate the magnetic moment of photon. In Sec-
tion 4, we give the conclusions. 

2. The Relation between the Intrinsic Fluxes and the Magnetic Moments of an 
Electron and Positron 

The definition of the spin magnetic moment vector ( )µ  for a free electron ( )e−  and a positron ( )e+  are: 

Be
gµ− = − Sµ                                      (1a) 

Be
gµ+ =μ S                                       (1b) 

Here, g is the Lande-g factor which is equal to 2 for both particles and S  is the spin angular momentum. De- 
pending on the spin orientation, the z-components of the magnetic moments for spin-up and down electron are: 

( )
02z B

ee
m c

µ µ− ↑ = − = −
                                (2a) 

( )
02z B

ee
m c

µ µ− ↓ = =
                                  (2b) 

Similarly the related z-components of the magnetic moments for spin-up and down positron are: 

( )
02z B

ee
m c

µ µ+ ↑ = =
                                  (3a) 

( )
02z B

ee
m c

µ µ+ ↓ = − = −
                                (3b) 

where 0m  is the rest mass of the electron and 
02B

e
m c

µ =
  is the Bohr magneton. 

In Appendix I, we calculate the intrinsic fluxes of ( )e−  and ( )e+  by the spin dependent solutions [21] of 
the Dirac equation for a free electron (or positron) in a uniform magnetic field. We then prove that the intrinsic 
fluxes for spin-up and down electron are: 

( ) 2 2
ohce

e
− Φ

Φ ↑ = − = −                                (4a) 

( ) 2 2
ohce

e
− Φ

Φ ↓ = =                                   (4b) 
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respectively. Similarly the intrinsic fluxes for spin-up and down positron are: 

( ) 2 2
ohce

e
+ Φ

Φ ↑ = =                                (5a) 

( ) 2 2
ohce

e
+ Φ

Φ ↓ = − = −                              (5b) 

If we compare the z-components of the magnetic moments and the spin dependent fluxes for both electron and 
positron Equations (2a)-(5b) we write the relation between the intrinsic flux and the magnetic moment of both 
electron and positron. 

2
0

2

2π
z

m c
e

µΦ =                                    (6) 

3. Calculation of the Magnetic Moment of a Photon 
To calculate the magnetic moment of a photon, our starting point will be the electron-positron annihilation 
process ending with the creation of two gamma photons with right and left hand circular helicities. After the col-
lision we will have two photons with the same energy ( )2

0E m c kc hcω λ= = = =   but with different helici-
ties. Just before the collision the relative spin orientation of e−  and e+  will be controlled by the Heisenberg 
exchange Hamiltonian [22]. 

1 22excU J= − ⋅S S                                   (7) 

where 1S , 2S  are the spin vectors and J is the exchange integral. If we had two electrons instead, the ex-
change energy together with the Pauli exclusion principle requires that the spins of the electrons must be antipa-
rallel. But for colliding ( e− , e+ ) system, the minimum energy is obtained for parallel spins. Therefore just be-
fore the collision the total z-component of the spin of the colliding ( e− , e+ ) system will be 1± . That means 
there are two possibilities: 

a) The electron is in spin-down state and the positron is in spin-down state. 
b) The electron is in spin-up state and the positron is in spin-up state. 
In Dirac notation, the states (a) and (b) can be defined as: 

a e eφ − += ↓ ↓                                  (8a) 

b e eφ − += ↑ ↑                                  (8b) 

which build an orthonormalized set. Namely 
*

1 2d d 1a a V V e e e eφ φ − − + += ↓ ↓ ↓ ↓ =∫∫                   (8c) 

*
1d d 1b b V V e e e eφ φ − − + += ↑ ↑ ↑ ↑ =∫∫                    (8d) 

*
1 2d d 0a b V V e e e eφ φ + + − −= ↓ ↑ ↓ ↑ =∫∫                   (8e) 

*
1 2d d 0b a V V e e e eφ φ + + − −= ↑ ↓ ↑ ↓ =∫∫                   (8f) 

where 1dV  and 2dV  are the volume elements for electron and positron respectively. 
The expectation values of the total z-components of the spin ( ) ( )1 2z z zS S S = + ∑  for the eigenstates (a) 

and (b) given in Equation (8a), (8b) are: 

( ) ( ) ( )
( ) ( )

( ) ( )

* *
1 2 1 2 1 2

1 2

1 2

d d d d

1 1 1
2 2

z a z a a az za

z z

z z

S S V V S S V V

e e S S e e

e S e e e e e e S e

φ φ φ φ
+ − − +

− − + + − − + +

 = = + 
 = ↓ ↓ + ↓ ↓ 

= ↓ ↓ ↓ ↓ + ↓ ↓ ↓ ↓

= − − = −

∑ ∑∫∫ ∫∫

          (9a) 
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( ) ( ) ( )
( ) ( )

( ) ( )

* *
1 2 1 2 1 2

1 2

1 2

d d d d

1 1 1
2 2

z b z b b bz zb

z z

z z

S S V V S S V V

e e S S e e

e S e e e e e e S e

φ φ φ φ
+ − − +

− − + + − − + +

 = = + 
 = ↑ ↑ + ↑ ↑ 

= ↑ ↑ ↑ ↑ + ↑ ↑ ↑ ↑

= + =

∑ ∑∫∫ ∫∫

          (9b) 

where 1S  and 2S  are the spins of electron and positron respectively. 
Since the states (a) and (b) are equally probable, the total wave function iΨ  before the collision will be giv-

en by: 

( )1
2i e e e e− + − +Ψ = ↓ ↓ + ↑ ↑                        (10) 

which is the quantum entanglement of the states e− ↓ , e+ ↓ , e− ↑  and e+ ↑ . 
The expectation value of zS∑  for the initial state iΨ  in Equation (10) is: 

( ) ( )

{ } ( )

* * *
1 2 1 2

* *
1 2 1 2

1d d d d
2

1 1d d d d 1 1 0
2 2

z i z i a b z a binitial

a z a b z b

S S V V S V V

S V V S V V

φ φ φ φ

φ φ φ φ

= Ψ Ψ = + +

= + = − + =

∑ ∑ ∑∫∫ ∫∫

∑ ∑∫∫ ∫∫
           (11) 

where we used Equations (9a), (9b). 
The total wave function, fΨ  of the system after the collision, will correspond to another entanglement of 

the states e− ↓ , e+ ↓ , e− ↑  and e+ ↑  provided that the total z-component of the spin of the final 
state is again zero. The only possible entanglement that results in zero spin is given by: 

( )1
2f e e e e− + − +Ψ = ↓ ↑ + ↑ ↓                        (12) 

This corresponds to two different gamma photons created with opposite circular helicities [1]. The eigenstates 
corresponding to the right hand and left circular helicities are: 

a e eφ − +′ = ↓ ↑                               (13a) 

b e eφ − +′ = ↑ ↓                               (13b) 

respectively. 
As we calculated in Equations (9a), (9b), the expectation values of the total z-components of the spin 

( ) ( )1 2z z zS S S = + ∑  for the eigenstates aφ′  and bφ′  of Equation (13) are: 

( ) ( ) ( )
( ) ( )

( ) ( )

* *
1 2 1 2 1 2

1 2

1 2

d d d d

1 1 0
2 2

z a z a a az za

z z

z z

S S V V S S V V

e e S S e e

e S e e e e e e S e

φ φ φ φ
+ − − +

− − + + − − + +

′ ′ ′ ′ ′ = = + 
 = ↑ ↓ + ↓ ↑ 

= ↓ ↓ ↑ ↑ + ↓ ↓ ↑ ↑

= − + =

∑ ∑∫∫ ∫∫

        (14a) 

( ) ( ) ( )
( ) ( )

( ) ( )

* *
1 2 1 2 1 2

1 2

1 2

d d d d

1 1 0
2 2

z b z b b bz zb

z z

z z

S S V V S S V V

e e S S e e

e S e e e e e e S e

φ φ φ φ
+ − − +

− − + + − − + +

′ ′ ′ ′ ′ = = + 
 = ↓ ↑ + ↑ ↓ 

= ↑ ↑ ↓ ↓ + ↑ ↑ ↓ ↓

= − =

∑ ∑∫∫ ∫∫

        (14b) 
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The expectation value of zS∑  for the final state fΨ  in Equation (12) is: 

( ) ( )

{ }

( ) ( ) ( )

*
1 2

* *
1 2

* *
1 2 1 2

d d

1 d d
2
1 d d d d
2
1 1 0 0 0
2 2

z f z ffinal

a b z a b

a z a b z b

z za b

S S V V

S V V

S V V S V V

S S

φ φ φ φ

φ φ φ φ

= Ψ Ψ

′ ′ ′ ′= + +

′ ′ ′ ′= +

 ′ ′= + = + =  

∑ ∑∫∫

∑∫∫

∑ ∑∫∫ ∫∫

∑ ∑

                (15) 

where we used Equations (14a) and (14b). 
If we compare the expectation value of zS∑  before and after the collision [Equation (11) and Equation 

(15)], we see that the conservation of the spin angular momentum is fulfilled. However, in Appendix II we show 
that the conservation of the canonical angular momentum requires also the conservation of the flux quantum or 
the magnetic moments as well (because of the relation given in Equation (6) the conservation of the flux quan-
tum will be equivalent to the conservation of the magnetic moments). 

Now using the Equations (2a)-(3b) we can calculate the expectation values of the z-components of the mag-
netic moment vectors for the eigenstates aφ , bφ , aφ′  and bφ′  [given in Equations (8a), (8b) and Equations 
(13a), (13b)]: 

( )
0 0

0
2 2z a

e e
m c m c

µ = − =∑                                   (16a) 

( )
0 0

0
2 2z b

e e
m c m c

µ = − + =∑                                 (16b) 

( )
0 0 0

2
2 2z Ba

e e e
m c m c m c

µ µ′ = + = =∑                            (16c) 

( )
0 0 0

2
2 2z Bb

e e e
m c m c m c

µ µ′ = − − = − = −∑                        (16d) 

Next, using the Equations (16a)-(16d) we can calculate the expectation value of zµ∑  (the total z-compo- 
nent of the magnetic moment) for the initial and the final states given in Equations (10), (12): 

( ) ( ) ( )1 1 0 0 0
2 2z z za binitial

µ µ µ = + = + = ∑ ∑ ∑                  (17a) 

( ) ( ) ( )1 1 2 2 0
2 2z z z B Ba bfinal

µ µ µ µ µ ′ ′= + = − =  
∑ ∑ ∑             (17b) 

If we compare the expectation value of zµ∑  for the initial state and the final state Equations (17a), (17b), 
we see that conservation of the total magnetic moment is also fulfilled. Therefore, the electron-positron annihi-
lation resulting with the creation of two gamma photons simply corresponds to the transition from the initial en-
tangled state iΨ  given by Equation (10) to the final entangled state fΨ  given by Equation (12). 

As we stated above, the final state wave function given in Equation (12) corresponds to two different gamma 
photons created with opposite circular helicities after the collision. Because the eigenstate ( )a e eφ − +′ = ↓ ↑   
corresponds to the gamma photon with the right hand circular helicity and the second eigenstate ( )b e eφ − +′ = ↑ ↓   

corresponds to the gamma photon with the left hand one. 
From the Equations (16c) and (16d), the z-component of the magnetic moment of the eigenstates, aφ′  and 

bφ′  (the gamma photons with the right hand (rh) and the left hand (lh) circular helicity) are: 

( )
0

2z B
erh

m c
µ µ= =

                                (18) 
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( )
0

2z B
elh

m c
µ µ= − = −

                               (19) 

respectively. 
Now substituting the relation ( )2

0m c ω=   in Equations (18), (19), we can write magnetic moments of the 
gamma photons in terms of the angular frequency, ω : 

( )z
ecrhµ
ω

=                                    (20) 

( )z
eclhµ
ω

= −                                   (21) 

which must be true for any photon also. Namely a photon propagating in z direction with an angular frequency 
ω  carries a magnetic moment of µz = ± (ec/ω) along the propagation direction. Here, the (+) and (−) signs 
stand for the right hand and left circular helicity respectively. 

4. Conclusions 
We have calculated the intrinsic magnetic moment of a photon through the intrinsic magnetic moment of a 
gamma photon created as a result of the electron-positron annihilation with the angular frequency ω. We show 
that a photon propagating in z direction with an angular frequency ω  carries a magnetic moment of µz = ± 
(ec/ω) along the propagation direction. Here, the (+) and (−) signs stand for the right hand and left circular helic-
ity respectively. We have also found a unique relation between the intrinsic fluxes and the magnetic moments of 
the particles such as electron, positron and the photon as well. We show that for all these three particles the 
unique relation between the intrinsic fluxes and the magnetic moments is given by: ( )2 2

02π zm c e µΦ = . 
Since for a photon µz is inversely proportional to the angular frequency ω, a lower frequency implies a higher 

magnetic moment. Therefore in the first experiment done by Zeeman [2] in 1896, yellow light of sodium which 
was in the low frequency range of the optical spectrum was a right choice for that purpose. On the other hand 
although we used gamma photons to calculate the magnetic moment of a photon, we believed that a 
Stern-Gerlach experiment (SGE) with gamma photons was almost impossible as we had an extremely high fre-
quency. Because of these two symmetric values of the magnetic moment, we expect a splitting of the photon 
beam in two symmetric subbeams in a Stern-Gerlach experiment. The splitting is expected to be more prominent 
for low energy photons. We believe that the present result will be helpful for understanding of the Stern-Gerlach 
experiment with photons [3]-[5] and also the behavior of the dark polaritons and the atomic spinor polaritons 
which is useful for the storage of the photonic qubits in a single atomic ensemble. A more complete work will be 
presented in the future. 
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Appendix I: Calculation of the Intrinsic Quantum Fluxes of Electron and Positron 
by Dirac Equation 
Solution of Dirac Equation for a free electron moving in a homogeneous magnetic field was given by Saglam et 
al. [21]: 

( )

( )

( ) ( )

( )( ) ( )
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                      (AI-2) 

To calculate the intrinsic quantum flux of a relativistic free electron in a uniform magnetic field within the 
framework of Dirac theory, we shall follow a similar way that we followed earlier [20]: Namely, we shall first 
calculate the quantum flux through the probability current (particle current) density associated with the wave 
function of a free Dirac electron in a uniform magnetic field, then connect it to the flux element ( )d ,z ρ φΦ  by 
the self-inductance Le. The probability of electric current density for the circular motion along the φ  direction 
is given by: 

( )
*

*, ,
2
i ej z
M

ρ φ
ρ φ ρ φ

 ∂Ψ∂Ψ
= Ψ − Ψ ∂ ∂ 

                      (AI-3) 

Assuming that electron is moving in xy  plane, we then write the surface current element coming from the 
circular ring of radius ρ  and the thickness dρ : 

( )
*

* d, d
2
i ej
M

ρρ φ ρ
φ φ ρ

 ∂Ψ∂Ψ
= Ψ − Ψ  ∂ ∂ 



                   (AI-4) 

Our next objective is to establish a quantized magnetic flux coming from the above current. A current element 
circulating around z-axis in a circle of radius ρ  should enclose an induced magnetic flux element ( )d ,z ρ φΦ  
which is proportional to the current given by Equation (AI-4): 

( ) ( ) ( )d , , dz eL jρ φ ρ ρ φ ρΦ =                       (AI-5) 

where ( )eL ρ  is the self-inductance [20] given by: 

( )
22π

eL M
e
ρρ  =  

 
                          (AI-6) 

Substitution of Equations (AI-3) and (AI-6) into Equation (AI-5) gives the total induced quantized magnetic 
flux: 

( )
*2

*2π dz
iind

e
ρ ρ

φ φ

 ∂Ψ∂Ψ
Φ = Ψ − Ψ  ∂ ∂ 

∫


.                   (AI-7) 
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To calculate the total induced quantized magnetic fluxes for spin-up and spin-down electrons, we substitute 
the wave functions of e− ↑  and e− ↓  states separately from Equation (AI-1) and Equation (AI-2) in Equa-
tion (AI-7): the spin dependent induced fluxes take the forms: 

( ) 0
2π 1 1 1

2 2 2ind
hm m m

e e
−      Φ ↑ = + = − + = − + Φ     

     



               (AI-8a) 

( ) 0
2π 1 1 1

2 2 2ind
hm m m

e e
−      Φ ↓ = − = − − = − − Φ     

     



               (AI-8b) 

In Equations (AI-8a) and (AI-8b), the spin dependent intrinsic fluxes correspond to m = 0, which are 0 2±Φ . 
If we solve the Dirac equation for a free positron we simply replace (−e) with (e). Then the corresponding fluxes 
would be 0 2Φ . So the intrinsic fluxes that electron and positron possess are: 

( ) 0

2 2
hce

e
− Φ

Φ ↓ = =                                (AI-9a) 

( ) 0

2 2
hce

e
− Φ

Φ ↑ = − = −                             (AI-9b) 

( ) 0

2 2
hce

e
+ Φ

Φ ↓ = − = −                             (AI-9c) 

( ) 0

2 2
hce

e
+ Φ

Φ ↑ = = .                              (AI-9d) 

Appendix II: Conservation of the Canonical Angular Momentum in Terms of the 
Quantum Flux and the Magnetic Moment 
The Lagrangian of an electron with mass 0m  and electric charge (−e) moving in a uniform magnetic field in z 
direction ( )ˆBz=B  is given by, ( ) ( ) ( )2

0 2L m e c r= − ⋅v v A , where ( ),x y=r r  is the position vector in 
two dimensions, =v r  is the velocity and A  is the vector potential. The quantum flux in terms of radius and 
the magnetic field can be written as 

( ) dd d
2 2 d

t
t

 Φ = ⋅ × = ⋅ × 
 ∫ ∫

B B rr r r
 

                      (AII-1) 

For an electron moving in the x-y plane in the counter clockwise direction with the angular frequency  

0
c

eB
m c

ω = , we get ( )2 2π x y BΦ = + , where the time integral has been taken over one cyclic period 2π
c

c

T
ω

= .  

The vector potential, A  is now related to the magnetic flux Φ  by 

( ) 2 2 2 2
ˆ ˆ

2π
y xr x y

x y x y
 Φ −

= + + + 
A                         (AII-2) 

The z-component of the conserved canonical angular momentum Jc is given by 

( ) ( ) ( ) ( )0 2πc z zz z

eJ m e c J
c

= × = × − × = − Φ  r p r v r A               (AII-3) 

where J is the gauge invariant kinetic angular momentum of the electron. 
Now using the relation in Equation (6): 

2
0

2

2π
z

m c
e

µΦ =                                    (6) 

We can write the conserved canonical angular momentum Jc in terms of the magnetic moment. Substitution of 
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Equation (6) into (AII-3) gives: 

( ) ( ) ( ) 02πc zz zz

m c
J J e c J

e
µ= − Φ ≡ −                        (AII-4) 

Here, Equations (AII-3) and (AII-4) simply state that the conservation of the canonical angular momentum 
requires also the conservation of the magnetic flux and the magnetic moment as well. In passing, we note that 
although the above calculations are carried out for an electron, the statement about the conservation of the mag-
netic flux and the magnetic moment will be valid for a positron as well. The only difference is that, for a posi-
tron the (−) signs in Equations (AII-3) and (AII-4) are replaced with the (+) signs. 
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