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Abstract 
Thin bonded films have many applications (i.e. in information storage and processing systems, and 
etc.). In many cases, thin bonded films are in a state of residual tension, which can lead to film 
cracking and crack extension in one layer often accompanies failure in whole systems. In this pa-
per, we analyze a channel crack advanced throughout thickness of an elastic thin film bonded to a 
dissimilar semi-infinite substrate material via finite element method (FEM). In order to simplify 
modeling, the problem is idealized as plane strain and a two-dimensional model of a film bonded 
to an elastic substrate is proposed for simulating channel crack in thin elastic film. Film is mod-
eled by common 4-node and substrate by infinite 4-node meshes. The stress intensity factor (SIF) 
for cracked thin film has been obtained as a function of elastic mismatch between the substrate 
and the film. The results indicate that in elastic mismatch state, SIF is more than match state. On 
the other hand, mismatch state is more sensitive to crack than match state. And SIF has also in-
creased by increasing Young’s modulus and Poisson ratio of film. 
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1. Introduction 
Many modern materials and material systems are layered. The potential applications of fracture mechanics of 
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layered materials range over a broad spectrum of problem areas; included are: protective coating, multilayer ca-
pacitors, thin film/substrate systems for electronic packages, layered structural composites of many varieties, 
reaction product layers, and adhesive joints [1]. Many applications in microelectronics (e.g., interconnects and 
electronic packaging) often involve integrated structures with dissimilar materials. Stresses are introduced dur-
ing the processes of fabrication, reliability testing, and operation. The stress field concentrates at the junctions of 
dissimilar materials, at the corners, or, if there exists a crack, at the crack tip [2]. In all of these applications, the 
films are very thin, with thicknesses measured in nanometers or micrometers, and they are bonded to compara-
tively thick substrates, with thicknesses typically measured in millimeters or centimeters. 

Many cracking patterns in film-substrate systems have been observed and analyzed [1] [3]. A crack nucleates 
from a flaw either in the film or at the edge, and propagates both towards to interface and laterally through the 
film. Depending on the material, the crack may stop at the interface (Figure 1(a)), penetrate into the substrate 
(Figure 1(b)), or bifurcate onto the interface (Figure 1(c)) [4]. 

Irwin [5] claims that the stress field in the vicinity of a crack tip can adequately be defined by a single para-
meter proportional to the SIF. When the intensity of the local tensile stresses at the crack tip attains a critical 
value, a previously stationary or slow-moving crack propagates rapidly. This critical value defines the “fracture 
toughness” and it is a constant for a particular material. If the size of the hugest flaw in a particular structure is 
known, minimum toughness standards can be established for the materials in this structure. In the application of 
most of the current fracture criteria, the SIF and the crack opening displacement are the mostly used quantities 
[6]. 

The objective of this study is investigating sensitivity of two bonded elastic layers to a single crack perpendi-
cular to the interface between film and substrate. This paper also has considered different elastic ratio of film 
and substrate. Because there are similar works in the literature (The problem of a crack perpendicular to the in-
terfaces may be found in [7]-[11]), the main emphasis here is on using infinite meshes to simulating substrate (to 
be close to real problems) and also presenting results in different form, i.e. plotting SIF versus elastic properties 
instead of Dundurs’ parameters [12], to have better understanding. 

2. Background of Analytical Methods 
In this section, we first give an overview of the fracture mechanics modes and then previous analytical works of 
SIF on both homogeneous and layered systems. 

Three linearly independent cracking modes are used in fracture mechanics. These load types are categorized 
as Mode I, II, or III as shown in the Figure 2. Mode I, shown to the left, is an opening (tensile) mode where the 
crack surfaces move directly apart. Mode II is a sliding (in-plane shear) mode where the crack surfaces slide 
over one another in a direction perpendicular to the leading edge of the crack. Mode III is a tearing (anti-plane 
shear) mode where the crack surfaces move relative to one another and parallel to the leading edge of the crack. 
Mode I is the most common and important load type encountered in engineering design [13]. 

2.1. SIF in Single Edge Notched Tension Specimen 
The SIF equation for a single edge notch and homogeneous properties in an infinite specimen is [14], 
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Figure 1. (a) A channeling crack within a thin film; (b) A channeling crack penetrating substrate; (c) A channeling crack 
with interface debonding [4]. 
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Figure 2. Mode I, Mode II, and Mode III crack loading [13]. 
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Range of applicability of this equation: The defect depth, a, should be less than the specimen width, w, [14]. 
For different a/w ratio it has plotted in Figure 3. 

2.2. SIF for Two Bonded Layers by Fully Cracked Film 
Figure 4 shows a crack channeling through a pre-tensioned film on a semi-infinite substrate. The crack is con-
fined by the film/substrate interface in the direction perpendicular to the interface. 

For the fully cracked film problem, with its crack tip at the interface (Figure 4), the KI is as the following 
form [15], 

( ) ( ), π s
IK f hα βσ=                                    (4) 

where ( ),f α β  is a non-dimensionalized SIF and a function of Dundurs’ (His work shows that for any prob-
lem of a composite body made of two isotropic, elastic materials with prescribed tractions, the material depen-
dence of the problem is reduced from three dimensionless parameters to the two “Dundurs parameters” α and β) 
parameters. 

For plane strain problems α and β are given by [12]; 
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where 21E E ν= − , Furthermore, the compilation by Suga et al. [16] indicates that for most practical material  
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Figure 3. Plot of ZY (nondimensionalized SIF) vs the variation of a/w for plane strain 
condition the fully cracked film. 
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Figure 4. Steady-state crack channeling across the film for. 

 
combinations, values of a typically lie between β = 0 and β = α/4. The stress singularity exponent, s in Equation 
7, is a function of α and β, too, and satisfies the following equation derived by Zak and Williams [17]; 

( ) ( )
2

2
2cos π 2 1 0

1 1
s sα β α β

β β
− −

− − + =
− −

                        (7) 

Values of s as a function of α for β = 0 and β = a/4 are plotted in Figure 5. 

3. Finite Element Simulation 
Consider a composite consisting of an infinite layer of width h and a half space (Figure 6). The half space can 
be assumed to approximate a semi-infinite substrate with average material constants as well as a homogeneous 
substrate. The layer is perfectly bonded to the half space (i.e. the bonding agent is neglected). There is a trans-
verse crack in the layer. The film is subject to a uniform tensile stress σ and the substrate is stress-free (Figure 6). 
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Figure 5. Plot of crack tip singularity exponent, s, vs α for β = 0 and β = α/4. 

 

 

σ 

h 

 
Figure 6. Fully cracked film under tensile stress. 

 
Figure 7 shows the geometry and the boundary conditions of the plane-strain problem. The crack is 

represented by the line CD. The thickness of the film is h. The substrate has an infinite thickness. The model is 
fully fixed along AB. The vertical boundary EF is subjected to an initial tensile stress (σ = 1 Pa) and other 
boundaries are traction free. At equilibrium, the film and the substrate deform so that the tractions along the 
crack faces vanish and the crack opens. For each set of material properties of the film and the substrate, solu-
tions were sought with various values of Ef/Es and νf/νs in order to obtain the asymptotic solution for an isolated 
single crack with a semi-infinite substrate. 

The finite element meshes are generated as follows. First divide the whole domain into two regions, as indi-
cated in Figure 8. In the upper region, the one with the crack, a uniform mesh (number: 101 * 11) is generated 
with the plane strain solid continuum four-node bilinear quadrilateral elements (CPE4R). In the lower region, 
semi-infinite substrate, the mesh (number: 101 * 1) is generated with the plane strain solid continuum infinite 
four-node linear quadrilateral elements (CINPE4). The meshes of the regions are compatible in their intersection, 
and also alignment of the crack with the elements is convenient for the computation of the opening displace-
ment. 

4. Results and Discussion 
For the two-dimensional analysis, the two type of SIF (KI and KII) are related to the energy release rate, G, as 
follow [18], 
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Figure 7. The FEM model of the plane-strain problem: geometry and boundary conditions. 
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Figure 8. The FEM model of the plane-strain problem:assigning mesh to the film and the 
semi-infinite substrate. 
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In the previous studies of cracking in thin films (e.g., [1]), a unifying dimensionless number Z has been de-
fined such that the energy release rate for a crack is, 

2
0 h

G Z
E

σ
=                                        (9) 

where E  is the plane-strain modulus of the film. The number Z is a dimensionless driving force, depending on 
the cracking pattern. Huang et al. [2], modeled dimensionless energy release rate of channeling cracks by XFEM 
and obtained that energy release rate has increased by increasing α. 

For the channeling crack in the present study, the first type of SIF (KI) of a two bonded elastic layers was 
calculated using finite element method. Different Poisson’s ratios, νf/νs, of 0.5, 0.9, 1, 2, 3, 4, 5 and the elastic 
modulus ratios, Ef/Es, of 0.1, 0.2, 0.3, ···, 8, 9, 10 were choosing for calculation, because all different materials 
can be located in this range. 

The variation of the SIF for different elastic ratios is presented in Figure 9, Figure 10. It can be seen, the 
change of the KI value for different modulus ratios decreases by decreasing Poisson’s rations. In the case of no 
elastic mismatch (α = β = 0), the stress singularity reduces to the square root singularity of a crack tip in a ho-
mogeneous elastic material, i.e. s = 0.5 (Equation (7)), and KI has the minimum values (Figure 9). When the 
substrate is stiffer than the film (α < 0), the singularity is weaker, i.e. s < 0.5, and KI values are lower. When the 
substrate is more compliant than the film (α > 0), the singularity is stronger, i.e. s > 0.5, and KI values are higher. 
For an extremely compliant substrate (α → 1), the singularity exponent approaches 1(s → 1) and KI has the 
maximum value. 

The results can be tabulated in Table 1. 

5. Conclusion 
The infinite elements, for an elastic fracture mechanic problem, have been used to characterize the cracking of 
thin films bonded to thick substrate materials. The SIF has been extracted from the simulations. The SIF of the 
plane-strain problem depends on the elastic mismatch between the film and the substrate. The result demon-
strates that the infinite elements can be applied to model problems with different elastic properties of films and  
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Figure 9. Variation of KI with different Poisson’s ratios, νf/νs, and Young’s modulus ratios. 
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Figure 10. Variation of KI with different Poisson’s ratios, νf/νs, and Young’s modulus ratios, 
Ef/Es, of 0.1 - 1 for detail. 
 
Table 1. Summary of the results. 

Property Dundurs’ parameters S SIF Non-dimensional energy release rate [2] 

Es ↑ Ef- α↓ β- s↓ KI ↓ ωI↓ 

νs ↑ νf- α↓ β- s↓ KI ↓ ωI↓ 

Ef ↑ Es- α↑ β- s↑ KI ↑ ωI↑ 

νf ↑ νs- α↑ β- s↑ KI ↑ ωI↑ 

 
substrates. SIF for channeling crack has obtained as a function of elastic mismatch ratio between the substrate 
and the film. Results show that KI has the minimum value in Ef/Es = 0.1 and νf/νs = 0.5 condition and it has the 
maximum value in Ef/Es = 10 and νf/νs = 5. In general view KI has the minimum value when νf = νs. Because 
there is no result in this form, qualitative comparisons with the available previous studies (i.e. Non-dimensional 
energy release rate [2]) show good general agreements. 
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