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Abstract 
We consider a network composed of an arbitrary number of directed links. We employ a grand 
canonical partition function to study the statistical averages of the network in equilibrium. The 
Hamiltonian is composed of two parts: a “free” Hamiltonian H0 attributing a constant energy E to 
each link, and an interacting Hamiltonian Hint involving terms quadratic in the number of links. A 
Gaussian integration leads to a reformulated Hamiltonian, where now the number of links appears 
linearly. The reformulated Hamiltonian allows obtaining the exact behavior in limiting cases. At 
high temperatures the system reproduces the behavior of the free model, while at low tempera-
tures the thermodynamic behavior is obtained by using a renormalized chemical potential, μeff = μ 
+ λ, where λ is the strength of the interaction. We also resort to a mean field approximation, de-
scribing accurately the system over the entire range of all dynamical parameters. A detailed 
Monte-Carlo simulation verifies our theoretical expectations. We indicate that our model may serve 
as a prototype model to address a number of different systems. 

 
Keywords 
Complex Networks, Statistical Mechanics, Monte Carlo Simulations, Grand Canonical Ensemble 

 
 

1. Introduction 
We are used to wondering first about particles or states and then about their interactions. We are first to ask about 
what it is and afterwards how it is. In most of our models in physics, or other branches of science, a system is 
considered as a collection of objects, with interactions among the objects introduced at a later stage. The exam-
ples are abundant (Ising model, lattice QCD, etc). It is not unjustified to consider that what lies beneath this 
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general approach is a form of logic, Aristotelian logic. Aristotle’s logic primes the issue of existence (or non- 
existence) of a property attributed to an object. Boole gave an algebraic form to this type of logic, used as an in-
strument set theory (membership or non-membership of an object to a set). Most of our constructions in mathe-
matics and physics rely precisely on set theory and Boolean logic. 

Yet, there are signs that other forms of logic may be present. Quantum mechanics especially defy the classical 
logic. Neumann and Birkhoff noticed, as early as 1936, that the quantum really needed a non-Boolean logical 
syntax. We are led to reorient our thinking and consider that things have no meaning in themselves, and that on-
ly the correlations among them are real. Recently the relational logic of Peirce [1] [2] has been adopted as a con-
sistent framework to prime correlations and it has been shown that this form of logic may serve as the concep-
tual foundation of quantum mechanics and string theory [3]. Within the Peircean logic, relation is the funda-
mental, primary constituent, and everything else is expressed in terms of relations. Relation Rlm is a generic term 
indicating a binary relation between two individual terms. Examples for possible Rlm: 1) it may stand for the mo-
tion from initial point m to the final point l; 2) it may represent the transition from the m state to the l state; 3) it 
constitutes a proof, where starting from the initial theorem m we prove theorem l; 4) it stands for the internet 
connection from computer m to computer l. 

Multiple relations among a number of sites lead to a network, characterized by its own topology or geometry. 
There are highly original propositions where space-time itself is considered as a network. For Wheeler, pregeo-
metry, the stage preceding geometry, is the result of a calculus of propositions-relations [4] [5]. Penrose sug-
gested to view space-time as a network of relations-links carrying angular momenta [6] [7]. A graph model, en-
dowed with a Hamiltonian, may also lead to geometrogenesis [8] [9]. Extensive studies indicate the usefulness 
of causal dynamical triangulation for the study of quantum space-time [10], while the connection of complex 
networks to de Sitter universe has been outlined [11]. On the other hand, starting from different queries, net-
works have been employed for the study and analysis of quantum walks, internet, neural functioning of the brain, 
cognitive science, language acquisition, and biological systems [12]-[20]. 

A relation Rlm may hold valid, or not valid, thus receiving two values, “yes” or “no”. It resembles a fermion, 
which, upon measurement of its spin, is revealed as “spin up” or “spin down”. We expect then that a network of 
relations will bear similarities to a network of fermions. In a network composed of relations-links, each individ-
ual link costs an energy E. The entire system has an average energy determined by the temperature T (inverse β). 
The number of valid occupied links is another parameter and is influenced by the chemical potential μ. Finally 
an interaction among relations, with strength determined by a parameter λ, gives rise to complexity and unex-
pected patterns for our relational network. We assume that the entire system, after multiple interactions, reaches 
a state of equilibrium and thus we are entitled to use methods of statistical mechanics for its study. In the next 
section we present our model and the available exact results. In the third section we present approximate solu-
tions, involving Gaussian integration or the mean field approximation. In the fourth section a detailed Monte 
Carlo simulation is carried out. We may notice the excellent agreement between the Monte Carlo simulation and 
the mean field approximation. In the last section we present our conclusions and we mention directions for fu-
ture work. 

2. The Model 
Essentially all network models considered in modern work have been ensemble models, meaning that a model is 
defined to be not a single network, but a probability distribution over many possible networks. The best choice 
of probability distribution is that from statistical physics that maximizes the Gibbs entropy. We adopt this ap-
proach here as well, where we discuss the equilibrium statistics of networks. The partition function Z can be de-
fined as a sum over all graphs with a fixed number of sites and a fixed number of relations-links. Alternatively 
one can define the grand partition function ZG with an arbitrary number of links adjusted by a suitable chemical 
potential. 

2.1. Description 
After the introduction of the frame we are working in, let us describe our interacting network. We consider a 
loopless network (there is no link connecting a site to itself), with a fixed number of sites N, parameterized by a 
M × N matrix 
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1 if there is a link from to
0 otherwiseij

j i
R 

= 


                            (1) 

The number of links is 

,
,ij

i j
L R= ∑                                         (2) 

with the maximum number of links being ( )max 1L N N= − . Suppose that rather than measuring the total num-
ber of links in a network, we measure the degrees of all the sites. For each site i we define the outgoing links 

out
ik  and the entering links in

ik  
out in
i ji i ij

j j
k R k R= =∑ ∑                                   (3) 

Since each link appears twice, once as an “out” link and the other as an “in” link, we have 
N N

out in
i i

i i
k k=∑ ∑                                       (4) 

In that way, the actual number of links is given by 

( )1
2

N
out in
i i

i
L k k= +∑                                     (5) 

The Hamiltonian for our model is 

0 intH H H= +                                       (6) 

with H0 representing the “free” Hamiltonian and Hint providing an interaction among the different links. Within 
our model 

0
,

ij
i j

H E R= ⋅∑                                       (7) 

where E is the energy cost for an individual link. 
For the interaction term we opted 

.
1

in out
int i i

i
H k k

N
λ

= −
− ∑                                    (8) 

The interaction term resembles the two-star model [21] [22]. The two-star model is an undirected network where 
the interaction terms couples all links attached to the same site. In our case we are studying a directed network, 
where we distinguish the incoming links from the outgoing links and the interaction couples the incoming flux 
to the outgoing flux for every single site. This type of interaction favors (for positive λ) the flow of a signal, the 
flow of information, the flow of a current, the spread of a virus, the propagation of a fire etc. 

2.2. Exact Results 
2.2.1. 0λ =  
Consider first the “free” Hamiltonian (we set λ = 0). The grand partition function is 

{ }
( )

( )

( )( )

0
,

1

0

exp

exp

1 exp

ij

ij

G ij
i jR

ij
R i j

i j

Z E R

E R

E

β µ

β µ

β µ

= ≠

≠

  
= − −  

   

 = − − 

= + − −  
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∏

                              (9) 
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We can evaluate then the average number of links 

( )
( )0

0
,

ln1 1 1
1 exp

G

i j

Z
L N N P

Eβ µ β µ

∂
= = = −

∂ + −  
∑                    (10) 

where P0 is the probability of occupation of a single link 

( )0
1

1 exp
P

Eβ µ
=

+ −  
                                (11) 

Notice the similarity of our “free” model to the Fermi-Dirac gas model. As T →∞  ( )0β → , all links are  

equally occupied with probability 
1
2

. As 0T →  ( )β → ∞ , if E µ>  all links are unoccupied, while for  

E µ<  all links are occupied with unit probability. The average number of occupied links as a function of the 
temperature is shown in Figure 1, to be compared later with the corresponding quality of the complete model. 

2.2.2. 0λ ≠  
The full Hamiltonian is not amenable to exact analytic results, the main problem being the appearance of qua-
dratic terms. To circumvent this problem we resort to a gaussian integration. Let us concentrate on the individual  

term exp
1

out ink k
N
βλ 

 − 
. By defining the column vector 

 

 

Figure 1. Mean number of links L  vs. β for λ = 0 and for values of the energy E below and above the chemical potential 
μ. The points are Monte Carlo simulation results for systems of N = 50 nodes, the solid line represents the analytic results 
and the error bars represent the standard deviation of L. 
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out

in

kY
k

 
=  
 

                                     (12) 

we obtain 
1

1 2
out in trk k Y AY

N
βλ

=
−

                                (13) 

with A the 2 × 2 matrix 

0
1

0
1

NA

N

βλ

βλ

 
 − =
 
 

− 

                                 (14) 

Using well known Gaussian matrix integrals we may rewrite 

( )1 1exp d d
1 2π

out in out in
a b a b a b

i N Nk k x x x x k x k x
N
βλ

βλ βλ
−  −  = − + +  −   

∫∫                 (15) 

where now ,in outk k  appear as linear terms. Including all sites we obtain the full grand partition function ZG 

{ }

( ) ( )
,

1
exp

2π

N

G jb ia ij
C i j

i N
Z x E x x Rβ µ

βλ
−   

 = ⋅ − − + +    
  

∑ ∑∫


                   (16) 

where the integration measure is 

1d d expja jb ja jb
j

Nx x x x x
βλ

 −
= − 

 
∏



                             (17) 

Summing over all possible configurations amounts to include the possible values of Rij (1 and 0). We end up 
with 

( ) ( ){ }1
1 exp

2π

N

G jb ia
i j

i N
Z x E x xβ µ

βλ ≠

− 
 = + − − + +   

 
∏∫


                    (18) 

2.3. Approximate Solutions 
The expression above, Equation (18), allows to extract the behavior of ZG in limiting cases 

1) When T →∞ , or equivalently 0β → , the integration measure, Equation (17), forces all ,ja jbx x  to re-
main close to zero. We obtain then 

( ){ } ( )1
1 exp

N N N
GZ E Iβ µ

−
+ − −                               (19) 

where 

( )1 1d d exp 1
2π a b a b

i N NI x x x x
βλ βλ
−  −

= − = 
 

∫                           (20) 

We conclude that at high temperature, since 
0G GZ Z

, the interaction is irrelevant and our interacting model is 
reproduced by the results offered by the free model (with λ = 0). 

2) In the case 0T →  ( )β → ∞  and E µ<  the term ( )exp jb iaE x xβ µ − − + +   dominates over unity 
and the integration for a single site is simplified to 

( ) ( ) ( ) [ ] 11 2πd d exp 1 1 exp
1

N
ja jb ja jb ja jb

Nx x x x N x N x
i N

βλ βλ
βλ

− −
− + − + − =  − 

∫             (21) 
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Including all sites we arrive at 

( ) ( ) [ ] ( ) ( ) ( )1 11exp exp exp
N N N NN N

GZ E Eβ µ βλ β µ λ
− −−− − = − − −                      (22) 

Thus at low temperatures the presence of the interaction amounts to a renormalization of the chemical potential 

effµ µ λ= +                                         (23) 

The net result is that the interaction allows more links to be located under the Fermi energy with a high proba-
bility being occupied. 

Mean-Field Approximation 
For a network with a big number of links, we may resort to a mean field approximation, applicable to any tem-
perature. The grand canonical partition function may be rewritten as 

{ }
( ) ( )exp

1
in out

G ij ij j i
C i j

Z E R R k k
N
λβ µ

≠

  
= − − − +  −   
∑ ∑                        (24) 

For a large number of links we may approximate ink  and outk  by their mean values 

( )1in
j jk

k
k R N P= −∑ 

                                    (25) 

( )1out
i ki

k
k R N P= −∑ 

                                    (26) 

where P is the occupation probability of a single link. 
ZG becomes then 

{ }
( )exp 2G ij

C i j
Z E P Rβ µ λ

≠

  
= − − −  

   
∑ ∑                               (27) 

The above expression is similar to the grand canonical partition function of the free model, with μ replaced by 
2 Pµ λ+ . We conclude that the occupation probability of a single link satisfies the equation 

( )
1

1 exp 2
P

E Pβ µ λ
=

+ − −  
                                  (28) 

We may attempt a numerical solution of the above equation. Let us define 

1
1f
P

=                                            (29) 

( )2 1 exp 2f E Pβ µ λ= + − −                                     (30) 

The solution(s) of Equation (28), we call it P*, is found as the intersection of the two curves f1 and f2 

( ) ( )* *
1 2f P f P=                                        (31) 

P ranges from 0 to 1, and while at P = 0 f2 lies below f1, at P = 1 f2 lies above f1. Thus f2 is forced to cross f1 at 
some point P*. For large values of β and λ this crossing occurs more than once. Consider a Taylor expansion 
around the initial crossing point P* 

( ) ( )
( )

( )* *
1 1 2*

1f P f P P P
P

= − −                                  (32) 
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( ) ( ) ( )
*

* *
2 2 *

12 Pf P f P P P
P

βλ −
= − −                               (33) 

When the slope of f2 is bigger than the slope of f1 at P*, then f2 rises above f1 for *P P<  and below f1 for 
*P P> . This implies that we will have two more crossing points (two more solutions), when the condition 

( )* *2 1 1P Pβλ  − >                                      (34) 

is satisfied. For a range of the parameters involved this crossing occurs more than once, giving rise to a bifurca-  

tion [21] [22]. When E µ λ= + , the initial P* is equal to 
1
2

 and the bifurcation condition becomes 

2βλ >                                           (35) 

2.4. Monte Carlo Algorithm 
We performed Monte Carlo simulations of the above described system and compared them with our exact re-
sults. Monte Carlo simulations are usually performed for thermal systems using the canonical ensemble and the 
well known “Metropolis” algorithm. The grand canonical ensemble is much more difficult to simulate and not 
routinely used in the literature [23]. In the classic “Metropolis” method system configurations are generated 
from a previous state using a transition probability which depends on the energy difference between the initial 
and final states. The sequence of states produced follows a time ordered path, but the time in this case is “Monte 
Carlo time” and should not be confused with actual time. It is simply an effort to mimic a dynamic process that will 
lead the system to equilibrium so that statistical averages can be computed. Consider a discrete state-continuous 
time system. If ( )nP t  denotes the probability that a system is found at state n at time t and n mW →  denotes the 
transition rate from state n to state m then the dynamics of the system are described by the following master eq-
uations (one for each of the discrete system states) 

( ) ( ) ( )n
n n m m m n

n m

P t
P t W P t W

t → →
≠

∂
= − −  ∂ ∑                             (36) 

In equilibrium ( ) 0nP t t∂ ∂ = . Thus, one obtains the “detailed balance” condition: 

( ) ( )n n m m m nP t W P t W→ →=                                   (37) 

For the canonical ensemble the probability to find the system at the n-th state is: 

1 e nE
nP

Z
β−=                                         (38) 

From Equation (37) and Equation (38) one deduces that the ratio of the transition probabilities depends only on 
the energy difference between the states and not on the unknown Z function. 

( )
( )

( )e en mE Em En m

m n n

P tW
W P t

β β− ∆→

→

= = =                                 (39) 

The calculation of thermodynamical statistical averages would be trivial if we knew the partition function Z in 
Equation (38). Since this is, however, generally unknown in Monte Carlo simulations we start from a random 
system configuration and allow it to evolve with suitable chosen transition probabilities. Any choice of transi-
tion probabilities that satisfies Equation (38) is acceptable. The standard “Metropolis” algorithm consists in 
choosing 

( )
1 0
exp 0m n

E
W

E Eβ→

∆ <=  − ∆ ∆ ≥
                                (40) 

The “Metropolis” algorithm briefly procceeds as follows: 
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1) Choose a random initial state m. 
2) Choose a new state n from the “neighboring” states to state m. 
3) Calculate the energy difference ΔE between the two states. 
4) Draw a random number r uniformly distributed between 0 and 1. 
5) Use Equation (39) to decide whether to accept the new state, i.e. accept if 0E∆ <  or if ( )expr Eβ< − ∆  
6) Return to Step 2. 
The above equations are valid for systems with a fixed number of “particles” Np at constant temperature T. 
An alternative way of studying physical systems is by using the grand canonical ensemble. In this case the 

number of “particles” of the system may vary i.e. the system can exchange particles with its environment. Thus, 
the independent variables are T and the chemical potential μ. For the grand-canonical ensemble the probability 
to find the system at the n-th state is: 

( )1 expn n p
G

P E N
Z

β µ= − −                                (41) 

where ZG is the grand partition function, μ is the chemical potential and Np is the number of “particles” of the 
system. 

One may think that simulating the grand canonical ensemble is a trivial extension of the above algorithm and 
that it suffices to use Equation (41) in the place of Equation (38), while calculating the acceptance probabilities. 
This is true in principle; however there are practical complications that should be considered. Consider for sim-
plicity a spin system, i.e. a system where each particle can be found in one of two states (spin up or down) and 
that can exchange particles with its environment. 

A rough sketch of the proper algorithmic process that should be used for a grand canonical simulation is as 
follows: 

1) Choose at random a state i. This state has energy Ei and n particles. 
2) Find all the “neighboring” states of i. This includes all the states accessible from i if we insert one particle, 

all states accessible from i if we remove one particle and all states resulting from a random spin flip (a rear-
rangement of the internal degrees of freedom). Select randomly one of these states. 

3) Calculate the energy newE  and the number of particles newn  of this trail state. 
4) Calculate the acceptance ratio starting from Equation (41) instead of Equation (38). Accept or reject the 

trial state. 
5) Continue until the system reaches a steady state. 
In practice, Step 2 of finding the “neighboring” states can become rather complicated and “heuristic” tricks 

have to be implemented to simplify the process. 
Our network system is a system with variable number of links L. We performed grand canonical Monte Carlo 

simulations of this system using the temperature T and chemical potential μ as control parameters using the fol-
lowing algorithm. 

1) We start from a network of N nodes and we randomly insert L0 links out of the possible ( )1 2N N −  with 
probability 1/2. 

2) We calculate the energy of the system H and the number of links L. 
3) We draw a random number x between 0 and 1. If 1 3x <  we try to transpose a link. If 1 3 2 3x< <  we 

try to remove a link. And if 2 3x >  we try to insert a link in the system. 
4) In case we decide to transpose a link then we generate a new trial configuration with just one link in a dif-

ferent “place”. We accept the new configuration with probability ( )expw Hβ= − ∆  where ( )newH H H∆ = −  
and newH  the energy of the new configuration. 

5) In the case of insertion we generate a new configuration with one additionally randomly placed link and 
accept the new configuration with probability ( )expinw C Hβ= − ∆  where ( ) ( )new newH H L H Lµ µ∆ = − − − ,  

newL  the number of links of the new configuration and max max

1in

L L
C

L L
   

=    +   
 a correction term that accounts  

for the difference in the number of available states when the number of links increases by one. 
6) Links are removed with probability ( )expremw C Hβ= − ∆  where ( ) ( )new newH H L H Lµ µ∆ = − − −  and  

max max

1rem

L L
C

L L
   

=    −   
 a correction term that accounts for the difference in the number of available states  
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when the number of links decreases by one. 
7) We continue the simulation for a number of Monte Carlo steps which ensures that the system has reached 

equilibrium. 
8) We repeat the calculations for several initial system realizations. 

3. Results 
In Figure 1 we plot the mean number of links L  as a function of β for the case 0λ = , after the system has 
reached the equilibrium state. The exact analytic results (solid lines) and the Monte Carlo simulations (points)  

are in excellent agreement. We observe that for small β ( )T →∞ , the mean number of links tends to max
1
2

L ,  

while for large β ( )0T →  there are two limits: for E µ< , the mean number of links tends to maxL  and for 
E µ>  the mean number of links tends to zero. We notice here that the results are identical to the corresponding 
results from traditional statistical mechanics for systems of non-interacting fermions (Fermi-Dirac distribution). 

In Figure 2 we present the results for the interacting case, with 2λ = , 2µ = , for different energies, as a 
function of β. Distinctive features emerge. First at high temperatures ( )0β ≈  the occupation probability for a  

link is always 
1
2

. This is in agreement with our findings in section 2.3, that at high temperatures the interaction  

term is not important and the results are reproduced by the grand partition function of the free model. As β 
increases (temperature decreases) the results are sensitive upon the precise value of the energy. In Figure 2(a) 
the energy is smaller than the effective chemical potential. The probability starts to rise with increasing β (as 
expected) and at a critical β value the bifurcation takes place. The original solution becomes unstable and two 
new branch-solutions emerge. In Figure 2(b) on the other hand the energy is bigger than the effective chemical 
potential. As β increases, the probabiity decreases and again at a critical β value the bifurcation occurs. In 
Figure 2(c) the energy is equal to the effective chemical potential. The probability remains constant at the value  
1
2

 and the bifurcation takes place at the predicted value 2βλ = . In Figure 3 we display characteristic pictures  

of the network for both the free and the interacting case. We notice that in the free model there are very few 
connecting links. In the interaction model on the other hand, we obtain a very dense network. 

What is really striking in our findings is the impressive agreement between the mean field approximation, 
Equation (28), and the Monte Carlo simulation we carried out (see all the figures). We attribute this agreement 
to the large number N of the sites involved. Our findings imply a sort of “equivalence” among all sites and 
therefore we do not expect the creation of hubs in the network. 

4. Conclusions 
We have studied a dynamical directional network model with a variable number of links. In most of similar studies  
 

 
Figure 2. For λ = 2 and μ = 2. The solid line represents mean-field approximation results and the points 
are Monte Carlo simulation results for systems of N = 50 nodes. 
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Figure 3. Characteristic pictures of the network for both the free (λ = 0) and the interacting case (λ = 
0.49) for E = 1.4, μ = 1, β = 6 and N = 20 nodes. 

 
the links are added or removed following a given prescription. In our model the number of links is affected by 
the presence of an interaction term in the Hamiltonian. The whole network pattern is sensitive upon the values of 
the strength of interaction λ, the inverse temperature β and the chemical potential μ. Though the model is not 
simple, we manage to obtain a semi-analytic description. At high temperatures the dynamics of the network is 
described by the free model, while at low temperatures the determining parameter is the renormalized chemical 
potential effµ µ λ= + . It is rather gratifying the nice agreement between the theoretical expectations and the 
Monte-Carlo simulation. 

We consider our model as a prototype model, able to address different situations. Variation of the assump-
tions and the parameters involved may lead to distinct patterns. For example: 

1) We assume the same energy for all links. We may examine the possibility that links connected to specific 
sites have a reduced energy. Then we anticipate the emergence of hubs. Such a structure may resemble the in-
ternet structure. 

2) There is no geometry in the present model. We may envisage that the sites belong to a fixed geometry, for 
example a lattice. The interaction term in the Hamiltonian may stand for the propagation of a germ from a hu-
man organ to another, or the propagation of a fire in a forest. 

3) We consider λ as a constant. A space-dependent λ (including negative values) will give rise to a cluster of 
multiple networks, or a “multiverse”. 

Work along these lines is in progress. 
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