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Abstract 
We extend standard linear perturbations of a Schwarzschild black hole by Chandrasekhar to Bon-
di frame by transforming both even and odd parity perturbations when angular momentum l = 2. 
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1. Introduction 
In studying linear perturbations of a Schwarzschild black hole we are able to study its static space-time proper-
ties and the emission of gravitation radiation. The gravitational radiation emitted by a Schwarzschild black hole 
carries information about its mass (as well as spin and charge for rotating and/or charged black holes). Also by 
studying the perturbations of a Schwarzschild black hole it is possible to make conclusions about the stability of 
the Einstein equations [1]. Because of the challenges of studying the gravitational radiation analytically, people 
have developed numerical techniques [2] to solve the field equations by evolving the metric. Different ap-
proaches are used in numerical relativity to tackle these problems in standard coordinates, the most approach 
being the ADM formalism [3] [4] which is based on the split of spacetime into space and time. However, the 
natural formalism based on the fact that gravitational radiation travels at the speed of light and uses null coordi-
nates, is called Bondi-Sachs formalism [5] [6]. Important numerical studies involving black hole-black hole, 
black hole-neutron star, and neutron star-neutron star binaries have been done [7]-[12] in this direction. 

In this paper we transform well-known linear perturbations of a Schwarzschild black hole to Bondi-Sachs 
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form. The outline of this paper is as follows: in Section 2 we discuss the Bondi-Sachs formalism as background 
material. In Section 3, we discuss linearized Bondi-Sachs metric. In Section 4, we discuss the complex notation 
to be used. In Section 5, we transform the linear perturbations of a Schwarzschild black hole to Bondi-Sachs 
frame. Section 6 is a discussion. The paper ends with the conclusion in Section 7. 

2. Background Material 
We use coordinates based upon a family of outgoing null hypersurfaces u cont= , where u is the retarded time 
parameter. We let Ax  ( )2,3A =  be the null rays, and r be a surface area coordinate. In the resulting 

( ), ,i Ax u r x=  coordinates, the metric takes the BS form [5] [13] 

2 2 2 2 2

2 2

d e 1 d 2e d d

2 d d d d ,

A B
AB

B A A B
AB AB

Ws r h U U u u r
r

r h U u x r h x x

β β  = − + − −    
− +

                        (1) 

where AB A
BC Bh h δ=  and ( ) ( )AB ABdet h det q= , with ABq  being a unit sphere metric. 

We work in spherical polar coordinates ( ),Ax θ φ=  and the unit sphere metric is given by 

( )

2 2 2 3 3 2 3 3
22 23 32 33

2 2
22 23 32 33

d d d d d d d d d d

d d d d .

A B
ABq x x g x x g x x g x x g x x

g g g gθ θ φ φ

= + + +

= + + +
                     (2) 

We now introduce the complex dyad ( ) ( ), 1, sinAq A iθ φ θ= =  where 1,
sin

A jq
θ

 =  
 

 and 1j = − . Aq  

and Aq  satisfy the following conditions: 0A
Aq q = , 2A

Aq q = , and A AB
Bq q q= , with AB A

BC Cq q δ=  and 

( )1
2AB A B A Bq q q q q= + , where Aq  and Bq  are the complex dyad conjugate of Aq  and Bq  respectively. 

We also introduce the complex quantities U, J defined by 

,A
AU q U=                                         (3) 

and 
2.A B

ABJ q q h=                                       (4) 

For spherically symmetric case (Schwarzschild space-time), we take J = 0 and U = 0. J and U are interlinked, 
and they contain all the dynamic content of the gravitational filed in the linearized regime [14]. Lastly we intro-
duce the complex differential eth operators   and   (see [15] for full details). The eth ( ) formalism gives a 
compact and efficient manner of treating vector and tensor fields on the sphere, as well as their covariant deriva-
tives. 

We define the operator   acting on a quantity   of spin-weight s, as 

( ) ( )sin csc sins sjθ θ θ
θ φ

− ∂ ∂
= − + ∂ ∂ 

                             (5) 

which has the property of raising the spin-weight by 1, and similarly we define   as 

( ) ( )sin csc sin ,s sjθ θ θ
θ φ

−  ∂ ∂
= − − ∂ ∂ 

                            (6) 

which has the property of lowering the spin-weight by 1. 
For a Schwarzschild space-time, we have 0J U= = , and usually we can describe this space-time by 0β =  

and 2W M= − , or by ( )constantcβ β=  and ( )2e 1 2cW r Mβ= − − . For a spherically symmetric spacetime, J 
and U are zero and thus they can be regarded as a measure of the deviation from spherical symmetry, and in 
addition, they carry the gravitational radiation information. 

3. Linearized Bondi-Sachs Metric 
We linearize Bondi-Sachs metric in order to find J, U, β , and w in the next section from the transformed linear 
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perturbations of a Schwarzschild black hole in the case l = 2. Bondi-Sachs metric linearized about Schwarz-
schild background has the following metric components 

00
21 2 4M wg M

r r
β β= − + − + −                                (7) 

01 10 1 2g g β= = − −                                          (8) 

2
02 20g g r U θ= = −                                           (9) 

2 2
03 30 sing g r U φθ= = −                                     (10) 

11 12 13 21 31 0g g g g g= = = = =                                 (11) 

2 2 2
23 32 23 32g g r b r h r h= = = =                                 (12) 

( )2 2
22 221g r a r h= + =                                       (13) 

( )2 2 2
33 331 sing r a r hθ= − =                                  (14) 

where a and b are functions of r and θ  only, and metric quantities β , w, U θ  and U φ  are all small. We 
write β , U, J and w explicitly as: 

( )0 20e .i uYσβ β θ=                                     (15) 

From Equation (3) we have 

( ) ( )

03
022

0 1 20

1
sin sin

e 6 .i u

gUU U j g j
r

U r Y

φ
θ

σ

θ θ

θ

 = + = − +  

=

                            (16) 

From Equation (4) we have 

( ) ( )0 2 202

1 e 2 6 .
2 sin

A B
i uABq q g bJ a j J r Y

r
σ θ

θ
= = + =                     (17) 

Lastly 

( ) ( )0 20e .i uw w r Yσ θ=                                  (18) 

The spherical harmonics ( )20Y θ , ( )2 20Y θ , and ( )1 20Y θ  are respectively given by 

( ) ( )
1
2

2
20 1

2

5 2 3sin ,
4π

Y θ θ
 
 = − 
 
 

                              (19) 

( ) ( )
1
2

2 20 1
2

5 3 1 cos 2 ,
4π

Y θ θ
 
 = − 
 
 

                             (20) 

( )
1
2

1 20 1
2

5 3sin 2 .
4π

Y θ θ
 
 = − 
 
 

                                 (21) 

4. Complex Notation 
At this stage we must deal with a notational issue concerning the use of complex numbers to represent physical 
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quantities. J and U are complex and are used as a convenient representation of metric quantities with two real 
components. However, it is also common practice to represent oscillations in time as ei uσ . More precisely, it is 
common to write 

( ){ } { }cos sin e e ,i u i u
R Im R ImA u A u Re A iA Re Aσ σσ σ− = + =                     (22) 

with R ImA A iA= + . 
Not only is the above a more compact notation, but also it is much easier to manipulate ei uσ  (by means of 

differential and integral operators) than sine or cosine function. 
The difficulty is that the complex nature of J and U on the one hand, and of ei uσ  on the other, have no con-

nection with each other. The simplest way around the problem is to keep complex representations for both ei uσ , 
as well as J and U, by using i in ei uσ  with 2 1i = − , and j in J and U with 2 1j = − , but i j≠  and ij not sim-
plifiable. Although this construction appears similar to quaternion theory, it is, in fact, different. A new algebra 
has not been constructed, and only addition and multiplication will be performed. In general, an inverse may not 
exist, so division is not permitted. 

The above construction was not made in [16] because in that work it was possible to neglect the imaginary 
component in J and U. However, we shall see that it is not the case for odd-parity perturbations. 

5. Transformation of Linear Perturbations to Bondi-Sachs form 
The general metric for time-dependent axisymmetric systems in general coordinates ( )2 3, , ,t x x φ  is given by 
[17] 

( ) ( ) ( ) ( )32
2 2 22 222 2 2 2 3 2 3

2 3d e d e d d d d e d e d ,s t t q x q x x xµµν λ φ ω= − − − − − −              (23) 

where ν , ψ , 2µ , 3µ , ω , 2q , and 3q  are functions of time t , and 2x , and 3x  are independent of φ . 
The unperturbed Schwarzschild metric which is the special solution to Equation (23) in spherical coordinates 
( ), , ,t r θ φ  is given by 

( )
1

2 2 2 2 2 2 22 2d 1 d 1 d d sin d .M Ms t r r
r r

θ θ φ
−

   = − − + − + +   
   

                   (24) 

where 2x r= , 3x θ= , and 2µ λ=  (say), 2 2e e 1 2m rν λ−= = − , e sinrψ θ= , 3e rµ = , and 2 3 0q qω = = = . 
When the Schwarzschild metric is perturbed we have ν δν+ , λ δλ+ , and 3 3µ δµ+  (for even-parity per-

turbations), and ω , q2, and q3 are taken as quantities of the first order of smallness (for odd-parity perturbations) 
as it is the case with δν , δλ , and 3δµ . 

5.1. Even-Parity Metric Perturbations 
5.1.1. The Transformation Procedure 
We start by transforming t to u by performing the following transformation 

( ) ( ) ( )2ei tu t F r f r Pσε θ= − −                                (25) 

where ( )F r  and ( )f r  are functions that needs to be determined and ( ) 2
2

3 1cos
2 2

P θ θ = −  
 are the Le-

gendre functions. Differentiating Equation (25) we get 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2, ,

2 2, ,

d d e d d e d

e d e d .

i t i t
r r

i t i t
r

t u f r i P u F r r F r f r i P r

f r P r f r P

σ σ

σ σ
θ

ε σ θ ε σ θ

ε θ ε θ θ

= + + +

+ +
              (26) 

Then we substitute Equation (26) into the perturbed metric and we chose a function ( )F r  such that the 
transformed metric after the substitution of Equation (26) has the coefficient of dr2 zero to the zeroth order in ε . 
Similarly we chose a function ( )f r  such that the coefficient of dr2 is zero to 1st order in ε . We found func-
tions ( )F r  and ( )f r  to be 



A. S. Kubeka, N. T. Bishop 
 

 
1771 

( ) ( )2 ln 2 ,F r r M r M= + −                                 (27) 

and 

( )
( ) ( )( )2

2
e

e d .
2

ri
ri r M

r M
rN r rL r

f r r
r M

σ
σ

 − − +   
 − 

−
=

− +∫                          (28) 

After the above transformation, we note that ei tσ  now has the form ( )ei u i F rσ σ+ . We also note that from the 
transformed metric there is a d dr θ  term that needs to be removed. We remove this term by transforming θ  to 
ψ  by performing the following transformation 

( ), ,u rθ ψ θ εα ψ→ = −                                  (29) 

where ( ), ,u rα ψ  is a function that needs to be determined. We then differentiate Equation (29) to get 

( ) ( ) ( ), , ,d d , , d , , d , , du ru r u u r r u r
ψ

θ ψ εα ψ εα ψ εα ψ ψ= + + +                   (30) 

We substitute Equation (30) into the transformed metric and apply the condition that the coefficient of d dr ψ  
must be zero to 1st order in ε . We then work out the complete transformed metric up to 1st order in ε  and 
transform 2sin θ  as follows 

( )( ) ( )( ) ( )( )22 2 2sin sin , , sin , , cos sin 1 2 , , cotu r u r u rθ ψ εα ψ ψ εα ψ ψ ψ εα ψ ψ→ − = − = −      (31) 

We found ( ), ,u rα ψ  to be 

( ) ( ), , 3sin cos e ,i u
fu r I rσα ψ ψ ψ= −                             (32) 

where 

( )
( ) ( )

2

e
d .

i F r

f

f r
I r r

r

σ

= ∫                                  (33) 

Finally, we transform r to a new r' by performing the following transformation 

( ), ,r r r u rε ψ′→ = + Ω                                  (34) 

were ( ), ,u r ψΩ  is a function that needs to be determined. Equation (34) satisfy the following condition 
4 2

22 33sin .r g gψ′ = ⋅                                    (35) 

We use Equation (35) to find ( ), ,u r ψΩ , and it was found to be 

( ) ( ) ( ) ( ) ( ) ( )21, , e 3cos 1 3 e 3 .
4

i F ri u
fu r r I r V r T rσσψ ψ  Ω = − − + −                   (36) 

5.1.2. The Transformed Metric 
After the above transformation, we found the transformed metric to be given by 

( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

2 2
00 2

2
2 2

2
2 2

1 2 2 , , 2 , ,

2e 4e

4e 2e ,

i F r i u i F r i u

i F r i u i F r i u

g Mr u r r M u r r
ur

f r i P r f r i P Mr

P N r Mr P N r r

σ σ σ σ

σ σ σ σ

ε ψ ε ψ

ε σ ψ ε σ ψ

ε ψ ε ψ

+ +

+ +

 ∂ = − − − Ω − Ω +  ∂ 

+ −

− + 

               (37) 

( ) ( )( ) ( ) ( )
( )( ) ( ) ( )

01 10 2

2

1 , , 2e

2e ,

i F r i u

i F r i u

g g u r P N r
r

f r i P

σ σ

σ σ

ε ψ ε ψ

ε σ ψ

+

+

∂ = = − + Ω − ∂ 

−

                      (38) 
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( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

02 20 2

3
2

, , 2e

, , e ,

i F r i u

i F r i u

g g u r r f r P M
r

u r r f r P r
u

σ σ

σ σ

ε ψ ψ
ψ ψ

ψ ψ
ψ

+

+

   ∂ ∂
= = Ω +   ∂ ∂   

 ∂ ∂ + Ω −   ∂ ∂    

                      (39) 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

2
22 22 , , 12e cos 2e

6e 2 , , ,

i F r i u i F r i u

i F r i u

g r u r r r V r r P T r

r V r r u r

σ σ σ σ

σ σ

ε ψ ε ψ ε ψ

ε ε ψ
ψ

+ +

+


= − Ω + − +


 ∂

+ Ω

 
 





∂ 

      (40) 

( ) ( )
( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

2 2
33

2 4

2
2 2

2 , , cos 2sin cos 2cos , ,

6e cos 6e cos

2e 2e cos .

i F r i u i F r i u

i F r i u i F r i u

g r u r r r r u r

r V r r V r

r P T r r P T r

σ σ σ σ

σ σ σ σ

ε ψ ψ ψ εα ψ ψε ψ

ε ψ ε ψ

ε ψ ε ψ ψ

+ +

+ +

= − Ω + − + − Ω

+ −

− + 

               (41) 

which simplifies to 

( ) ( ) ( ) ( )

( ) ( )

00 2
2 21 2 e e 1

1 22 , , , , ,

i F ri uM Mg P f r i N r
r r

Mu r r u r
r u r

σσε ψ σ

ε ψ ε ψ

 = − + + − +    
 ∂  + Ω + Ω  ∂  

                         (42) 

( ) ( ) ( ) ( ) ( )01 10 21 , , 2e e ,i F ri ug g u r P f r i N r
r

σσε ψ ε ψ σ ∂  = = − − Ω + +    ∂  
                (43) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
02 20 22 3

2 2

1, , 2 e e

1, , e e ,

i F ri u

i F ri u

Mg g r u r P f r
r r

u r P f r
u r

σσ

ψ ψ

σσ

ε ψ ε ψ

ε α ψ ε ψ
ψ

    ∂ ∂
= = − − Ω −    

∂ ∂       
 ∂ ∂ − +   ∂ ∂    

                (44) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
22 2

2

21 , , 2e e

6e 1 2cos e 2 , , ,

i F ri u

i F ri u

g r u r P T r
r

V r u r

σσ

σσ

ε ψ ε ψ

ε ψ ε α ψ
ψ

 = + − Ω + 
 ∂ + − +    ∂  

                         (45) 

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2
33 2

2 2

21 , , 6e cos e 2e e

6 cos e sin ,

i F r i F ri u i u

i u
f

g r u r V r P T r
r

I r

σ σσ σ

σ

ε ψ ψε ε ψ

ε ψ ψ

 = − Ω + − 
− 

             (46) 

( )F r , ( )f r , ( )rα , ( ), ,u r ψΩ  are functions given by Equations (27), (28), (32), and (36) respectively. 

5.1.3. The Comparison 
By comparing the transformed even-parity metric perturbations with the linearized Bondi-Sachs metric (see 
Section 2) and noticing that 11 12 13 21 31 23 32 03 30 0g g g g g g g g g= = = = = = = = = , we found that β , U, J, w 
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are given by 

( ) ( )22 , , , , ,Mw u r r u r
u r

ε ψ ε ψ ∂  = − Ω + Ω  ∂  
                          (47) 

( ) ( ) ( ) ( ) ( )2, , 2e e ,i F ri uu r P f r i N r
r

σσβ ε ψ ε ψ σ ∂  = Ω + +    ∂  
                   (48) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 3

2 2

12 , , 2 e e

1, , e e ,

i F ri u

i F ri u

MU u r P f r
r r

u r P f r
u r

σσ

ψ ψ

σσ

ε ψ ε ψ

ε α ψ ε ψ
ψ

    ∂ ∂
= − Ω −    

∂ ∂       
 ∂ ∂ − +   ∂ ∂    

                   (49) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
2

2 , , 2e e 6e 1 2cos e 2 , , ,i F r i F ri u i uJ u r P T r V r u r
r

σ σσ σε ψ ε ψ ε ψ ε α ψ
ψ

 ∂ = − Ω + + − +    ∂ 
   (50) 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
2

2 , , 6e cos e 2e e 6 cos e .i F r i F ri u i u i u
fJ u r V r P T r I r

r
σ σσ σ σε ψ ψε ε ψ ε ψ= Ω + − −        (51) 

By substituting functions (27), (28), (32), and (36) into Equations (47), (48), (49), and (50), ω , β , U, and J 
simplify to 

( ) ( )0 20e ,i uw w r Yσε θ=                                   (52) 

where 

( ) ( ) ( ) ( ) ( )
1
2

0 1
2

4π 1 3 e 3 ,
2

5

i F r
f

Mw r r i r I r V r T r
r

σσ
 

    = + + −        
 

                 (53) 

( ) ( )0 20e ,i ur Yσβ β ε θ=                                  (54) 

where 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ){

( )( ) ( ) ( ) } ( ) ( ) ( )

1
2

0 1
2

4π 1 3 e 3 1
4

5

1 e

i F r
f f

i F r

r I r rI r ri F r V r rV r

ri F r T r rT r f r i N r

σ

σ

β σ

σ σ

 
    ′ ′ ′ = − + + − +       

 
 ′− − + + +    

          (55) 

( )1 20 0e ,i uU Y U rσε=                                   (56) 

where 

( ) ( ) ( ) ( ) ( ) ( )
( )
[ ]0 2

1 1 e3 e 3 2 1
2 2

i F r
i F r

f fU r I r V r T r I r M
r r

σ
σ 

 = − + − + + −      
            (57) 

( )2 20 0ei uJ Y J rσε=                                   (58) 

where 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
2

0 1
2

4π 1 1 1 3 e 3 e
2 22 65

2 e .

i F r i F r
f

i F r
f

J r I r V r T r T r

V r I r

σ σ

σ

 
     = − + − +         

 
 + +  

            (59) 

We have used the trigonometric identities: 

( ) ( ) 2 21cos cos cos cos and sin cos
2

a b a b a b θ θ= − − + +                     (60) 

to simplify 23 1cos
2 2

ψ −  to ( )1 3 cos 2 1
4

ψ −    in Equation (50). 

5.1.4. Interpreting the Complex Quantities 
The expressions for β , w, J and U obtained above involve the complex quantity i, but not j. Thus, here, the in-
terpretation is straightforward: in all cases β , w, J and U mean the real part of the given expression. 

5.2. Odd-Parity Metric Perturbations 
5.2.1. The Transformation Procedure 
From Equation (23) we have 

( ) ( ) ( )( )

1
2 2 2 2 2

22 2
2 3

2 2d 1 d 1 d d

sin d , , d , , d , , d ,

M Ms t r r
r r

r r u t q r t r q r t

θ

θ φ ω θ θ θ θ

−
   = − − + − +   
   

+ − − −

                (61) 

since ( ), ,r tω θ , ( )2 , ,q r tθ  and ( )3 , ,q r tθ  are very small, we then have 

( ) ( ), , 3cos e ,i tr t r σω θ εω θ=                                  (62) 

( ) ( )2 2, , 3cos e ,i tq r t q r σθ ε θ=                                 (63) 

( ) ( )3 3, , 3sin e .i tq r t q r σθ ε θ=                                 (64) 

We start by transforming t to u by the following transformation 

( ) ,u t F r= −                                         (65) 

where ( )F r  is a function that needs to be determined. Differentiating this transformation we obtain 

( )d d d .t u F r r′= +                                       (66) 

By substituting Equation (66) into Equation (61) and choosing the function ( )F r  such that the transformed 
metric after the substitution of Equation (66) has the coefficient of dr2 zero to the zeroth order in ε  and we 
note that ei tσ  now has the form ( )( )ei u F rσ + . We found the transformed metric to be 

( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

2 2 2 2

2 2

2

2 3

2 2d 1 d 2 1 d d d

sin d 3cos e d 3cos e

3cos e d 3sin e d ,

r

i u F r i u F r

r

i u F r i u F r

M Ms u F r u r r
r r

r r u r F r

q r r q r

σ σ

σ σ

θ

θ φ εω θ εω θ

ε θ ε θ θ

+ +

+ +

 ∂   = − − − − +     ∂    
  ∂

+ − −  ∂


+ −   

           (67) 
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where a function ( )F r  was found to be 

( ) ( )2 ln 2 .F r r M r M= + −                                  (68) 

We then transform φ  to ψ  by performing the following transformation 

( ), ,g r uψ φ θ= +                                      (69) 

where ( ), ,g r uθ  is a function that needs to be determined. Differentiating this transformation we obtain 

( ) ( ) ( )d d , , d , , d , , dg r u r g r u g r u u
r u

φ ψ θ θ θ θ
θ

∂ ∂ ∂     = − − −     ∂ ∂ ∂     
.                (70) 

Then by substituting Equation (70) into Equation (67) and choosing ( ), ,g r uθ  such that the transformed 
metric after the substitution has the coefficient of 2dr  zero we get 

( )

( ) ( ) ( )( ) ( ) ( )( )

2 2 2 2 2 2

2

3

2d 1 d 2d d d sin d , , d

, , d 3cos e d 3sin e d ,i u F r i u F r

Ms u u r r r g r u
r

g r u u r u q r
u

σ σ

θ θ ψ θ θ
θ

θ εω θ ε θ θ+ +

 ∂   = − − − + + −    ∂   

∂  − − −  ∂  

          (71) 

where a function ( ), ,g r uθ  was found to be 

( ) ( ) ( )
2

, , 3 cos ei u
qg r u I r I rσ

ωθ ε θ  = − +                              (72) 

where 

( )
( ) ( ) ( ) ( ) ( )

2 2

e
d and e d .

2

i F r
i F r

q

r r
I r r I r q r r

r M

σ
σ

ω

ω−  = =
− +∫ ∫                     (73) 

5.2.2. The Transformed Metric 
After the above transformation procedure, we found the transformed metric to be 

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2 2
3 3 2

00

3

3 3

1 2 , , , , cos

6 , , cos e

6 , , cos e ,

i u F r

i u F r

g r M r g r u r g r u
r u u

r g r u r
u

r g r u r
u

σ

σ

θ θ θ

θ εω θ

θ εω θ

+

+

 ∂ ∂   = − − − +    ∂ ∂   
∂ −  ∂ 
∂  +  ∂  

                   (74) 

01 1,g = −                                                                  (75) 

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2
02

3

cos 1 cos 1 3 , , cos e

, , , , 3sin , , e ,

i u F r

i u F r

g r g r u r

g r u g r u g r u q r
u u

σ

σ

θ θ θ εω θ
θ

θ θ θ θ ε
θ

+

+

 ∂ = − − +   ∂ 
∂ ∂ ∂      + + ×      ∂ ∂ ∂     

      (76) 

( )( ) ( ) ( )( ) ( )2
03 cos 1 cos 1 3 cos e , ,i u F rg r r g r u

u
σθ θ εω θ θ+ ∂  = − + +  ∂  

                (77) 

( )( ) ( ) ( ) ( )( )2
23 3cos 1 cos 1 , , 3 sin ei u F rg r g r u q r σθ θ θ ε θ

θ
+ ∂  = − + +  ∂  

               (78) 
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( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2 2
2 2

22

3

2
3

1 , , , , cos

6sin , , e

6sin , , e cos ,

i u F r

i u F r

g r g r u g r u

g r u q r

g r u q r

σ

σ

θ θ θ
θ θ

θ θ ε
θ

θ θ ε θ
θ

+

+

 ∂ ∂   = − − − +    ∂ ∂   
∂ −  ∂ 
∂  +  ∂  

                          (79) 

( )( )2
33 cos 1 cos 1 .g r θ θ= − − +                                                (80) 

Substituting Equation (72) in the above metric components, they simplify to 

00
21 ,Mg

r
= − +                                                            (81) 

01 1,g = −                                                                  (82) 

02 0,g =                                                                  (83) 

( ) ( ) ( ) ( )( ){ }2

2 2
03 3 sin cos e e ,i F ri u

qg r Re r i I r I rσσ
ωθε θ ω σ = − − +                   (84) 

( ) ( ) ( ) ( ){ }2

2 3
23 33 sin e e ,i F ri u

qg r Re I r I r q r σσ
ωθε  = − + +                           (85) 

2
22 ,g r=                                                                  (86) 

2 2
33 sin .g r θ=                                                             (87) 

5.2.3. The Comparison 
By comparing the transformed odd-parity metric perturbations with the linearized Bondi-Sachs metric (see 
Section 2) we found that β , U , J , w  0β , 0U , 0J , and 0w  for the transformed odd-parity metric per- 
turbations are given by 

( )00, and hence 0.rβ β= =                                 (88) 

00, and hence 0.w w= =                                  (89) 

From Equation (17) with 0a =  we have 

,
sin

jbJ
θ

=                                        (90) 

From Equation (16) with 02 0g =  we have 

03
2

1 ,
sin
jg

U
r θ

= −                                      (91) 

5.2.4. Interpreting the Complex Quantities 
The expressions for J and U obtained above involve both complex quantities i and j. Taking the real part with 
respect to i leads to 

( ) ( ) ( ) ( ){ }2

1
2

2 20 31
2

4 e e
5

i F ri u
qJ j Y Re I r I r q r σσ

ω
πε

 
   = − + +    
 

                   (92) 

and 
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( ) ( ) ( ) ( )( ){ }
1
2

1 20 1 2
2

4π e e
5

i F ri u
qU j Y Re r i I r I rσσ

ωε ω σ
 
   = − +    
 

                  (93) 

Thus, both U and J are pure imaginary quantities. 

6. Discussion 
The transformation of linear perturbations of a Schwarzschild black hole to Bondi-Sachs is complete. The 
transformation of even-parity perturbations was much more involved than that of odd-parity perturbations. The 
end results of the transformation processes for both even and odd-parity perturbations were very different, for 
example, in the case of odd-parity perturbations, w and β  were found to be zero and J and U were found to be 
purely imaginary and that was not the case for even-parity perturbations were w, β , J and U were found to be 
real and complicated functions. 

All unknown functions; ( )f r , ( )F r , ( ), ,u rα ψ , ( ), ,u r ψΩ  and ( ), ,g r uθ  for both even and odd-par- 
ity perturbations, were found and verified to be correct by substituting them into the transformed even and 
odd-parity perturbations, thereby simplifying the transformed perturbations to a point where we were able to 
find J, U, w, and β . We then wrote J, U, w, and β  as spherical harmonics ( 2 20Y , 1 20Y , 20Y  and 20Y  respec-
tively) times some functions ( 0J , 0U , 0w , and 0β  respectively) times the time dependency factor ei uσ . Also, 
for the fact that we were able to extract 20Y , 1 20Y , 2 20Y  and 0J , 0U , 0w , 0β  from the transformed odd and 
even-parity perturbations, meant that the transformation processes were carried out correctly and that all the un-
known functions ( )f r , ( )F r , ( ), ,u rα ψ , ( ), ,u r ψΩ  and ( ), ,g r uθ  were correctly determined. 

7. Conclusion 
It appears that the transformation of second order perturbations of a Schwarzschild black hole to Bondi-Sachs 
form will be extremely difficult to do. In the future, the extension of the work of this paper to a stationary 
charged (Reissener-Nordström) black hole will be very exciting and hopefully attainable. Similarly, the trans-
formation of linear perturbations(gravitational) of a Kerr black hole will be very exciting to do, but the trans-
formation of its standard metric to Bondi-Sachs form has been obtained only very recently [18] and is not in an 
explicit analytic form yet. In addition, if we extend the work of this dissertation to Kerr-Newman black hole, we 
will find it difficult to transform linear perturbations because even and odd-parity perturbations have not yet 
been decoupled and this is still a challenge to us. 
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