
Journal of Modern Physics, 2014, 5, 1264-1271 
Published Online August 2014 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2014.514127   

How to cite this paper: Olszewski, S. (2014) Bohr’s Spectrum of Quantum States in the Atomic Hydrogen Deduced from the 
Uncertainty Principle for Energy and Time. Journal of Modern Physics, 5, 1264-1271.  
http://dx.doi.org/10.4236/jmp.2014.514127  

 
 

Bohr’s Spectrum of Quantum States in the 
Atomic Hydrogen Deduced from the  
Uncertainty Principle for Energy and Time 
Stanisław Olszewski 
Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland  
Email: olsz@ichf.edu.pl  
 
Received 12 June 2014; revised 8 July 2014; accepted 1 August 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest 
distance attained in course of the excitation process, as well as the shortest possible time interval 
for that process. These lower bounds are much similar to the interval limits deduced on both the 
experimental and theoretical footing in the era when the Heisenberg uncertainty principle has 
been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the 
Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between 
the Bohr orbits is found to be close to the speed of light. This result provides us with the energy 
spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on 
the electrons in course of their transitions is estimated to be by many orders larger than a steady 
electrostatic force existent between the atomic electron and the nucleus. 
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1. Introduction 
The Bohr model of the hydrogen atom [1] assumed circular trajectories for electrons circulating about the 
atomic nucleus and the motion along these trajectories has been quantized. In effect definite radii of the orbits  
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and electron velocities on these orbits  
2

n
ev
n

=
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could be calculated. From the balance of the electron energy  
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in which nr  and nv  are substituted from (1) and (2), a well-known quantum formula  
4
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                                            (4) 

could be obtained. Later it became possible to derive the same nE  formula on the basis of a quantum- 
mechanical approach [2]. 

The classical Bohr model stimulated several questions concerning its validity, the main of which was perhaps 
how the electron—in course of its transition to another orbit—can choose that orbit and become limited in its 
further motion to it [3] [4]. In other words the problem was concerning not so much separate nE , but their 
differences  

4
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meE E E
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                                 (5) 

for some n n n′ = + ∆ , and the way how (5) can define the atomic spectrum. 
The present paper tends to meet this question in case when an approach to the energy spectrum is done on the 

basis of the uncertainty principle, the essence of which are the energy differences E∆  applied together with the 
time intervals  

2 1.t t t∆ = −                                             (6) 

In fact the principle expressed in the form given by Heisenberg [5]  
,E t∆ ∆ >                                             (7) 

where E∆  is a difference of energy met in the quantum process, and has been next objected on many 
occasions [6]-[8]. The effect of that numerous textbooks on physics or quantum mechanics do not even mention 
the validity; see e.g. [9]. Nevertheless a modification of (7) into a new formula  

( )222mc E t∆ ∆ >                                           (8) 

could be performed [10]-[12] and we show below that this transformation makes the uncertainty principle 
suitable in obtainig the atomic spectrum; the Formula (7) is fully ineffective at that point. 

But before the spectrum is demonstrated, our aim is to point out that (8) can give also the lower bounds of the 
space intervals, say that along the Cartesian coordinate x  which is  

1 2 .x x x∆ = −                                             (9) 

This result can give a similar lower bound of the time intervals (6) met in the quantum processes. 

2. Lower Bounds of the Position and Time Intervals Derived from the  
Uncertainty Principle for Energy and Time 

Heisenberg [5] has coupled the observables which are the intervals of the position coordinate and that of 
momentum in the uncertainty relations similar to that given in (7) for the energy and time. Mathematically this is 
expressed by the formula  

xp x∆ ∆ >                                             (10) 

on condition that only the x -coordinates of the particle momentum and position are taken into account. Though 
the observables of a pair in (10) enter the formalism on an approximately equal footing, their experimental 
background can be much different. For example the momentum of a particle is usually much more accurately 
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defined than its position. A similar property concerns the energy intervals which are easier accessible than those 
of time, but—contrary to (7)—the mutual position of E∆  and t∆  in (8) is evidently different. 

The Relations (10) and (7) imply no limits for xp∆ , x∆ , as well as E∆  and t∆ , excepting for their sign. 
This property comes out from the Formula [13]  
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                                      (11) 

2 2 2 ,xE c p m c= +                                     (12) 

in which the particle velocity xv  is directed along the axis x . Both xp  and E  can rise up unlimitedly with 
an increase of  

xv c<                                           (13) 

towards its limit of the light velocity c . In effect, in order to satisfy (10) and (7) for arbitrarily large xp∆  and 
E∆ , the intervals  

x∆                                             (14) 
and  

t∆                                              (15) 
entering the (10) and (7) should tend to zero. 

But this property has been objected already very soon after the the birth of the Heisenberg uncertainty 
relations [5]. The objections denying the arbitrary small x∆  and t∆  have been raised on both the experimen- 
tal and theoretical footing [14]-[17]. In fact these references proposed that there exists a minimal x∆  equal to 

0
hx

mc
∆ =                                         (16) 

and a minimal t∆  equal to  

0 2 ,ht
mc

∆ =                                           (17) 

where m  is the rest mass of a particle. 
In order to derive (16) from (8) let us assume that E∆  is the excitation energy of a free particle from the 

level at 0E =  to the level of E E= ∆ . In this case  
2

2
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E
m

∆ =                                           (18) 

where xp  is the electron momentum. 
On the other hand we have  

d
dx x
x xp mv m m
t t
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= = ≅

∆
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which is the effect of one of the Hamilton equations:  
( )d .
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A transformation of (19) gives  

.
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p

∆ = ∆                                           (19a) 

This formula, substituted together with (18) into (8), gives:  
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or  

.mc x∆ >                                         (21a) 

Therefore we obtain a condition for the smallest x∆  equal to  

0 .x
mc

∆ =
                                           (22) 

This expression differs from (16) solely by a factor of 2π . The smallest t∆ , labelled by 0t∆ , is obtained 
from (22) by requirement that the distance 0x∆  is travelled with a maximal speed close to c . Therefore  

0 0 2

1 .t x
c mc

∆ = ∆ =
                                         (23) 

The result in (23) differs from that in (17) solely by the factor of 2π . 
It can be noted that 0t∆  in (23) is only a half of the time interval  

0 2

2T
mc

=
                                           (24) 

required to transform the kinetic energy of a particle motion into the energy of the electromagnetic radiation 
[18]. 

3. Discussion 
The lower bounds of x∆  and t∆  obtained in (22) and (23) can lead—respectively with the aid of (10) and (8) 
to the upper bounds of the intervals xp∆  and E∆ . In particular from (10) and (22) we obtain  
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and from (8) and (23):  
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If instead of (8) the Heisenberg uncertainty relation (7) together with (23) is applied, the result for the upper 
bound of E∆  is  

( ) 2 2
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0
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∆ > = =
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 



                                (27) 

We see that the Formulae (25)-(27) for the upper bounds of the intervals of momentum and energy approach 
the relations which are well known from the classical relativistic mechanics. In the present case, however, they 
are an effect of the quantum-mechanical uncertainty formulae. 

If the limiting values 0t t∆ = ∆  and 21
2

E mc∆ =  [see (23) and (26)] are substituted into (8), the uncer-  

tainty Relation (8)—in order to be satisfied--should attain its certitude in the form  
2 2 22 ( ) ,mc E t∆ ∆ =                                     (8a) 

for in this case holds the relation  
2

2 2 2
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If the energy change E∆  is a radiation transfer of energy, so  
,E∆ = Ω                                         (29) 

there should exist the formula  



S. Olszewski 
 

 
1268 

2
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1 ,
2
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defining a maximal frequency maxΩ = Ω . 
For m  equal to the electron mass em  we obtain from (30):  

( )228 102
21 1

max 27
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−
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× ×
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                            (31) 

Roughly a similar result for maxΩ  in a metal has been obtained in [10]. 
Moreover, for em m=  we have 10

0 0.3 10  cmx −∆ ×  from (22) and 21
0 10  sect −∆   from (23). The lower 

limits for the free-electron path and electron transition time in metals calculated before [19] fit the 0x∆  and 
0t∆  quoted above. 
If the orbital radii of a hydrogen-like atom having the nucleus of charge Ze  are considered instead of charge 

Ze e=  alone, the orbital radii become [20] [21]  
2 2
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                                           (32) 

giving the smallest radius ( )1n =   
2

1 2 .r
mZe

=
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                                            (32a) 

According to the result obtained in (22) the smallest possible radius (32) should satisfy the relation  
2

1 2 .r
mcmZe

= =
 

                                           (33) 

This gives a limiting condition for the atomic number  

2 137.cZ
e

= ≅
                                               (33a) 

A similar condition can be obtained by considering the shortest time period crT  acceptable for the orbit 
1n = . In this case from [20] and the result in (22) it should be satisfied  

3
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By applying next the Formula (33a) in (34) we obtain the relation  
3 2
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from which, by multiplying the both sides of the last equation in (35) by c  and taking into account (32a), we 
have  

12π .r
mc

=
                                               (35a) 

The sense of (35a) is that in order to obtain from (35a) the same limiting Z  as in (33a) we should assume 
12πr  instead of 1r  in (32a) as a smallest acceptable distance. This is an expected result if we note that the time 

formula for crT  involves necessarily the orbit length 12πr  in calculations and not 1r  alone. 

4. The Uncertainty Relation (8) Referred to the Energy Spectrum of the  
Hydrogen Atom 

Till the present point the electron motion on the orbits has been mainly taken into account. But in calculating the 
electron transitions between orbits the electron velocity normal to the orbital trajectories has to be considered. 
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Let the electron which is on a circular orbit labelled by n , so its radius is defined in (1), be promoted to another 
orbit, for example n n+ ∆ . An effect of this transition is a change of the orbit radius by the amount  

( )
2 2

2 2
2 22 ,n n n nr r r n n n n n

me me+∆
 ∆ = − = + ∆ − ≈ ∆ 

 

                              (36) 

on condition we assume that  
,n n∆                                                (37) 

so the term ( )2n∆  can be henceforth neglected. In course of the electron transition we assume that radiation of 
velocity c  is emitted or absorbed. Roughly the time of transition from nr  to n nr +∆  can be estimated by the 
absolute value of the expression  

.n nr c t∆ ≈ ∆                                              (38) 

The property that the time interval nt∆  satisfies (38) can be derived from the uncertainty principle (8). In a 
limiting case of (8) the Formula (8a) is valid from which  

( )1 22
= .

2
t

mc E
∆

∆

                                          (39) 

In course of the transition process the electron energy on the orbit is changed by an absolute amount equal to 
[see (5)]:  
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                       (40) 

If we put  

,nE E∆ = ∆                                              (41) 

we obtain from (39) and (40) the formula  
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                                 (42) 

For large n  the time interval nt∆  is found to be a short amount of the electron circulation time period  
3 3

4

2π
n

nT
me
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                                             (43) 

on the orbit n  [20]; 1Z = . For from (43) and (42) we have:  
1 21 23 3 2

1 2 1 23 2 3 2 3 2 3 2
4 2 3 2 2

22π 2 π 2 π 137,n
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where the factor of 137 is coming from the constant expression (33a). 
A characteristic point is that a substitution of nr∆  and nt∆  from (36) and (42), respectively, to the 

expression of velocity roughly estimated in (38) gives  
1 2 3 21 2 3 22 2

2 2 3 2 1 2

2 2
2 .n
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t me n n

∆ ∆∆
= ∆ =
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For 1n∆ =  and 8,9,10,11,n =   we obtain  
1 2 1 2 1 28 8 8= , , ,

9 10 11
n

n

r
c c c c

t
∆      

     ∆      
                                  (45a) 

The largest velocity (45) coming from 1n∆ =  and 1n =  is 3 22 2.8c c≅ . 
If an approximate time interval  
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is substituted in place of t∆  into the Formula (8a) we obtain  
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from which  
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This expression becomes equal to that obtained from the Bohr theory in (40) on condition  

( )2 3

21
2

n
nn n

∆
=
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or  
3 1

8
n n∆ =                                              (50) 

are satisfied. 
In effect a proper choice of n∆  for a given n  provides us with the relation  

.nE E∆ = ∆                                             (51) 

Certainly, the n∆  can approach an integer number only at a special n . 

5. The Momentary Force Acting on an Electron in Case of Its Transition  
between the Orbits 

A stationary force acting on the electron of the hydrogen atom is a well-known electrostatic force of the electron 
attraction by the nucleus. This force is assumed by Bohr to be compensated by the centrifugal force of the 
electron orbital motion, so on an orbit having the index n  the electron is submitted to the force  

22 2 6

stationary 2 4 4 .n

nn

mve m eF
rr n

= = =


                                    (52) 

Evidently this force is of a stationary character. Our aim is to approach a momentary force acting in course of 
the electron transition between the orbits. 

Since the electron velocity of transition is close to c  [see (45)], the electron momentum associated with 
transition is a product equal approximately to mc , where m  is the electron mass. The momentary force active 
in a transition from the orbit n  to another orbit n n+ ∆  is  

1 21 22 2 2

mom 2 3 2

2

n

nmc m c eF
t n

∆
≅ =
∆ 

                                   (53) 

where the transition time nt∆ —assumed to be the time of the action of the force due to the momentum mc  
possessed approximately by the electron—is that calculated in (42). The force obtained in (53) is much larger 
than (52) because of the ratio  

2 22 6 2 3 2 2
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4 4 2 2 2 1 2 1 2 1 21 2 1 2 5 2 1 2 5 2
mom
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

          (54) 

When the energy relations instead of the forces are taken into account, the force given in (53) is multiplied by 
the distance nr∆  travelled upon it, so the energy of transition is  

2
mom ,n

n

r
E mc mc

t
∆

≅ ≈
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                                      (55) 
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on condition the velocity property presented in (38) is unchanged. In this case the energy momE  in (55) is much 
larger than E∆  associated with any transition between the electron orbits. 

6. Summary 
In the first step we have demonstrated on the basis of a modified uncertainty relation between the intervals of 
energy and time that both an interval of the particle position and that of time can attain some minimal values 
different than zero. These interval limits differ solely by a factor of 2π  from those predicted a long time ago 
on both the experimental and theoretical footing [5]-[7]. When applied to the hydrogen-like atom, the lower 
bounds of the intervals for the position interval and interval of time lead to an upper bound for the atomic 
number Z  equal to 137. On the other hand the upper bounds of the intervals of momentum and energy, 
obtained from the lower bounds of x∆  and t∆ , approach the relations which are well known from the 
classical relativistic mechanics. 

A separate attention has been attached to the velocity calculation for the electron transitions between the 
orbits. First, with the aid of the uncertainty principle, it has been demonstrated that—for the atomic levels 
having index n  equal to about 10—this velocity is very close to the light speed c . Moreover, the energy 
changes E∆  which accompany the electron transitions become close to those known from the Bohr’s atomic 
theory. Such result cannot be obtained from the uncertainty Formula (7). 

The ratio of the stationary electrostatic force acting on the atomic electron to a momentary force active only in 
course of the electron transition between the orbits has been estimated in (54). 
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