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Abstract

In this paper we give an alternative treatment of the Schrédinger equation with the Morse poten-
tial, which based on the exact summation of the Feynman perturbation series in its original form.
Using Fourier transform we establish a recurrence equation between terms of the perturbation
series. Finally, by the inverse Fourier transform and some technical tools of the ordinary differen-
tial equations of the second order, we can compute the exact sum of the perturbation series which
is the Green'’s function of the problem.
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1. Introduction

In quantum mechanics, the class of potentials for which Schrédinger equation can be exactly solved has been
extended considerably by using different methods. The popular and widely one used in quantum mechanics is
the perturbation theory leading to solve the problems approximately. Furthermore, among problems that can be
exactly solved, there are few whose solutions can be obtained exactly by summing up the perturbation series in
the path integral formalism [1]. Exact Green’s functions: for delta-function [2]-[4], for Coulomb potential
[5]-[7], for the inverse square potential [8] and for the step potential [9] are obtained by summing up the pertur-
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bation series in the path integral framework. In [2], the Feynman perturbation series are used to study the one-di-
mensional delta-function potential, where the authors extracted only correct informations for wave functions but
they did not give the exact expression form of the propagator. The use of the same technique, perturbation series,
gave the exact expression for the propagator for the delta-function potential [3]. We can find several examples
of potentials problem with a delta-function perturbation by means of path integrals [4], the Green’s function for
each problem is derived by summing the Feynman perturbation series. In [5], the perturbation series are used to
derive the Green’s function for the Coulomb potential in a closed analytical form. The Green’s function of the
one-dimensional relativistic Wood-Saxon, step and square well potential are evaluate by the Kleinert’s path
integral technique [6] and in [7] the same author has calculated the Green’s function of the D-dimensional Cou-
lomb by summing exactly the perturbation series; the energy spectra and wave functions are extracted. The exact
propagator is derived by summing the Feynman perturbation series for a particle moving in the inverse square
potential [8]. The Green’s function for the step potential is given by the exact summation of the perburbation se-
ries [9].

The Morse potential is one of the important potentials in physics, which raises many interests in many areas
specialy in molecular physics and is used for the description of the interaction between the atoms in diatomic
molecules. The Schrodinger equation for the Morse potential has been solved exactly or studied by different
methods recently, for example, [10]-[18].

In the paper [19], we have derived the Green’s function of the Morse one-dimensional potential using the
perturbation series, not by summing exactly the series but we use its termes to the final result. The news is that
we have presented the use of the Fourier transform in the Feymann path integral perturbation series method.

In this work, we will use the same technique in [19] and some results of the ordinary differential equations of
the second ordre. We calculate the Green’s function of the problem by computing the exact sum of the perturba-
tion series, but in a different way as in [19].

2. Path Integral for the Morse Potential via the Sum of the Perturbation Series

We are interested to calculate the propagator, say the Green’s function relative to the one-dimensional Morse
potential:

V (X) =V, (exp(-2x) - 2exp(—x))
which can be written as:
V(x)= 4V022:(—%JS exp(—sx), [@h)

where V, >0 is the strength of the potential. The Feynman propagator is defined, taking 7# =1, by:

x(T)=x

K(xT/%,0)= jf D[x(t)}exp[iiL(x,X,t)dtJ @)

x(0)=0

where L is the Lagrangian of the problem and D[x(t)] is the formal measure on the path space. If we split
the Lagrangian into the free part and the interaction part as (in unit mass):

L(x,x,t)zx—;—v(x) @)

We can show that the Feynman propagator takes the form:

0

K (xT/%,0)=2(1) Ky (x.T/%.0) @
where:
K, (X,T/%,,0)=(-1)" T[dtn TdtlTTﬁ Ko (X1t /%) 1, )f[v (x; )dx; (5)

And K, (xm,tm/xj ,tj) is the free particle propagator given by:
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12 . 2
KO(Xj+lltj+l/Xj 'ti)_{Zin(t tj)] exp[ 2(tj+1_ti) } .

j+1

Taking the Fourier transform of K, (x,T/x,,0) on T as:

G, (X, %, E) =G, (x, xo)z%T K, (X, T/%,,0)exp(iET )dT (7

0

we write this last formula as:

Gn(x,xo):deano(x,xn)V(xn)anl(xn,xo) (8)
where:
Go(x,xn):%T Ko (X, T/X,,0)exp(iET )dT :%f /2i1T exp(iET +%(x—xn )Zde 9)
0 0 L

and using Equations (1) and (9), then (8) becomes:

2 1Y% [ 1 . b [
Gn(x,x0)=—4vosz;[—EJ .!.' mexp(lET)dT_jdxnexp(—sxn+E(x—xn)sznl(xn,xo)

G, (X, %)= —4VOZZ:[—%)S exp(—sx)T ﬁexp(iET)dTden exp(s(x— xn)+%(x— X, )sznl(xn, Xo)
s=1 0 n -0
(10)

we take now the Fourier transform on the end point X in the last formula, and using the convolution theorem
for Fourier transform, we get:

G, (W, %)= —4voé(_%js +deT exp[iT [E —%Zj]énl (w+1s,%,) (11)

i.e.
G, (W, %) =2V, fy ()| G, 1 (0+2i,%)-2G, ; (@+i,%) ], n>1; (12)
where:
G, (W, %)= [ exp(iwx)G, (X, X, )dx (13)
and
f (a)):deT expiT E—a)—2 2 where E = —&? (14)
0 ° 2 ) 28%+0*

_From Equation (12), we see that all termes Gn (w, xO) are known and depend on the expression of
G, (@+1in,%,) which is:

Go(a)+in,xo):iEexp(i(a)Jrin)x)GO(x,xo)dx:—[m]exp(ia)—n)xo (15)
=21, (w)exp(io—n)x,.
where we note f, (@) by:
f(0)=— > =12 (16)

- 2&2 +(a)+ in)2
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Let now compute the first and the second terms of Equation (12):
G, (W, %) = 2iV, T, (@) exp(iex, )| f, (@)exp(-2x,) - 21, (o)exp(-X, ) ]
and
G, (W, %) =22V fy (w)exp(iwx, )| f, (@) T, (0)exp(—4%,) -2, (o) f;(o)exp(-3x,)
~21, (@) f; (w)exp(-3%, )+ 41, (o) f,(@)exp(-2x, ) ]

and so on, we can see that all terms G, (w,X,) are determined in a linear combination of f, () and powers
of exp(-x,) Since G(w,x,) is:

G (W, X =§ G, (W, %))

and if we bring together all terms in power of ex ( 5) . We get:

G (W, %)) = f, (@)exp(iox, ){ian (@)exp(—nx, )} (17)
where the coefficients a, (@) satisfy the recurrence formula:
an (a)) = 2\/0 fn (a))[zan—l (a)) - a‘n—2 (a))] (18)
or:
[252 +o’ —n*+ 2ina)J a,(0)=2V,[2a,,(0)-a,,(o)] (19)

with a, =0, a, =-1, a,(®)=-4V, f (), - etc.
Now noting the series in Equation (17) by:

fo (@) F ( z =G (@, %, )exp(-iwx,) (20)
we can easily check that F (X)) which is the generating function of a, (@) satisfies the differential equation:
2
ij—F(X)+ X (1—2ia;)diF(x)—(2g2 +0" —4XV, +2XV, | F (X) = 26" + 0 (21)
X X

Here we have to note that this equation is equivalent to those governing Green’s function itself but written in
an other form where we have put X = exp(—xo) and done the Fourier transform on the end point X, i.e.:

|:_£i+v(x0)+gz:|G(X,XO/E)=—5(XO—X) (22)

2 dx?

Return now to Equation (17) and if we take the inverse Fourier Transorm on G (w, X ) we obtain:

oo+

6(x%) =53 | doep(-in(x-x) fy (o), (o)exp(-m) 23)
Then if we note by: )
A (x=x) = | doexp(io(x-x) f,(0)a, (o) 24)
we see that: )
G(x.%) = X A, (x=%,)exp(-nx,) 25)

0

>
I

and with the Fourier transform properties, we have:
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+00 2
w1, (0)a, (0) = [ dwexp(iwx);?/\n (x) (26)
iof, (0)a,(0)=- | dwexp(imx)%;\ (x) 27)
Then from these last formulas and the recurrence formula of a, () (19) we conclude that A, (x) satisfies:
d? d
—oa A(x)-2n A, () +(26% =n°) A (X) = VA, 1 (X) - VA, , (X) (28)
—exp(—g\/§|x|)

with A, (x)=0 and Aj(x)= , which is a linear second order ordinary differential equation

&2
with real constant coefficients. Then A (x) can be expressed in term of the complementary solution plus a
particular solution. Indeed, the complementary solution A’ (x) is:

A (x)=C, exp(—(n+g\/§)x)+cf exp(—(n—g\/z)x) (29)

where the coefficients C} and C’ are constants independent of x and using the variation of parameters
method we find that the particular solution has the following expression:

AP (x)= C;(x)exp(—(n+.9\/§)x)+cn2 (x)exp(—(n—g\/i)x) (30)
with C;(x),CZ(x) are determined by:
%Cﬁ - 5\175 exp(e\/fx)[z exp(x) B, (x)—exp(2x)B, ,(x)] (31)
%Cf = ://05 exp(—g\/ix)[Zexp(x) B,.,(X)—exp(2x)B,_, ()] (32)
where
—exp(—e\/z|x|)

B, (X)= x)exp(nx), B,(x)=0and B, (X)=—————=.

(x)= A, (x)exp(mx). B., (x) (=7

Finally by recurrence, we can prove that:
(_l)n+lvn

% 2 bn(g)exp(—g\/ix), x>0
A=, f)nfvn (33)
S0 p (-g)exp(ev/2x), x<0
o2 » (—2)exp(ev2x)
where the coefficients b, (&) satisfy an recurrence formula as:
[nZ + Zl’l{;‘\/i:| b, (&) =4b,, ($8)+V£b”’2 (F¢) (34)

0

with b, (F&)=0, by (F&)=1.
Then from Equations (29) and (33) we have:

A (X)= AP (x)+ A (x)=C, exp(—(n+g\/§)x)+cn2 exp(—(n—e\/i)x)

(U7 4 (oex

———D, p —ev2x), x>0 35
+ g\/E ( ) , Vn>0. )

(_1)n+lvon

Tbrl (—g)exp(g\/fx), x<0
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we have to note that C; =CZ =0.
Knowing that if the following limits exist:

lim ZClexp( nx)=0 and lim ZC exp(—nx) =0

~>+w
:| -

éci exp(-nx) } =

So in that case and from the formulas (35), (25), we are able to write the Green’s function G(x,x,) as:

then

icf exp(—nx)

n=0

lim {exp(s«/ﬁx)

X—0

Xlirpw{exp(—gﬁx)

exp(-32 (x- m)i[(‘”mV"bn(s)exp(—nxo>+c;(xo>exp<—nx>].

n=0 8\/7
G(x, %)= (v (36)
exp(gf (x=%) Z b, ( )exp(—nx0)+C,f(xo)exp(—nx)} X, > X
=0
Knowing that the generating functions of b and b, (—¢) respectively are:

b, (—&)(=X)"; (37)

M

Fl(x): nZ::Obn (’9)(_X)n' FZ(X):

then if we use the recurrence formula (34) it’s easy to deduce that these generating functions are given by:

n=0

22 —ey2-1
F(X)=x"26[2]2x |, F(x)=x"""26|2[2x | (38)
VO VO
where G(y) is the solution of Whittaker equation:
1
—-2¢
1 2\/0 4
G"(y)+|-——+—+-——|G(y)=0 (39)

and they satisfy respectively the following differential equations:

szl"(x)+x(1—28«/§)F1’(X)+2X(Z—VLJE(X):O (40)
XZFZ"(X)-l-X(l+28\/§)F2'(X)+2X(Z—VLJFZ(X):O (41)

hence we can conclude that the Green’s function G(x,x,) takes the form:

Cl(x)exp(x?o)wm’gﬁ [ZJWOexp(—xo ]+exp( —e2(x~ xo))
C,(x)exp [X—Z"j M oz [ZJWO exp(—%, )] + EXD(S\/E(X -% ))

where ng z'Mmgﬁ are the Whittaker’s functions. We draw attention here that in this last formula we

Ms

Ca (X )exp(=nx), x>,
(42)

0

>
I

G(x%)=

M8

C2(%)exp(-nx), X, > X

0

=
I

have taken the Whittaker’s function W o in the case x > X, because it’s not singular at +oo (i.e X, —> —0),

and when x, > X we have taken MJ— i which is not singular at 0 (i.e x, — +o0) . Let us now to go back
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to (8) i.e.:
G, (X, %)) = dean0 (X% )V (X,) Gy (X0 %)
for which it’s obvious that: )
Gn(x,xo)=i+f:dx16n1(X,X1)V(><1)Go(x1,><0) (43)

from this formula and with the same way as above, if we take the Fourier transform on initial point x, we can
see that G(x,X,) have another form as:

Cl(xo)exp[gijMNE [Zmexp(—x)]+exp(—g\/§(xo - x))ici (x)exp(—nxy), X, > X

G(x,%)= i (44)
X o0
C, (xo)exp[gj M o3 [ZJZVO exp(—x)] +exp(e\/§(x0 - x))gcf (x)exp(—nx,), X >X,
then from Equation (42) and this last formula (44) we have for x> x,:
C, (X)EXp(X_;jWJMM [2 2V, exp(—X, )] = exp(g\/z(xo - x))gcﬁ (x)exp(—nx, ) (45)
and
C. )0 M e[ 2V exp ()| —exp a2 (xx)) S (w)orp(-nx) (49

for which Equation (44) i.e. G(x,x,) becomes:

X X
Cl(x)exp(EOJWm‘gﬁ [ZJZVO exp(—xo)]JrC2 (xo)exp(gj M oz [2,/2V0 exp(—x)], X> X,

Cl(xo)eXp(ngm,sﬁ [&/ﬁoexp(—x)}rcz (x)exp[x—z"j M oz [Zmexp(—xo)], X, > X
(47)

Knowing that F, (X)) is a solution of the differential Equation (40), then it’s easy to check that X o2 F (X)
is a solution of the following differential equation:

G(x%)=

2
de—zH(X)+XiH(X)— 252 —2x| 2- % H(X)=0 (48)
dx dx )
which is the same as the following differential equation:
—d—2+V(X)+€ H(X):O (49)
X

for X =V, exp(—x). Then we conclude that:

H,(x) =exp (gjwmm [Zm exp(—x)]

and

H, (x) =exp (%) M oz [ZMexp(—x)J

which are two linearly independent solutions of Equation (49), and since G(x,x,) is also solution of the diffe-
rential Equation (13) for x > x,, form Equation (47) we can deduce that:
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ST P ®
and
C,(x)=4, EXp(gj\vasﬁ [ZJNO exp(—x)] (51)

Finally we get that the Green’s function for Morse potential takes the form:

(4 Jrﬂ,z)exp(%JMJ%NE [2 , exp(—x)]megﬁ [ZJWOexp(—xo )] X > X,

G(x,% )= (52)

X+ X

(4 +/1z)eXp( > OJMm,gﬁ [2\/Noexp(—xo)]wm,gﬁ [2\/ﬁoexp(—x)}, X > X

and since G(x,%,) is also a solution of the differential Equation (49) for x>x, or x, >x then the Green’s
function takes the form:

r@N-zE— 2voj e
)
2,/2V, T (1+ 24-2E ) 2

{@(x— X, ) €Xp (sz"j M o oz [2\/W0exp(—x)]WJMNE [ZJNO exp(—xo)]
ij’gﬁ [A/Woexp(—x0 )JWJM,M [ZMexp(—x)J}

where ® denotes Heaviside’s unit step function. A result was found earlier by different methods [11]-[13].

G(X,%)

X+ X

+®(xo—x)exp(

3. Conclusion

In this work, we have calculated the Green’s function for the Morse potential using the perturbation method in
the path integral formalism. This contribution concerns, for the first time, the calculation of the energy Green’s
function of the system by summing exactly the perturbation series with the introduction of the Fourier transform
and some results concerning the Green’s function of the ordinary differential equations of the second ordre. We
will consider a generalization of this method specialy for other special potentials in the exponential form.
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