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ABSTRACT 

A general-relativistic model is formulated for hypothetical ultra-compact astrophysical objects composed of fluid in- 
fused with charges carrying a generalized massless Maxwell-Proca field. The chosen interior metric has the algebraic 
property that    1rr ttg r g r  ; the fluid consequently possesses a negative pressure which halts gravitational col- 

lapse and establishes hydrostatic equilibrium. For an object containing a global distribution of non-interacting Maxwell- 
Proca charges, it is shown that physical considerations define the relationship between the charge density and the metric 
function uniquely, corroborating an earlier finding (for an electrostatic distribution of charge) that the interior field must 
increase with radial distance and the exterior field necessarily follows an inverse-square law. For the case of a charged 
fluid envelope surrounding a core of uncharged fluid, numerous solutions are possible. Assuming the interior field to 
vary as rn and requiring its strength to increase with radial distance while the charge density decreases, the range of 
values for n is found to be 0 < n ≤ 1 (where n is not necessarily an integer) with n = 1 denoting the special case of a 
continuous distribution of charge. For both continuous and stratified charge distributions, the exterior field is found to 

decrease as 21 r  regardless of the interior field’s dependence on r. 
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1. Introduction 

Until quite recently, it was believed that astrophysical 
objects more compact than neutron stars could not exist; 
no physically plausible mechanism had been conceived 
that could halt the gravitational collapse and establish 
equilibrium inside such an object, leading inevitably to 
its collapse to a singularity and the formation of a classi- 
cal black hole. However, this began to change as research 
into entities such as vacuum energy and dark energy 
progressed (and evidence for their existence mounted): 
These entities all possess the equation of state p = –ρ, 
meaning that for a positive mass-energy density the 
pressure must be negative (sometimes called a tension) 
and therefore act as an “anti-gravity” mechanism to op- 
pose the collapse of a compact object. This has led to 
models for two classes of such hypothetical compact 
objects: For those collapsing to an equilibrium radius, R, 
that is smaller than their Schwarzschild radius rS, the 
result is a nonsingular black hole (also known as a QBH, 
or quasi-black hole); and those for which R > rS at equi- 
librium are referred to as ultra-compact (or, sometimes,  

as hyper-compact) objects. 
Any physically acceptable model of a compact object 

must include a well-behaved transition from the interior 
metric to an exterior one. As has long been known, the 
only static, spherically symmetric exterior solutions of 
the Einstein equations are the (vacuum) Schwarzschild 
and (charged vacuum) Reissner-Nordstrøm metrics, and 
they share the algebraic feature that 

   1rr ttg r g r  .              (1) 

Not only does an interior metric with the algebraic 
form of relation (1) reduce the problem of solving the 
Einstein equations to that of finding just one unknown 
function, it is also easier to match such a metric to one of 
the abovementioned exterior metrics across an object’s 
surface, r = R. Writing the exterior metric as 

2 2 2 2 21
d d d ds t r r

         
,        (2) 

where  
2

2
1 sr Q

r
r r

     with Q being the object’s 
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global charge—zero for an uncharged (Schwarzschild) 
object, but not necessarily limited to just electric charge 
otherwise—and writing the interior metric as 

2 2 2 2 21
d d d ds f t r r

f

 
      

 
           (3) 

where f = f(r) and 2 2 2 2d d sin d       (with θ = π/2 
and c = G = 1 throughout), we see that the boundary 
conditions reduce to the following (where, as usual, ′ ≡ 
d/dr): 

   f R R                 (4) 

with f′(r) and Φ′(r) continuous across r = R. The above 
applies not just to the transition between an interior me- 
tric and an exterior one, but also to the interface between 
metrics with the algebraic structure of relation (1) that 
describe different layers inside an object [1]. 

Another, less well-known, feature of an interior metric 
of the form of relation (3) is that the Einstein tensor con- 
structed from it has the property that r t

r tG G . With the 
energy-momentum tensor for a perfect fluid, the ensuing 
Einstein equations will always yield the equation of state 
p = –ρ; this holds also when other algebraically compati- 
ble source fields are added into the total energy-mo- 
mentum tensor of the system (provided that none of these 
fields interact with each other or with the perfect fluid). 
One such family of compatible entities consists of the 
massless, non-self-interacting Maxwell-Proca (M-P) fields, 
and these are the subject of our investigation in this pa- 
per. 

2. The Einstein Equations 

In recent years, experiments at the Relativistic Heavy Ion 
Collider have shown that hot quark-gluon plasma—a 
state of matter that may well exist inside ultra-compact 
objects—behaves like a perfect fluid [2]. For the right- 
hand side of Einstein’s equations, we therefore consider 
as sources a perfect fluid as well as the massless, non- 
self-interacting M-P field. Assuming the fluid and the 
field do not interact, the algebraic sum of their energy- 
momentum tensors constitutes the total energy-momen- 
tum tensor. This combination is both versatile and phy- 
sically interesting: In addition to using a perfect fluid to 
represent the distribution of charged particles that is the 
source of the M-P field, one (or more) other species of 
(non-interacting) particles and fields comprising the com- 
pact object can be represented merely by adding the ap- 
propriate energy-momentum tensor(s) into the total. The 
total pressure and density would then simply be the sum 
of the partial pressures and densities of all the fluids and 
fields involved. 

As usual, we write the energy-momentum tensor for a 
perfect fluid as 

       
f

T p r p r u u p r g            (5) 

where the co-moving 4-velocity uα is defined such that 

t ttu g  and uαu
α = 1. The second source term is that 

of an arbitrary M-P field, 

    1 1
4 ,

4M P
T F F g F F 
    





 
 




    (6) 

built from the M-P tensor 

, ,F A A                   (7) 

where Aα is the 4-vector potential and a comma symbol- 
izes an ordinary derivative. In the rest-frame of a static, 
spherically symmetric distribution of charge this poten- 
tial reduces to Aα = [φ(r), 0, 0, 0], which gives the M-P 
field strength as   d dF r r  . 

Substituting relations (5) and (6) into the Einstein 
equations, written in dimensionless mixed-index form as 

–8G T 
   , then gives: 

   2 21 8rf r F                (8) 

   2 21 8rf r p F                (9) 

 22 2 8 .rf f r p F                (10) 

As noted above in the Introduction, the Einstein tensor 
components in Equations (8) and (9) are identical; sub- 
tracting one of these equations from the other gives the 
Oppenheimer relation, from which we immediately ob- 
tain the expected relationship between pressure and den- 
sity (the equation of state): p(r) = –ρ(r). If we require that 
ρ(r) > 0 for realistic matter, then p(r) < 0; physically, this 
makes sense because, in order to attain an equilibrium 
state inside the object, a negative pressure is necessary to 
counterbalance not just the gravity of the matter com- 
prising the compact object but also that due to the effec- 
tive gravitational mass of the M-P field [3,4]. 

We proceed to solve the Einstein equations by consid- 
ering the conservation equation for the total energy-mo- 
mentum tensor, ; 0T 

    (where the semi-colon de- 
notes a covariant derivative). This reduces to 

4 2
4

1
8 0p r F

r
         

            (11) 

after applying the equation of state found above, and is a 
generalization of the well-known Oppenheimer-Volkoff 
(O-V) equation for hydrostatic equilibrium. This equa- 
tion relates the pressure (and, therefore, the density) to 
the M-P field strength, allowing them to be found once 
F(r) is known. It also emphasizes the crucial significance 
of the M-P field: Its absence would make the pressure 
constant throughout the object’s interior, whereas we 
expect a function of r that must vanish at the object’s 
surface. Finally, once p (and, therefore, ρ) is found from 
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relation (11), either of equations (8) or (9) may be solved 
for the unknown metric function f(r). To complete the 
model of the compact object, this interior metric must 
then be matched at the object’s surface, as per the condi- 
tion (4), to the appropriate metric describing the space- 
time exterior to it. 

3. Maxwell-Proca Charges and Fields 

In order to accomplish all of the above, we first need to 
determine the field strength F(r) by considering the 
charge distribution producing it. We begin with the fact 
that in M-P theory the energy-momentum tensor of each 
field individually must satisfy the conservation relation 

; 4F J 
                  (12) 

where Jα is the current density 4-vector of that field’s 
charge distribution. In our case, the only nonzero com- 
ponent of Equation (12) is 

   2 2 – 4 ,tr r r u 
    

 
        (13) 

where σ(r) is the charge density. Recalling the definitions 

  d dF r r   and  t ttu g f r  , Equation (13)  

may immediately be integrated to give 

     2 24 dr F r r r f r r     ,      (14) 

in which the constant of integration is set to zero to keep 
F(r = 0) finite. This equation, though, contains two un- 
known quantities (σ and f) and is therefore intractable as 
it stands. However, it has been shown that this equation 
may immediately be solved by means of the ansatz 

   r f r  = (constant) [4]. We feel that there is  

justification for this ansatz: Because f represents the gra- 
vitational potential inside the object, surely it is rea- 
sonable to assume a functional relationship between it 
and the charge density—after all, the charged fluid and 
its inherent field determine the system’s gravitational 
properties. Then, if we propose a more general form of 
the abovementioned ansatz and write 

     r r f r                (15) 

where λ is some suitably behaved function of r, equation 
(14) may readily be solved to give several expressions 
for F—not all of which, however, may turn out to be 
physically plausible. 

We expect λ to be a simple, closed-form function of r, 
with the choice of λ limited by physical constraints; for 
instance, neither σ nor f may diverge at the origin. 
Moreover, f(r = 0) cannot vanish or grr will become di- 
vergent there. And for an object composed of (or infused 
with) a continuous isotropic distribution of charged par- 

ticles, the central charge density   00r    must be 
a constant. Different restrictions, however, apply to a 
stratified object, in which an uncharged fluid core is sur- 
rounded by an arbitrarily thick envelope of charged fluid. 
We consider both of these cases in detail below. 

3.1. Continuous Fluid 

The right-hand side of Equation (14) becomes just a 
volume integral of charge density (that is, the total M-P 
charge q contained within coordinate radius r) upon 
adopting an ansatz originally employed for a spherical, 
electrically charged fluid object [4]: 

   0r f r  ,               (16) 

which is the simplest form of our relation (15). Then, 

   
0 2

4

3

q r
F r r

r
               (17) 

so that the object’s global charge is just 3
0

4

3
Q R    

and its exterior field falls off as 21 r . While it was in- 
tended specifically for the case of an isotropic distribu- 
tion of electric charges, the physical constraint that σ(r = 
0) must be a constant evidently makes the solution con- 
structed from the ansatz (16) the only one applicable to 
any continuous-fluid scenario—for all species of M-P 
charges. 

To complete the solution, the above expression for F is 
substituted into the O-V relation (11) to yield the pres- 
sure (and, thus, density) functions; inserting either of 
these into the appropriate Einstein equation then gives 
the metric function f. It has been shown that all of the 
interior functions—p, ρ, σ and f—turn out to be well- 
behaved, and that p and ρ vanish at the surface as re- 
quired [4]; also, as intuitively expected, the charge den- 
sity decreases with increasing r. Finally, the resulting 
interior metric may be matched across the object’s sur- 
face to a Reissner-Nordstrøm metric to complete the 
model for this type of object; in a study where this was 
done for an object infused with magnetic monopoles 
generated by ultra-high-energy particle collisions during 
the collapse process [5], the effective gravitational mass 
of the ensuing (monopolar) magnetic field was shown to 
be three times the mass of the fluid comprising the ob- 
ject—and this may obviously be generalized to an object 
incorporating any M-P field of the type considered here. 

3.2. Stratified Fluid 

Suppose that the charged-fluid envelope surrounding the 
object’s uncharged core extends from some inner radius 
r1 > 0 to an outer radius r2 ≤ R. Here, 0  represents the 
charge density at r1; from relation (15), its value is sim- 
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ply    0 1 1r f r  . The first physical restriction 
affecting the choice of λ(r) arises from the fact that, re- 
gardless of the behavior of σ(r), more charge is inevita- 
bly enclosed as r increases—therefore, F(r) must be an 
increasing function of r inside any distribution of charg- 
ed matter. Secondly, because unusual physical circum- 
stances would be required for charge density to increase 
with r, σ is expected to be a decreasing function of r in- 
side the envelope. This leads us to consider two sce- 
narios: One in which the charge density is an increasing 
function of radial distance, and one where it decreases; in 
both cases, of course, F must increase with r. Let us now 
assume a simple power-law form for λ: 

  –1,nr r                  (18) 

where n is any real number; as shown below, the choice 
of n – 1 rather than n for the exponent gives the power 
law for the M-P field as F(r) ~ rn. What restrictions on 
possible values of n will follow from the above physical 
criteria? We insert relation (18) into Equation (15) in or- 
der to perform the integration Equation (14); choosing 
the constant of integration so that F(r1) = 0 (since the 
boundary at r1 encloses no charge) then yields 

    2 2
0 2 1

2 2

4

2

n nq r r r
F r

nr r

           
.      (19) 

Examining this, we see that n cannot be –2. Inserting 
this expression for F into the O-V equation (11) and in- 
tegrating then gives the pressure—and, from the Oppen- 
heimer relation, the density—as 

       1 1 1 0 ,p r r r r p             (20) 

where 

      
2
0 2 2 2

1 1

2
2

2
2n n nr r n n r r

n n


   
      

 
 

 (21) 

and we have defined the pressure at the inner boundary 
as p(r1) ≡ p0. From this, we see immediately that n cannot 
take on the values 0 or 2; the interior M-P field strength 
cannot be constant, or scale as r2. 

To complete the solution for the metric function inside 
the charged envelope, the Einstein equation (9) is inte- 
grated with the boundary condition f(r1) ≡ f0, where f0 is 
obtained by matching f(r) to the core’s metric across this 
boundary. This gives the formal expression 

       1
0 2 2 1

1

1 1
1 1

r
f r f r r

r r r
              

,  (22) 

where 

      22
2 8 d .r r p r F r r            (23) 

For a specific scenario, the metric function (22) may 
be written out in full as a polynomial in r and its behav- 

ior investigated for r1 ≤ r ≤ r2; requiring that f be 
well-behaved throughout this domain will yield con- 
straints on (or estimates for) some of the object’s funda- 
mental physical parameters such as charge, mass and 
radius. We note that if we generalize relation (17) to de- 
fine the object’s global M-P charge as 

 2 20
2 1

4
,

2
n nQ r r

n

      
          (24) 

then, from relation (19), we obtain the somewhat unex- 
pected result that any field exterior to a M-P charge dis- 
tribution of the type considered here must fall off as F(r) 
~ 1/r2, regardless of the behavior of the interior field; that 
is, for any and all values of n. Moreover, with the appro- 
priate definition of σ0 and choice of n, this result is valid 
for both continuous and stratified charged-fluid objects. 
The interior metric may now be matched across r2 to the 
metric for another layer of material or, as for the con- 
tinuous-fluid case, across the object’s surface to a Reiss- 
ner-Nordstrøm metric; for the latter case, requiring that 
the object not fall through its Schwarzschild horizon (that 
is, R > rS) will then give additional constraints on some 
physical parameters which may be part of the object’s 
astrophysical signature. (For a detailed application of the 
techniques in this paragraph, the reader is invited to con- 
sult reference [1].) 

Finally, examining relations (19)-(22), we conclude 
that for an unusual situation where the charge density 
increases with r, F will be an increasing function of r for 
any value of n > 0. However, n cannot be 2; and from 
relation (21), we expect that the pressure and density 
functions will become pathological for n >2. For this 
scenario, then, we are limited to n < 2. But if we add the 
requirement that charge density must be a decreasing 
function of r, this means that n ≤ 1; and since the M-P 
field will only be an increasing function as long as n is 
positive, the range of values for n is necessarily limited 
to 0 < n ≤ 1. We finish by noting that this still allows for 
a variety of solutions to be constructed; recall that rela- 
tionships between fundamental quantities in the interiors 
of compact objects often involve fractional exponents! 

4. Conclusions 

For the case of a perfect-fluid object composed of (or 
containing) a global distribution of any non-interacting 
M-P charged particles, we have shown that physical con- 
siderations define the relationship between the charge 
density and the metric function uniquely, with the intui- 
tively expected general results (originally derived for the 
specific case of an electrostatic distribution of charge) 
that the interior M-P field strength increases with r and 
the only possible behavior of the external field is the fa- 
miliar inverse-square law. 
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However, if the charged fluid is confined to an enve- 
lope (of arbitrary thickness) surrounding a core of un- 
charged fluid, a wider range of models is possible. Spe- 
cifically, for an interior field scaling as F(r) ~ rn, we 
found that n < 2 regardless of the behavior of the charge 
density; but if, as is physically most plausible, the charge 
density is required to be a decreasing function of r, the 
range of values for n is limited to 0 < n ≤ 1 (with n = 1 
denoting the abovementioned special case of a continu- 
ous distribution of charge). 

For both types of charge distribution, it turns out that 
the exterior field always decreases as 21 r  regardless of 
the interior field’s r-dependence (that is, regardless of the 
value of n); this of course means that, although it is a 
fundamental aspect of the object’s astrophysical signa- 
ture, the exterior field cannot allow us to determine the 
behavior of the interior M-P charge distribution or of the 
interior field itself. Even so, by incorporating the detailed 
algebraic expressions developed here for fundamental 
quantities pertaining to the M-P fields and charges, the 

theoretical framework we have outlined may be used to 
construct complete general-relativistic models of hypo- 
thetical compact objects for a variety of interior fluid 
structures containing such fields. 
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