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ABSTRACT 

The prominent features of higher order nonlinear ion-acoustic waves involving quantum corrections in an unmagnetized 
quantum dusty plasma are revisited with the theoretical framework of Hossain et al. [1]. The fluid model is demon- 
strated here by its constituent inertial ions, Fermi electrons with quantum effect, and immovable dust grain with nega- 
tive charge. We have used the ideology of Gardner equation. The well-known RPM method is employed to derive the 
equation. Indeed, the basic features of quantum dust ion-acoustic Gardner solitons (GSs) are pronounced here. GSs are 
shown to exist for the value of dust to ion ratio around 2/3 which is valid for space plasma [2], and are different from 
those of K-dV (Korteweg-de Vries) solitons, which do not exist for the value around 2/3. The implications of our results 
are suitable for cosmological and astrophysical environments. 
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1. Introduction 

Quantum plasmas have attracted a great deal of attention 
because of their potential applications in dense plasma 
particularly in different astrophysical and cosmological 
systems [3-5] (e.g. interstellar or molecular clouds, plane- 
tary rings, comets, interior of white dwarf stars, etc.), in 
nanostructures [6], in microelectronic device [7] as well 
as in the next-generation intense laser [8]. Many authors 
have proposed some theories including the quantum cor- 
rections to the quantum plasma echoes [9], the self-con- 
sistent dynamics of Fermi gases [10], quantum beam insta- 
bilities [11], wave interactions in quantum magnetoplas- 
mas [12], classical and quantum kinetics of the Zakharov 
system [13], quantum corrections to the Zakharov equa- 
tions [14], expansion of quantum electron gas into vacuum 
[15], quantum ion acoustic waves [16], quantum Landau 
damping [17], magnetohydrodynamics of quantum plasmas 
[18], etc. Quantum plasmas have extremely high plasma 
number densities and low temperatures. At extremely 
low temperatures, the thermal de Broglie wavelength 
becomes comparable to the interelectron distance and the 
electron temperature becomes comparable to the electron 
Fermi temperature  and the electrons follow Fermi   FeT

Dirac distribution law. In this condition, quantum mecha- 
nical effects are expected to play a significant role in the 
behavior of charged particles [19-21]. As electrons are 
lighter than ions, the quantum behavior of electron is 
reached faster than ions. The dust particles are quite 
common in various plasma systems. The inclusion of 
immobile charged dust in electron-ion plasmas leads to 
introduce a new mode. Shukla and Silin [22] have first 
theoretically shown the existence of low-frequency dust 
ion-acoustic (DIA) waves in a dusty plasma, which was 
latter observed in laboratory experiments [23,24]. The 
phase speed of the DIA waves is much smaller (larger) 
than electron (ion) thermal speed. The inertia is provided 
by the ion mass while the restoring force comes from the 
electron thermal pressure. These waves differ from usual 
ion-acoustic waves [25] due to the conservation of equi- 
librium charge density 0 0 0  and the 
strong inequality 0 0e i , where 0

0e d d in Z n n  
nn  sn  is the particle 

number density of the species s  with s e  for elec- 
trons,  for ions and  for dust, di d Z  is the number of 
electrons residing onto the dust grain surface, and  is 
the magnitude of an electronic charge. Therefore, a dusty 
plasma can not support the usual ion-acoustic waves, but  

e
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can do the DIA waves of Shukla and Silin [22]. The 
nonlinear waves associated with the DIA and QDIA 
waves particularly solitary waves (SWs) [26,27] and 
shock waves [28] have received a great deal of interest in 
understanding the basic properties of localized electro- 
static perturbation in space [29,30] and laboratory dusty 
plasmas [31-34]. A number of investigations have been 
made on QDIA SWs [35] and shocks [28] by using K-dV 
equation. For plasmas with more than two species, it can 
arise cases where the K-dV equation is not valid near a 
critical value of a certain parameter (say  ). The non- 
linear term vanishes at this critical value (at c  ) [36] 
which makes soliton amplitude large enough to break 
down the validity of K-dV equation. The mmK-dV (mix- 
ed modified K-dV) equation, also known as Gardner 
equation, can give soliton solution around this critical 
value [37]. The technique of analyzing SWs is Gardner 
approach which leads to a standard Gardner equation. 
From the analysis of standard Gardner equation, SW of 
permanent profile is found, which is known as Gardner 
soliton (GS) [1,38,39]. In our present manuscript, we at- 
tempt to study the basic features of QDIA GSs by deriv- 
ing modified Gardner equation, which is valid around 

0 0 2 3d d iZ n n  , in a quantum dusty plasma containing 
inertial ions, Fermi electrons with quantum effect, and 
negatively charged immobile dust. The manuscript is or- 
ganized as follows. The model equations are provided in 
Section 2. The Gardner equation is derived by using the 
reductive perturbation method in Section 3. The analyti- 
cal solutions are presented in Section 4. A brief discus- 
sion is finally given in Section 5. 

2. Model Equations 

We consider a one-dimensional, collisionless, unmagnet- 
ized quantum dusty plasma system composed of inertial 
ions, massless Fermi electrons with quantum effect, and 
negatively charged immobile dust. Thus, at equilibrium 
we have 0 0 0i e d d . The nonlinear dynamics of 
these low-frequency (purely electrostatic) QDIA waves 
in such a plasma system is described by the normalized 
equations of the form  

n n Z n 

  0,i
i i

n
n u

t x

 


 
             (1) 

,i i
i

u u
u

t x x

  
  

  
           (2) 

2

5 3 22
0,

5

e
e

e e

nn x
x n x x n

 

 
     

    
 
 

     (3) 

2

2
,

x

 
 


               (4) 

 1i en n ,                  (5) 

where  i en n  is the ion (electron) number density nor-
malized by its equilibrium value , i  is the ion 
fluid speed normalized by quantum ion-acoustic speed 

 0 0i en n u

 1 2

i B Fe iC K T m  with im  being the ion rest mass, 

FeBK T  is the electron Fermi energy, BK  is the Boltz- 
mann constant, and TFe is the Fermi temperature of elec- 
tron,   is the electrostatic wave potential normalized by 

B FeK T e  with e being the magnitude of the charge of 
an electron, ρ is the normalized surface charge density, 
and 0 0d d iZ n n  . The time variable  is normal-   t
ized by  1 21

04πpi i im n e  2  and the space variable is 

normalized by  1 22
04πDi B Fe iK T n e  . In Equation (3)  

we have used the following Fermi pressure law for the 
electron species [40,41]  

2 5 3

2 3
0

1
.

5
e Fe e

e
e

m V n
P

n
              (6) 

Also 2 2H   with 0 0i en n   and  

pe B FeH K T   is the ratio between the plasmon en- 
ergy and the electron Fermi energy where  

 1 2
2Fe B Fe eV K T m  is the electron Fermi speed at 

temperature FeT . 

3. Gardner Equation 

We first obtain the well known K-dV equation and see 
why Gardner equation is needed to find SW solution.  

3.1. Derivation of the K-dV Equation  

To obtain the QDIA K-dV equation, we introduce the 
stretched coordinates  


1

2 ,p x V t                (7) 

3

2 ,t                   (8) 

where pV  is the QDIA wave phase speed  k  and 
  is a smallness parameter measuring the weakness of 
the dispersion  0 < < 1 . We then expand , , , in en iu
 , and   in power series of    

     1 2 32 31 ,i i i in n n n                (9) 

     1 2 32 31 ,e e e en n n n               (10) 

     1 2 32 30 ,i i i iu u u u               (11) 

     1 2 32 30 ,                  (12) 

     1 2 32 30 ,                  (13) 

and develop equations in various powers of  . To the 
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lowest order in  , Equations (1)-(13) give  

 1 1
,i

p

u
V

                (14) 

 1

2

1
,i

p

n
V

                (15) 

 1 3
,

2en                  (16) 

 
2

,
3 1pV





             (17) 

where  1  . Equation (17) represents the linear dis- 
persion relation for the QDIA waves. This clearly indi- 
cates that the QDIA wave phase speed  pV  increases 
with the increase of the dust charge density  0d dZ n . 

To the next higher order of  , one can obtain another 
set of coupled equations for , , and  2

in  2
en  2 , which 

-along with the first set of coupled linear equations for 
, , and  1

in  1
en  1 -reduce to a nonlinear dynamical 

equation of the form  
3

2 3
0,AB

   
  

  
 

  
        (18) 

where  

  9
1 2 3

4
,A               (19) 

31
,

2 pB V                 (20) 

2
3

2

1 9
1

2 16p

H
V .

 
  

 
            (21) 

Equation (18) is known as K-dV equation. The station- 
ary localized solution of Equation (18) is given by  

 2
0 0sech ,U                (22) 

where the amplitude 0  and the width  are given by 
0 03U AB   and 2 04 U 

U
, respectively. 0  is 

the mach number. As 0  and 
U

> 0 > 0B  < 1 , (22) 
clearly indicates that 1) small amplitude solitary waves 
with > 0 , i.e. positive soliton exists if < 2 3 , 2) 
small amplitude solitary waves with < 0 , i.e. negative 
soliton exists if > 2 3 , and 3)  for c0A    i.e. 
the nonlinear term vanishes at μ = μc and is not valid near 
μ = μc which makes soliton amplitude large enough to 
break down its validity. To find soliton solution around 

2 3  , we now obtain gardner equation.  

3.2. Derivation of the Gardner Equation  

To study QDIA GSs by analyzing the ingoing solutions 
of Equations (1)-(5), we first introduce the stretched co- 

ordinates [37]  

  ,px V t                 (23) 

3 ,t                    (24) 

By using Equations (23) and (24) in Equations (1)-(6), 
and Equations (9)-(13) and to the lowest order in ε, we 
find the same values of , , , and  1

iu  1
in  1

en pV  as like 
as that of the K-dV. To the next higher order in  , we 
obtain a set of equations, which, after using Equations 
(14)-(17), can be simplified as  

   2 2
3

1 1
,

2i
pp

u
VV

2             (25) 

   2 2
4 2

3 1
,

2i
p p

n
V V

2             (26) 

   2 23 9
,

2 8en 2               (27) 

 2 21
0.

2
A                (28) 

It is obvious from Equation (28) that 0A   since 
0  . One can find that  at its critical value 0A 

2 3c    (which is a solution of ). So, for 0A
  around its critical value  c , 0A A  can be 
expressed as  

0 1 .c

c

A
A s c

 

s  
 

 
   

       (29) 

where 1 9 4c   , c   is a small and dimensionless 
parameter, and can be taken as the expansion parameter 
 , i.e. c    , and  for 1s  > c   and 1s    
for < c  . So,  2  can be expressed as  

 22 3
1

1
,

2
c s 2                (30) 

which, therefore, must be included in the third order 
Poissons equation. To the next higher order in  , and 
after some mathematical calculations we obtain a set of 
equations  

 
 

 

3
22

6 4

3

2 2 2

15 3

2

1 2
,

i

p p

p p p

n

V V

V V V

 
  



  
 

         

 
  

 

      (31) 

 
 

 3 3 3
22

3

81 9 3 9
,

16 4 2 8
en     
    

             
  

(32) 

     
2

32
12

1
1 3

2 i ec s n n
  



    


.     (33) 
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Now, combining Equations (31)-(33), we obtain a 
equation of the form  

3
2

2 1 2 3
0,c s

     
   

   
  

   
    (34) 

where  

3
2 1

1
,

2 pc c V                (35) 

 3
1 6

81 11 15
,

2 162p
p

V
V




  
  


          (36) 

And 2  is given in Equation (21). Equation (34) is 
known as Gardner equation. It is important to note that if 
we neglect 3  term and put 2 , the Gardner 
equation reduces to K-dV equation which has derived in 
Equation (18). However, in this K-dV equation the 
nonlinear term vanishes at c

c s AB

  , and is not valid near 

c   which makes soliton amplitude large enough to 
break down its validity. But the Gardner equation derived 
here is valid for   near its critical value. 

4. SW Solution of the Gardner Equation  

To analyze stationary GSs, we first introduce a transfor- 
mation 0U     which allows us to write Equation 
(34), under the steady state condition, as  

 
2

1 d
0,

2 d
V

 


 
  

 
         (37) 

where the pseudo-potential  V   is  

  2 30 2 1

2 2 2

.
2 6 12

U c s
V

 4  
  

         (38) 

It is obvious from Equation (38) that  

   
0

0

d
0,

d

V
V










         (39) 

 2

2

0

d
0.

d

V








            (40) 

The conditions of Equations (39) and (40) imply that 
SW solutions of (37) exist if  

  0.
m

V
 




             (41) 

The latter can be solved as  

22 1
0 1,2 ,

3 6m m

c s
U


   1,2         (42) 

0
1,2

0

1 1m m

U

V
 

 
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  
 ,           (43) 

where 2 1m c s   , and 2 2
0 2 6V c s 1 . Now, using 

Equations (38) and (43) in Equation (37) we have  

  
2

2
1 2

d
0,

d m m

     


 
    

 
     (44) 

where 1 2 6  . The SW solution of Equations (37) 
or (44) is, therefore, directly given by  

1

2

2 2 1

1 1 1
,cosh

m m m


   


          

    
    (45) 

where 1,2m  are given in Equation (43) and SWs width 
  is  

1 2

2
.

m m


 




             (46) 

Figures 1-4 show the variation of amplitude of posi- 
tive (negative) GSs with μ for U0 = 0.5 and H = 0.3. 
These figures clearly indicate that both positive and 
negative GSs exist around the crical value, 2 3  . It 
has been found that the amplitude (magnitude of the am- 
plitude) of both positive and negative GSs decrease with 
the increase of μ. Figures 2-5 represent the variation of 
amplitude of positive (negative) GSs with U0 for μ = 0.66 
(μ = 0.67) and H = 0.3. These figures indicate that the 
amplitude of both positive and negative GSs increase 
with the increase of U0. We have found that the ampli- 
tude of positive and negative GSs does not vary with the 
quantum diffraction parameter, H but the width of the 
both positive and negative GSs vary with it. Figures 3-6 
imply that the width of both positive and negative GSs 
decrease with the increase of H and increase with the 
increase of μ. We have also noticed that in our present 
system the GSs exist when the quantum effect of electron 
is neglected. 

5. Discussion 

We have investigated QDIA GSs in quantum dusty 
plasma by deriving Gardner equation. The K-dV solitons 
are not valid for 2 3   and 2 3  , which vanish  
 

 

Figure 1. (Color online) Showing the variation of amplitude 
of the QDIA positive GSs with μ for U0 = 0.5 and H = 0.3. 
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Figure 2. (Color online) Showing the variation of amplitude 
of the QDIA positive GSs with U0 for μ = 0.66 and H = 0.3. 

 

 

Figure 3. (Color online) Showing the variation of width of 
the QDIA positive GSs with H and μ for U0 = 0.1.  

 

 

Figure 4. (Color online) Showing the variation of amplitude 
of the QDIA negative GSs with μ for U0 = 0.5 and H = 0.3.  

 

 

Figure 5. (Color online) Showing the variation of amplitude 
of the QDIA negative GSs with U0 for μ = 0.67 and H = 0.3.  

 

Figure 6. (Color online) Showing the variation of width of 
the QDIA negative GSs with H and μ for U0 = 0.1. 
 
at the nonlinear coefficients of the K-dV equation. How- 
ever, the QDIA GSs investigated in our present work are 
valid for 2 3  . The results, which have been ob- 
tained from this investigation, can be summarized as fol- 
lows:  

1) The quantum dusty plasma system under considera- 
tion supports finite amplitude GSs, whose basic features 
(polarity, amplitude, width, etc.) depend on the ion and 
dust number densities and quantum diffraction (tunneling) 
parameter, H.  

2) GSs are shown to exist for 2 3  , and are found 
to be different from K-dV solitons, which do not exist for 

2 3  .  
3) It has been found that at < 2 3 , positive GSs 

exist, whereas at > 2 3 , negative GSs exist.  
4) We have seen that the amplitude of positive and 

negative GSs decreases with μ, increases with , and 
does not depend on H.  

0U

5) We have also observed that the width of the GSs 
increases with μ but decreases with the increase of H. 

It should be mentioned here that in our present inves- 
tigation, we have neglected the quantum effect of ions 
since ions are heavier than electrons. However, QDIA 
solitary waves in quantum dusty plasma with or without 
the effects of obliqueness and external magnetic field are 
also problems of recent interest for many space and labo- 
ratory dusty plasma situations, but beyond the scope of 
our present investigation. In conclusion, we propose that 
a new experiment may be designed based on our results 
to observe such waves in both laboratory and space 
quantum dusty plasma system.  
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