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ABSTRACT 

We present a probabilistic approach to characterizing the transit time for a quantum particle to flow between two spa- 
tially localized states. The time dependence is investigated by initializing the particle in one spatially localized “orbital” 
and following the time development of the corresponding non-stationary wavefunction of the time-independent Hamil- 
tonian as the particle travels to a second orbital. We show how to calculate the probability that the particle, initially lo- 
calized in one orbital, has reached a second orbital after a given elapsed time. To do so, discrete evaluations of the 
time-dependence of orbital occupancy, taken using a fixed time increment, are subjected to conditional probability 
analysis with the additional restriction of minimum flow rate. This approach yields transit-time probabilities that con- 
verge as the time increment used is decreased. The method is demonstrated on cases of two-state oscillations and shown 
to produce physically realistic results. 
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1. Introduction 

There are numerous situations where one might be inter- 
ested in how quickly a quantum particle moves from one 
place to another. For example, electron transit times may 
influence such properties as binary switching speeds and 
alternating current conductance in molecular electronic 
devices. As another example, when a chemical reaction 
intermediate is tautomeric, the time required for the in- 
termediate, prepared in one tautomer, to evolve into the 
other tautomer, may govern the overall reaction rate. In 
many cases this exchange of tautomers is essentially a 
proton transfer. 

Investigating theoretically the time dependence of a 
quantum system begins with solving the time dependent 
Schrödinger equation (TDSE). Solving the TDSE yields 
the time dependent wavefunction  and the corre-   t

sponding probability density     2
t t  . Consider  

the movement of a quantum particle between two spatial 
regions denoted A and B: From the time dependent 
probability density one may calculate the probability of 
the particle being in region A at any given time. One may 
also calculate the probability of the particle being in re-

gion B at any given time, but the time dependent wave-  
function does not directly yield the time it takes for the 
particle to travel from A to B. In order to attain quantita- 
tive knowledge of the time-dependence of the flow of a 
quantum particle, it is essential to develop methods to 
extract this information from the time-dependent wave- 
function  t  and/or the corresponding probability 
density  t . Owing to the non-commutativity of the 
quantum position and momentum operators, the time 
required for a quantum particle to get from one spatial 
location to another must be defined differently from the 
analogous quantity for a classical particle. Here we pre- 
sent an approach that expresses transit time in terms of 
probabilistic confidences. 

To date, the great majority of theoretical treatments of 
quantum particle flow in molecular complexes have been 
of the time independent variety. Notable exceptions are 
Baer’s treatment of anti-coherence in molecular elec- 
tronics [1] and Pacheco and Iyengar’s demonstration of 
how to extract the transmission probability from the 
time-dependence of electron density in donor-bridge- 
acceptor systems [2]. In related work, Guo has applied 
non-perturbative time-dependent quantum dynamics to 
study the phenomenon of superexchange in electron *Corresponding author. 
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transfer [3], superexchange today being of central rele- 
vance in molecular transport junctions [4,5]. Coalson has 
investigated the accuracy of time-dependent perturbation 
theory methods to treat nuclear-electronic coupling in 
long-range electron transfer by benchmarking results for 
a model Hamiltonian to its exactly solvable limit [6]. 
Such long-range electron transfer is relevant in a wide 
variety of donor-bridge-acceptor systems [7]. These stud- 
ies give insight into the time dependence of electron 
transfer, but none recover the transit time. 

A special case from the class of problems encom- 
passed by the question, “How fast does a quantum parti- 
cle move from A to B?” is the question of tunneling time 
through a potential barrier. Tunneling time has been a 
matter of considerable discussion almost since the incep- 
tion of quantum mechanics. Valuable reviews have been 
presented by Hauge and Støvneng [8] and more recently 
by Winful [9]. The latter review is especially valuable for 
its appendix, which addresses conceptual questions about 
tunneling. One issue of sustained interest, apparent su- 
perluminal transport across the tunneling barrier, now 
appears largely resolved [10], as it has been demon- 
strated that causality is not violated [11,12]. 

Although we consider a more general problem, the 
transit of a quantum particle from one spatial location to 
another, two “tunneling time” papers are more than tan- 
gentially relevant to the present work: First, Dumont and 
Marchioro [13] have given a clear explanation why the 
question, “How much time does a tunneling particle 
spend under the barrier?” is ill posed. The difficulty with 
this question is that its answer would require the simul- 
taneous evaluation of observables corresponding to 
non-commutative operators. Dumont and Marchioro ar- 
gue, as we alluded to above, that the question must be 
posed in a probabilistic manner. Second: Baskin and So- 
kolovskii [14] addressed tunneling time by generalizing 
the classical concept of transit time to the quantum me- 
chanical case. We too have found it useful to reference a 
classical case, but rather than generalizing from a deter- 
ministic classical system, we draw analogy to a pro- 
babilistic classical system. 

In this paper, we present a new way to characterize 
transit times by analyzing the time-dependent probability 
density. We then demonstrate the method on the two 
different systems that display two state oscillations. The 
movement of the quantum particle is investigated by fol- 
lowing the time development of a localized wavefunction, 
which is expanded in a basis of eigenfunctions of the 
time independent Hamiltonian using standard methods. 
From the time development of the wavefunction, we 
show how to calculate the probability that the particle, 
initially localized in one orbital, has reached a second 
orbital after a given elapsed time; or conversely, how to 
calculate the time that must elapse for the particle to 

reach the second orbital with a given probability. Collec- 
tively, we refer to these questions as the “electron or- 
bital-occupancy problem”. A related question, “How fast 
can a quantum state change with time?” (under the con- 
trol of a time-dependent Hamiltonian) is the subject of a 
work with that title by Pfeifer [15]. 

2. Two State Oscillations 

The time dependence of two-state oscillations is a topic 
from introductory quantum mechanics. We discuss such 
oscillations here principally to define the time-dependent 
probability function for a specific case to be analyzed 
here, but also to introduce the notation that will be used 
in the balance of the paper. 

Consider an electron that oscillates between two spa- 
tially localized states (These localized states could rep- 
resent the source and drain of a two-terminal molecular 
electronic device under no applied potential, or the donor 
and acceptor in a DBA system, but for purposes of this 
study we consider two generic spatially localized non- 
eigenstates). We want to find out how long it takes for an 
electron that is initially prepared in one such state to 
reach a second state. Such a non-stationary state might be 
prepared with shaped laser pulses [16] or a sudden 
change in potential [17]. Here we will not concern our- 
selves with how the spatially localized state is prepared, 
but rather with how to analyze its time-evolution. To 
begin the problem we first solve the time-dependent 
Schrödinger equation (TDSE) by expanding the spatial 
wave function in a linear combination of eigenfunctions 
of the time-independent Schrodinger equation (TISE) 
according to canonical procedure. 

Consider a time-independent Hamiltonian Ĥ  for an 
electron in which there are two eigenstates i  that obey 
the relations: 

1 1 1 2 2
ˆ ˆ,H E H E 2     .            (1) 

The TDSE for this system is: 

ˆi t H    .                    (2) 

Given that Ĥ  is time-independent, if we let: 
   ΦT t r  , then the system separates into time de- 

pendent and time independent parts with the solution of 
the time-dependent part being,    expT t iEt   . 
Expanding the spatial wavefunction  Φ r  in a linear 
combination of eigenfunctions of Ĥ , it follows that the 
general form of the solution to the TDSE is, 

     Φ expk kk
T t r c iE t k     ,     (3) 

where the k  are the expansion coefficients at c 0t  . 
Since the basis functions are eigenstates, the probability 
of finding the system in a particular eigenstate at time  
is, 

t
  *

k k c kt c  , which is, in fact, independent of time. 
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For our purposes, however, it is more useful to consider 
an expansion in non-eigenstate functions. For example, 
suppose that we describe a localized electron in a mole- 
cule as an expansion in atomic orbitals (AOs). We can 
follow the flow of charge by observing how the AO ex- 
pansion coefficients vary as the time-dependent wave- 
function evolves in time. Ultimately, we want to address 
the question; how long does it take for an electron that is 
initially localized in one AO to reach a second selected 
AO? 

Suppose that the two eigenstates ( 1  and 2 ) of the 
two-state system are expanded in a basis of two AOs; 

1  and 2 . In this basis, the TISE in secular form is, 

det 0
E Es

Es E

 
 
 


 

            (4) 

where ˆ
i iH   , ˆ

i jH   , and i js  

The solutio

. 

ns are, 

   1 for which 1 ;  E s 1 1 2             (5a) 

   2 for which 1 ;  E s 2 1 2            (5b) 

If we use the approximation, ijs  , the roots are, 

E    .                  (6) 

Both eigenvalues are displaced from the site energy 
  by an amount dependent on the coupling matrix ele- 
ment  . Since   just sets the zero of potential, we 
can take the eigenenergies to be E   . 

Suppose that we initially lo oucalize r electron by 
placing it exclusively in the AO 1 . At 0t   the spa- 
tial wavefunction, written as an expansion in AOs, is, 

  1 1Φ , 0 1 0r t 2      .           (7) 

To write the time-dependent wavefunction, we must 
express this in the basis of eigenfunctions of Ĥ . In oth-
er words, we must find the kc  in Equation (3). This is a 
standard change from an AO basis to a molecular orbital 
(MO) basis. From the definitions of k  in Equations (5a) 
and (5b), it follows that 1 0.5c   and 0.5c  . 

We can now write the penden unct
2

time de t wavef ion: 

   
   1

Φ

0.5exp 0.5exp

T t r

i t i t 2  

 

  
 


  (8) 

To follow the time evolution of the wavefunction in 
space, we need to transform from the MO basis back to 
the AO basis. Using the Euler relations, we obtain the 
time dependent AO-occupancy probabilities as: 

   2
1 cos t                   (9a) 

   2
2 sin t                   (9b) 

As expected, . Note that the fre- 

qu ion between the tw

   1 2 1    

ency of oscillat o functions is   . 
Note also that the oscillation frequency depends on e 
energy difference between the states, the greater the en- 
ergy difference, the greater the frequency. 

In oscillatory systems the period of o

 th

scillation    
ncybears a reciprocal relationship to the freque  

 2π   where    is the angular frequency. As 
e example above, a bound quantum system in 

a non-stationary state is characterized by such a fre- 
quency, (or frequencies in a system with more than two 
levels). The related period(s), however, is(are) a physi- 
cally unsatisfactory metric of the lifetime of the associ- 
ated spatially localized state. In Section 5 we demonstrate 
that this quantum exchange frequency suggests a rapid 
exchange between tautomers in cases when one would 
likely have to wait an aeon for one tautomer to evolve 
into another. The present paper addresses this dilemma. 

Solution of the TDSE as outlined in this section yield

shown in th

s 
th

3. Professor Office-Occupancy Problem 

ssical 

e time-dependence of occupancy for each spatially lo- 
calized orbital (AO). This standard procedure is easily 
generalized to an arbitrary number of AO basis functions. 
It is a standard result in quantum mechanics and answers 
the question, “what is the probability that a selected AO 
is occupied at a specific time t?” Herein we will demon- 
strate how to analyze the time dependent probability 
function to address our central question: Given that the 
electron is initially localized on one atomic orbital, how 
much time must elapse for the electron to reach the sec- 
ond orbital with a given probability? In the next section 
we look at an analogous classical system in order to de- 
velop the methods to answer this question. The system 
we look at is a “professor office-occupancy problem”. 

To develop the methodology, we first consider a cla
problem analogous to the “electron orbital-occupancy 
problem”: We ask the question; given a function that 
describes the probability of a professor being in her of- 
fice as a function of time, what is the probability that the 
professor has occupied her office at least once during 
some elapsed time period? We term this the “professor 
office-occupancy problem”. Exploration of this classical 
problem allows us to identify the variables that are im- 
portant in the electron orbital-occupancy problem and to 
determine what assumptions might be necessary to pro- 
duce a physically reasonable answer. Our approach is 
based on evaluating the time dependent probability den-  

sity   2
t  at a fixed time increment. We find that  

cond bability analysis is required to obtain a itional pro
result that converges as the time increment is decreased. 
The understanding gained from studying the professor 
office-occupancy problem is then applied to solving the 
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electron orbital-occupancy problem. In addition to study- 
ing the time dependence of electron orbital occupancy, 
the method is also demonstrated for proton exchange in a 
double well potential. 

The professor office-occupancy problem is defined as 
follows: We take the probability of finding a professor in 
her office,  t , to be a sinusoidal function of time with 
a period of ours and an amplitude of 0.79; a mini- 
mum at midnight at which there is 1% probability of 
finding her in her office; and a maximum of 80% prob- 
ability at noon. The function is shown in Figure 1 (In 
this analysis we assume all days, whether weekend, 
weekday or holiday, are equivalent. A more complicated 
function with 7-day or 30-day periodicity could be used, 
but this would only serve to obfuscate the analysis with- 
out introducing any new physics). The probability func- 
tion may be written as, 

 

 24 h

 0.405t   0.395 cos 2π 24t ,      (10) 

where is time in hours. The area under the curv

 of as a two-state oscilla- 
tio

t the professor’s office 
an

t  e, 9.72 
hours/day, is the average amount of time the professor 
spends in her office each day. 

This system can be thought
n. The professor is either “in” her office or “not in” 

her office, and she oscillates between these two “states” 
according to the assumed probability function (10). Now 
let us address the question; given a specific start time, 
how much time must elapse for the professor to have 
visited her office at least once with a selected probability? 
One way of thinking about the question is this: If a stu- 
dent comes to the professor’s office, how long must the 
student wait to be 90% confident (or 99.999% confident) 
that the professor will show up? 

The student could show up a
d wait. Alternatively, the student could check the of- 

fice periodically. As the frequency with which the stu- 
dent checks the office approaches infinity, the elapsed 
time to finding the professor must converge to the period 
 

ρi i  

0 
0 

pr
ob

ab
ili

ty
 

time (hours) 
6 12 18 24

0.2 

0.4 

0.6 

0.8 

1 

 

Figure 1. Probability   of finding a professor in her office 

as a function of time together with the probability   that 
the office is not occupied. 

of time the student would have to wait at the office door. 

3.1. Simple Probability Analysis 

r office-occupancy 

k

Convergence of the time to achieve a given confidence 
level with increasing sampling frequency is therefore a 
necessary condition for the validity of any approach that 
is based on repetitive sampling of the probability func- 
tion. In the next subsection we show that simple multi- 
plication of the probabilities extracted from the probabil- 
ity function fails in this regard. 

We begin our analysis of the professo
problem by studying what happens if the student checks 
the professor’s office periodically. The naive approach 
assumes probabilistic independence, in which case the 
probability that the office has never been found to be 
occupied in N  samplings not

NP  is, 

  1, ,
1not

N k N
P t


  ,           (11) 

where  k t  is the probability of the office being oc- 
cupied in a specific sampling event k . The probability 
that the professor has been found in her office is then 
 1 not

N NP P  . This approach may appear to give rea- 
s for widely separated sampling events sonable result

 1 0k kt t t     , but obviously the assumption that 
 t  and  t t  

nseque
 are probabilistically independent 

wed. C ntly, the method fails as 0tis fla o   . 
This failure can be seen by considering four c ) 
The student looks for the professor at exactly noon each 
day. 2) The student looks for the professor at noon and 
midnight each day. 3) The student looks for the pro- fes-
sor at noon and 2 seconds after noon each day. 4) The 
student looks for the professor at noon and every 2 sec- 
onds thereafter until 12:00:08 pm each day. 

Applying Equation (11) to the four cas

ases: 1

es described 
above yields the results in Table 1, which shows the day 
on which the probability of having found the professor 
exceeds 99.999%. In case 1, after N  consecutive days 
the probability that the student has ated the professor 
is  1 0.2

loc
N

NP   . This expression converges to 1.0 
wit , a physically sensible result. In case 
2, after 

h increasing N
M  consecutive days the probability that the 

student ha located the professor is  1 0.198s 
M . This 

converges to 1.0, but slightly more if the 
student checks only at noon, again a physically sensible 
result. By checking at midnight in addition to noon, the 
student increases the probability of finding the professor, 
but only by a little because the professor is very unlikely 
to be found in her office at midnight. 

For case 3, since 

rapidly than 

    12 : 00 : 00 12 : 00 : 02 0.2t t   ,   

after  consecutive days, the probability of having N
located the professor will be  2

1 0.2
N . This result is       
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9 % probability, based on looking for her at different times of 

 
probability of finding the professor  

  
Table 1. The day the professor is found in her office with 99.99
the day under the assumption that these samplings possess probabilistic independence. 

Formula to calculate the probability the professor  Day the 
has been found in her office. in her office reaches 99.999%. 

Case 1 1 − 0.2N 11th day 

Case 2 1 − ( N 11

 6  day

1  2

0.2 × 0.99) th day 

Case 3 1 − (0.2 × 0.2)N th  

Case 4 − (0.2 ×··· 0.2)N nd day 

 
ompletely unreasonable. The probability is converging 

 that 

c

 

to 1.0 more rapidly than in case 1, only because the stu- 
dent is making two attempts to find the professor at es- 
sentially the same time each day! Case 4 further high- 
lights the failure of this approach. Table 1 shows that the 
professor is found 10 days earlier simply because the 
student is looking into the office every two seconds for 8 
minutes each day, instead of simply checking once. 

The reason for the failure of Equation (11) is
 t  is very strongly correlated to  t t    for 

t  owing to the continuity of the ving 
probability function 
small time evol

 t . In the next section we de- 
scribe an approach that accounts for the correlation be- 
tween sampling events to produce a predicted time to 
achieve a given confidence level that converges with 
increasing sampling frequency. 

Figure 2. Conditional probability tree diagram where: iρ  

 tim  is the probability that the professor is in her office at e

it = i, p , is the probability that she is not in her office  

time t = i , and 

at

 1i iρ = ρ , at any time it . 

given a
 

3.2. Conditional Probability 

During a discrete time-step  t , the condition of the 

ram,  is the probability that the 
“s

professor being in the office either change or stay 
the same. In general, the probability that the condition 
changes may depend on the initial state. We can repre- 
sent the evolution during a time-step with a tree as de- 
picted in Figure 2. 

In the tree diag

will 

 a
 ttate” changes given that he professor is not in her of- 

fice and b  is the probability that the state changes giv-
en that she is in her office ( 1a a    and 1b b   ). 
We can write the probabilities  in th at 
t t   as: 

 of being e office 

 1 1i i iX Y a         b ,       (12a) 

 1 1i iW Z a b         .i        (12b) 

If  and  can be determined froma b  i  and 1i   
(and i  and 1i  ) it is then possible to determine the 
proba ity that  professor was never in her office. The 
probability is given by the probability that the office was 
not occupied at time 

bil  the

00,t    times the probability 
that the state did not cha h subsequent time-step 
 1a a   . In other words, given that the office was not 

time t i , if the probability that the state did 
not change between time t i

nge on eac

occu at pied 
  and time 1t i   is  

 by , 1i i , the  probability t at n the h the office was 
ever occ  is given by, n upied

 0 , 10, ,
1not

i ii N
P a a 

      . (13) 0 0, , i ii N  , 1

In fact, Equations (12a) and (12b) are dependen
we can therefore only solve for in terms of Whil
a 

t and 
e a  

m

b . 
definitive relationship between a  and b  is not obvi- 

ous, both a  and b  values ust be confined by 
 0 , 1a b   because they repre nt probabilities. By 

rearranging Equation 12a) and (12b), we obtain the 
ressions. 

se
s (

following exp

   1i i i–i ia b                  (14a) 

   1 –i i i i ib a .       

Using probability function Equation (
tionships of (14a) and (14b), we can fin
al

         (14b) 

10) and the rela- 
d the range of 

lowed values of a  and b  at each time-step. 
Consider as a specific example, the set of conditions: 

0.6i  , 0.4i  1 0.7i,    , 1 0.3i   . It follows 
that for this specific set of conditions, 

 4 6 1 6b a  .           (15)     

We haven’t identified another 
and , but we do know 

relationship between a  
that  0 1a   and b

 0 1b  . The range of allowed values of a  and  
for this example case is shown with th  line 

b
e boldface
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segment on

ed values  

 the LHS graph of Figure 3. 
Based on analyzing the allowed ranges for a  and b , 

the minimum and maximum allow of
 0,1b   and a 0,1b a   using two samp - 

steps, (0.5 hour and 0.1 hour) are shown in Figures 4(a) 
rom th we see that mina  and minb  

decrease as the time-step gets smaller. This is a physically 
sensible result: As the time step decreases, probability 
that the state changes during the time step also decreases 
(i.e., the state is very unlikely to change during a very 
short time interval). 

There are many mathematically allowed solutions of 
Equation (14) for a

ling tim

the 

 and  To obtain the physically 
m

e

and 4(b). F e figures 

b .
eaningful solution, a second condition on a  and b  is 

required. One obvious possibility is 1a b  . Using this 
condition, direct application of Equation (1  prod ces 
the same unphysical result as the sim bability ap- 
proach. The predicted time to achieve a given confidence 
level does not converge with decreasing time-step. We 
conclude that this obvious additional condition on a  
and b  is not the physical one. 

3)
ro

u
ple p

We note that physically,  and b  represent the 
probabilities of the “occupied” and “unoccupied” states 
changing during the given time interval. While we do not 
know the specific values of  and  for any given 

a

a b
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Figure 3. LHS: allowed ranges for  and b  for the set of 

conditions:

a

0.6iρ  , i 0.4  , , 1  0.7i+ρ 
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extrema of allowed values of  and  in general. a b
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Figure 4. (a) Allowed range of  and values for conditional probability for professor office-occupancy problem. Also 

plotted are the 

 a b  

 ρ t

, mina

, with  with The plots are made for 0.5 hour time intervals. (b) Al- maa x , 

s 

min min

lowed range of a  and b  value for conditional probability for professor office-occupancy problem. Also plotted are the 

 ρ t , with maxa  and 

a  and  ρ t  maxb , b . 

 ρ t  with maxb . The  made for 0.1 hour time intervals. The spacing of data 

points is so small that individual points have been replaced with an interpolating curve for visual clarity. Note that mina  and 

are smaller than in Figure 4(a) where a lar  time step was used. 

, minb

ger

plots are

minb  
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ep
time interval, it is physically reasonable that as the time 

 is decreased, the probability of the state changing st
during any one time step decreases. In the limit of de- 
creasing time step therefore, a  and b  should take on 
their smallest allowed values. We therefore used the 
slowest mathematically allowed flow of probability by 
using minimuma b   where we denote mina a  and 

minb b . The case  minimuma b   represents the 
fewest office occupancy state changes that produce i  
and 1i  , from i  and 1i  . This is the physically 
meaningful additional condition on a  and b . 

In the range  0 12t  , the probability that the of- 
fice is occupied is increasing, therefore the minimum 
ch plished by ange is accom  setting 0b , which pro- 
duces mina a . Here, if the office is occupied it remains 
so, if it is not, there is a small probability of a change in 
the state  mina . Similarly, for  12 24t  , the prob- 
ability that the office is occupied is decreasing. The 
minimum change is accomplished by setting 0a  , 
which produces minb b . In this case, if the office is 
empty it remains so, but if it is occupied there is a small 
probability of a change in the state  minb . 

One might argue that the state of the system could 
change during the first time interval (or any subsequent 
tim

 

 fig
 the elapsed time at which we can be 90% confi- 

e interval) regardless of how short the time increment 
is, in which case 1a  , not its minimum allowed value. 
This is true, however, we seek to place a confidence on 
the office occupancy within some elapsed time. While 
the rapid state change may happen, to specify a confi- 
dence that the state change has happened we must base 
our analysis on the slowest rate of state change that is 
consistent with the probability function. 

Using the above analysis, we can put rigorous upper 
and lower bounds on the flow of probability. To obtain 
the  upper limit, we use maxa a . In this case the office is 
occupied the first time we look. To obtain the lower limit 
we use mina a , which produces  notP t  as shown in 
Figure 5. Note that notP  drops below 0.1 at 30.5 hours. 

(Half-hour time steps were used to generate the ure). 
This is
dent that the professor has been in her office at least once. 

The results (collected in Table 2) show that as the 
time-step gets smaller, the approaches using simple 
probability, and conditional probability using 1a b  , 
predict that the time to 90% occupancy probability de- 
creases to zero with increasing sampling frequency, a 
physically nonsensical result. Only the conditional prob- 
ability analysis with the assumption of minimum flow 
produces a result that converges. 

3.3. Validation by Monte Carlo Simulation 

3.3.1. Simulation Methods 
Carlo 

he time-dependent probabil- 
To validate our findings, we performed Monte 
(MC) simulations based on t
ity function (10) for both the simple probability and con- 
ditional probability approaches. We compared the results 
to direct application of equations (11—simple probability 
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0
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Figure 5. Time dependence of ρ  
not

(the probability that the 

office is not occupied) and P  
r

(the probabilistic conf

0% like a

i-
dence that the office has neve  been occupied between 

= 0t  and t ) based on conditional probability analysis. 

ly to h ve been in her office at least once 
 
Table 2. The elapsed time (hours) at which the professor is 9  90 . The 

b
p

oldface result is the ph ly meaningful one. The other resulysical ts are based on the flawed assumption that samplings of the 
ct denotrobability function are independent events. Monte-Carlo denotes the result of a Monte-Carlo simulation. Dire es 

direct application of the noted equation. 

approach   Simple probability (Equation (11)) Conditional probability (Equation (13)) 

direct 90  min min,  a b direct 90  min min,  a b Monte-Carlo 90  1a b time-step (hour)   90  direct 90  Monte-Carlo 

60 min (1   hr) 8.00 30.5 

 6.00 31 30

9.00 8.00 31 

30 min (1/2 hr) 6.50 6.00 .7 

15 min (1/4 hr) 5.00 4.75 4.75 31 30.8 

10 min (1/6 hr) 4.33 4.17 4.17 31 30.9 

1 min (1/60 hr) 1.68 1.65 1.68 31.0 30.9 
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ana —cond al probabili alysis). For 
consistency, in all cases we determined the e 

he r is 90% ly to have b n her office 

lysis) and (13 ition ty an
elapsed tim

een iw n the professo  like
at least once  90 . 

In the first set of MC simulations, (simple probability) 
the “1st visit time” is found by starting at time 0t   of 
the first day a d advancing in discrete time steps tn  . At 
each time-step a random number is chosen between 0 and 
1. If the random number falls under the probability curve 
 t  the professor is taken to be in her office and the 

answer is obtained. If the random number falls on or 
above the curve, another time-step is taken and so on 
until we get the 1st visit. We look at all first visits and 
find the time of day when 90% of the first visits have 
occurred. We continued to follow the professor’s move- 
ment beyond the 1st visit to validate whether the simula- 
tion procedure reproduces the  t  profile. (This al- 
lows us to look at the office-occupancy problem without 
an artificial day-cycle boundary.) One or multiple con- 
secutive in-office-states constitute a single visit. Most of 
the visits are in the middle of the day-cycle as expected. 
This approach reproduces the  t  profile with the 
professor spending on average 9.72 hours per day in the 
office as shown in Figure 6. 

For comparison, for direct application of Equation (11), 
the time the professor is found in her office at least once 
with 90% probability is determined by setting the value 
of Equation (11) to 0.1 and solving for t . Here k  runs 
from 0 to N  and t k t  . The probability is given by 
the probability that the professor was not in her office at 
time 0t  ,  0  times the probability that she was not 
in her office at the en h subsequent time-step d of eac  i  . 
The product is carried out stepwise, incrementing N by 1 
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Figure 6. Comparison of  ρ t  

unt

profiles based on simula-

tions with  ρ t  

n

function of Equa

flow

tion (1): MC = Monte- 

Carlo simulatio , conditional = simulation with conditional 
probability with minimum , simple = simulation based 
on simple multiplication of probabilities. For the Monte- 
Carlo simulations 10,000 day-cycles were used. All of the 
simulations reproduce the original  ρ t  function and pre-

dict an average of 9.72 hours spent in office per day. 

manner as the simple probability approach described two 
paragraphs above, but with one difference; at each time- 
step we compare the random num to the mina  in the 
range 0 12t

il  drops b  0.1. 
A M nte Carlo sim lation based condition l probabil- 

inimum w is obtained in ry similar 

ber 

not
NP
o

elow
u

 flo
a

 a veity with m

   and minb , for the range 12 t 24 , 
instea  comparing the randd om number to  of    as t
done in the simple probability approach. 

Direct application of Equation (13) was accomplished 
analogously to direct application of Equation (11). This 
product, and all other simulations described in this ma-
nuscript, were carried out using program ATLAB  
[18]. 

3.3.2. MC Results 
In

M

Simply checking the office with infinite fre- 
arantee that the professor will arrive 

 Table 2 we report the results of our calculation using 
varying time-steps. The results show that the answer 
given by the simple probability approach depends on 
how frequently the office is checked and converges to 
zero as the time step is decreased, a physically nonsensi- 
cal result. 
quency does not gu
immediately! 

As shown in Table 2, the simulation based on the 
condition of minimum flow produces an answer that is 
independent of time-step and is exactly the same as the 
analytic analysis shown in Figure 5, and the direct ap- 
plication of Equation (13). The minimum flow condi- 
tional probability approach also produces the correct 
 t  profile as shown in Figure 6 with a total office 

time of 9.72 hours per day-cycle. 
In the approach using conditional probability with 

minimum flow rate, since min 0a a   from noon till 
midnight, no first visits are found during the final 12 
hours of a day-cycle. As a result, some days have no vis- 
its at all and the answer, time ‘till the first visit, is greater 
than 24 hours (It is important to note that the professor 
can arrive at her office within the first 24 hours, or 12 
hours or any shorter time interval, but 90% confidence is 
not achieved until later). Thi achieves our re- 
quirement of obtaining a solution to the problem that 
converges with decreasing time-step. 

There is an important feature of quantum mechanics 
that merits note here: In a quantum system, the time- 
dependent wavefunction (and its corresponding prob- 
ability density 

s approach 

 t ) evolves according to the TDSE 
until the state of the system is observed, whereupon the 
system collapses into a stationary state. In practice 
therefore, the process that we draw analogy to, system- 
atically and repeatedly peeking into a professor’s office 
to ascertain its occupancy, would function for that clas- 
sical case, but not for a quantum mechanical system. In a 
quantum system, the first such “measurement” would 
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collapse the wav ction into a stationary state. It is 
important to draw a distinction, however, between carry- 
ing out a measurement of the system and evaluating a 
probability density function. To analyze the mathemati- 
cal properties of 

efun

t  we may evaluate it at numerous 
values of t  without altering the function, just as inte- 
grating the absolute square of a 1D spatial wavefunction 

 
 

2
x  over the interval  x     to establish that  

it is properly normalized does not collapse the system 
into a single-valued position state, which would be rep- 
resented by a delta function. For this reason, we may use 
the analogy to the classical office occupancy case to in- 
form us of how to analyze the time evolving probability 
function. In the ensuing sections we apply the minimum 
flow conditional probability quantum 

ical systems. 
 analysis to two 

mechan

4. Electron Orbital-Occupancy 

We have applied the methods developed above to the 
orbital-occupancy problem where    2sint t    
gives the time dependence of electron occupancy for 
orbital 2  (See Equation (9b)). The oscillation fre- 
quency is   . In our calculations we took the values 
of   and   to be 1. The cycle length is therefore 

dvances by
orbital occ

ich the electr

i

π  
π ). 
u- 

n is

lit

(The function repeats every time t  a
The results of our studies for the electron 

 

o
pancy problem are collected in Table 3, which shows the 
elapsed time (fraction of a cycle) at wh  
90% likely to have occupied the second orbital at least 
once. Note that just as in the professor office-occupancy 
problem, th mple probability approach produces the 
physically unreasonable prediction that as the sampling 
rate increases, the time to 90% oc upancy probabi y 
converges to zero. The simple probability and 1a b

e s

c
   

Monte Carlo simulations produce the same unphysical 
result because they are based on the same flawed as- 
sumption of uncorrelated probabilities. The approach of 
using conditional probability with minimum flow rate 
converges to 1.25, indicating that at about 125/314th of an 
oscillation cycle, the electron has reached the second  

“acceptor” orbital with 90% probability. 
While the results presented here employ a basis of two 

atomic orbitals, the extension to a larger basis is 
straightforward. Numerical integration of the TDSE for a 
non-stationary state representing an initially localized 
electron yields a discrete representation of the time de- 
pendent state vector. Upon transformation from the basis 
of eigenstates of the TISE to the AO basis, the squares of 
the AO expansion coefficients are the time dependent 
occupancy probabilities. Application of the conditional 
probability analysis described above to a selected orbital 
will give the elapsed time to expected occupancy of that 
orbital. 

While our example analyses the time dependent prob- 
ability function arising from a non-stationary wavefunc- 
tion evolving under the influence of a time-independent 
Hamiltonian, it can, in principle, be applied more gener- 
ally. The time-evolving probability need not be based on 
a time-independent Hamiltonian. In the case of a time- 
dependent Hamiltonian, the methods of finding the 
time-dependent wavefunction would be different, but our 
method of analyzing the probability function would still 
apply. 

5. Proton Transfer across an Asymmetric 
Double Well 

As a second application of our conditional probability 
analysis we consider the exchange of a proton across an 
asymmetric double-well potential. Here we employ the 
quantum mechanical model of Hameka and de la Vega 
[19]. The Hamiltonian is taken to be time-independent 
and of the form, 

0Ĥ H H   .                (16) 

Here 0H  describes a symmetric double-well poten- 
tial having the lowest two eigenenergies 0E  , where 
  represents half the splitting of these lowest two ei- 
genenergies. The fundamental oscillation frequency is  

0 2   . The perturbation term, 
x

H
d

   , intro-  

duces the asymmetry to the potential. Here   is the  
 
Table 3. The time (a.u.) at which the electron is 9 y t
result is the physically meaningful one. The other results are b
ity function are independent events. The oscillation frequency 

0% likel o have occupied the second orbital at least once. The boldface 
ased on the flawed assumption that samplings of the probabil-

is β  , where  and 1β = 1 . The cycle length is .  

Conditional probability 

π

approach   Simple probability 

time-step (a.u.)   90  direct 90  by Monte-Carlo Simulation

(10,000 cycles sampled) 
90  1a b   

direct 
90  min min,  a b

direct 

90  

min

by Monte-Carlo Simulation 

 (10,000 cycles sampled)min,  a b

3.14 × 10−1 (1/10 π) 1.57 1.26 1.26 1.26 1.10 

3.14 × 10−2 (1/100 π) 0.63 0.60 0.60 1.26 1.24 

3.14 × 10−3 (1/1000 π) 0.28 0.28 0.28 1.25 1.25 
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energ between the  of the 
asymmetric double well, is their spatial sepa
a

y difference classical minima
d  ration 

nd x  is the di splacem oo
m eka and de la eg eral 
as ter 

ent c rdinate. Based on this 
a [19] define a genodel, Ham V

ymmetry parame 2  , and show  the os- 
c

   that
illation frequency    as a function of th mmetry 

param ter is, 
e asy

e

2
0 1    .             (17) 

A traditional measure of ifetime in quantum systems 
is, 

 l
2π  . By this measure, the lifetime decreases 

with increasing asymmetry (increasing 1


  ). We have 
posed the question; given he deeper well A is ini- 
tially occupied, how g must one wait to be 90% con- 
fident that the

 that t
 lon

 proton has sampled sh  well B? (As 
before, we denote this period 

allower

90 ). A plot of 90  versus 
the asymmetry parameter is g
co

iven in Figure 7, where it is 
mpared to the traditional measure of lifetime 

2π  . 

quen y
on

1, but within a n he limit of great 
asymmetry, probability is pool  a 

 well an ust wait essentially fore e 
n to mig ven though the  

is v high. Thi onsistent with th perimentally 
known lack of tau m in 2-methylnaphthazarin [19], 
for which the asymmetry parameter is 9.3 × 105. 

nction), 
ndition of minimum flow rate. The 

d by analyzing a probabilistic classi- 


Values of the asymmetry parameter c ponding to 

some of the proton transfer systems considered by Ha-
meka and de la Vega are marked on the plot for refer- 
ence. Note that even though the oscillation frequency 
increases with increasing asymmetry, the duration one 
must wait for the proton to migrate from one well to the 
other also increases. This is because, even though the 
fre c  of oscillation increases, the probability of any 

orres

e well being occupied does not oscillate between 0 and 
 

arrower range. In t
ed almost exclusively in

ver for th
 oscillation frequency

single
proto

d one m
rate, e

ery s is c e ex
tomeris

6. Conclusions 

A probabilistic method is presented to compute a transit 
time for the transport of a quantum particle from one 
spatially localized state to another. This approach is 
based on application of conditional probability to discrete 
sampling of the time dependent probability function (the 
absolute square of the time-dependent wavefu
with the additional co
method is develope
cal system and is subsequently applied to two cases of 
quantum two-state oscillations: electron orbital-occu- 
pancy and proton transfer. In this approach, the quantum 
particle is initially localizing in one spatially localized 
state (orbital) and the time development of the corre- 
sponding non-stationary wavefunction of the time-inde- 
pendent Hamiltonian is followed as the particle travels to 
a second spatially localized state. There is no definitive 
time at which the particle can be said to have arrived at 
the second orbital. Instead, we compute the elapsed time 
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Figure 7. Dependence of on the asymmetry parameter (squares—left vertical axis) in comparison to the traditional 

measure of quantum lifeti
90τ  

me 2π   (diamonds—right vertical axis). Atomic units are used. Arrow a marks the asymme-

try parameter of 9-hydr nalen-1-one and b marks the parameter for α-methyl-β-hydroxyacrolein. For comparison, the 
asymmetry parameter for 2-methylnaphthazarin is 9.3 × 105.      

oxyphe
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to achieve a set probabilistic confidence level (e.g. 90%, 
99.999%) that the particle has reached the second state. 
Unlike approaches based on the (flawed) assumption that 
the probability that a given orbital is occupied at time 
is independent of the probability that the same orbital is 
occupied at an earlier time t-Δt, the approach yields a
answer that converges with decreasing sampling tim
step. Application of the method to asymmetric proto
transfer yields results that are both consistent with kno
experimental evidence of tautomerism and more phy
cally relevant than the traditional
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measure of 
life-time. The method of veloped here
gives a new time-dependent way to analyze and quantify 
the transport of quantum particles. 
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