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ABSTRACT 

Assuming that plasma particles are moving on continuous and non-differentiable curves, some dynamic properties in 
plasma ablation are analyzed via scale-relativity theory: the splitting of plasma plume, multi-peak structures, at various 
distances from the target surface and plasma oscillations through self-similarity. Our theoretical results are in good 
agreement with the experimental ones. 
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1. Introduction 

The interaction of high-power laser radiation with target 
materials is a topic of current interest in various fields 
such as material-processing, plasma physics, analytical 
sciences, etc. [1,2]. Laser ablation implies a series of 
complex phenomena: interaction of laser radiation with a 
solid target [3], laser beam absorption in ablation plume 
[4], hydrodynamics and electrical processes in the gener- 
ated transient plasma [5,6], etc. 

Correspondingly, theoretical models describing the 
dynamics related to these complex phenomena become 
sophisticated and ambiguous [1,2]. However, the situa- 
tion can be standardized taking into account that the ele- 
mentary processes induced by laser-matter interaction 
impose various temporal resolution scales [7,8], and that 
the pattern evolution imposes different degrees of free- 
dom e.g.: from one, at the initial stages, to three at the 
final stages of the patterns induced by the laser-produced 
plasma [9]. In the present paper various theoretical as- 
pects of a laser-ablation plasma dynamics (generation of 
two plasma structures, multi-peak structure for various 
distances from the target surface, plasma-ablation oscil- 
lations through self-similarity, etc.) were analyzed using 
the SR theory. 

2. Hallmarks of Non-Differentiability 

For developing our theoretical model, we take into ac- 
count that, in plasma-ablation, deterministic chaos arises 
in association with spatio-temporal structures emergence. 
For temporal scales that are large with respect to the in- 
verse of the highest Lyapunov exponent, the determinis- 
tic trajectories can be replaced by collections of potential 
trajectories and the concept of definite positions by that 
of probability density. This concept was introduced in the 
framework of the scale relativity (SR) theory [10-12], 
which states that the particles movement takes place on 
continuous but non-differentiable curves (fractal curves). 
Subsequently, all physical phenomena become dependent 
not only on the spatio-temporal coordinates but also on 
the spatio-temporal scales. Thus the non-differentiability 
become a fundamental characteristic of the plasma-abla- 
tion dynamics. 

Non-differentiability implies the following [10-17]: 
1) A continuous and non-differentiable curve (or al- 

most nowhere differentiable) is explicitly scale depend- 
ent. Moreover, its length tends to infinity, when the scale 
interval tends to zero. Consequently, according to Man- 
delbrot’s concept, a continuous and non-differentiable 
space will be a fractal space [18]; 
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ˆ i V V U


V V̂

dt
U

2) Physical quantities will be expressed through frac- 
tal functions, namely those functions depending on 
space-time coordinates as well as on resolution scale. 
The invariance of the physical quantities in relation with 
the resolution scale generates special types of transfor- 
mations that are called resolution scale transformations. 
Let us now explain the above statements through an ex- 
ample. We can choose the fractal normalized current- 
voltage characteristic in the form [19]: 

21
1

a
I

I
     

              (1) 

where   is the fractal normalized voltage, I  is the 
fractal normalized current and a  is a parameter de- 
pending on scale resolution. This relation induces con- 
duction bistability (see Figure 1) as follows: 
 the restriction 8a   implies bistability; 
 the value of a  sets the scale resolution through the 

ionization and recombination rates; 
 once a  is fixed (with 8a  ), for values of the frac-

tal normalized current in the interval AB on the char-
acteristic (see Figure 1) the fractal normalized volt-
age can have two distinct stable values; 

 conduction bistability is associated with the negative 
differential resistance (or hysteresis); 

 since   and I  are fractal functions (relation (1)) 
they can exhibit the property of self-similarity. Con- 
sequently, conduction bistability in Figure 1 can oc- 
cur at any scale resolution (i.e. for different ionization 
and recombination rates). As a result, a correspon- 
dence between multiplicity order of the double layer 
and the one of conduction bistability is likely to oc- 
cur. 

3) Although the local differential time invariance is 
broken, it can still be recovered through the complex 
operator [15-17]: 

  2 1
i d FD
D t

 
ˆ

ˆ
t t

 
   

 
V       (2) 

where 
 

 

Figure 1. Theoretical dependence of the fractal normalized 
current on the fractal normalized potential. 

                (3) 

is the complex speed field and , Δ are the usual ope- 
rators. The real part  of the complex speed field  
represents the standard classical speed which is differen- 
tiable and does not depend on resolution, , while the 
imaginary part  is a new quantity arising from frac- 
tality, which is non-differentiable and resolution-de- 
pendent. Quantity D is Nottale’s coefficient and corre- 
sponds to the fractal—non-fractal transition while DF is 
the fractal dimension of motion curves; 

4) Plasma-ablation particles may be reduced to and 
identified with their own trajectories (i.e. their geodesics), 
so that the complex system should behave as a special 
“fluid” lacking interaction via geodesics in a non-dif- 
ferentiable (fractal) space. The equation of geodesics (a 
generalization of Newton’s first principle for motion of 
fractal curves) can be written in the form [15-17]: 

    2 1ˆ ˆ ˆ
ˆ ˆ ˆi d 0FD

D t
t t

 
     

 
V V

V V V   (4) 

This means that the global complex acceleration field 
ˆ t V

ˆ
t

 depends on the local complex acceleration field,  

V  ˆ ˆV V

ˆ

, on the non-linear (convective),  and dis- 

sipative, V

 

 terms. Moreover, the fractal fluid becomes 
viscoelastic or hysteretic, i.e. the fractal fluid will be en- 
dowed with memory. Such a result is in agreement with 
the opinion given in refs. [1,2]: the fractal fluid can be 
described through Kelvin-Voight or Maxwell rheological 
models using complex quantities, e.g. the complex speed 
field, the complex acceleration field etc. In addition, re- 
lation (4) is a Navier-Stokes type equation with an imagi-  

nary viscosity coefficient  2 1

0 i d FD
D t 

ˆ 0

. 

3. Fractal Hydrodynamic Model 

If the motions of the fractal fluid are irrotational, i.e. 
 V V̂

 

, we can choose  having the form: 

 2 1ˆ 2i d lnFD
D t

  V

ln

         (5) 

 the scalar potential of the complex speed. with 
For ie S , with     the amplitude and S the 

phase of  , the complex speed field (5) takes the explicit 
form: 

  

  

2 1

2 1

ˆ 2 d

i d ln

F

F

D

D

D t S

D t 





 

 

V

 

           (6a) 

 2 1
2 d FD

D t S
 V

 

             (6b) 

 2 1
d lnFD

D t  U             (6c) 
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 ,x y  case in the form: Substituting (6a)-(6c) in (4) and separating the real and 
the imaginary parts up to an arbitrary phase factor which 
may be zero by a suitable choice of the phase of  , we 
shall obtain: 

 m Q
  

 
V V0

   
V

t
       (7a) 

  0  V

Q

t




               (7b) 

with  the fractal potential,  

  

  

4 2

2 1FD
t








U

m

2D 

2
0

2
0

0

2 d

d
2

FD
Q m D t

m
m D

 

  
U

     (8) 

and 0  the rest mass of the fractal fluid particle. Equa- 
tion (7a) is the momentum conservation law, Equation 
(7b) is the density conservation law. They both define the 
fractal hydrodynamic model (FHM). 

Now, certain conclusions are evident: 
1) Any particle is in permanent interaction with the 

“sub-fractal level” through the fractal potential Q; 
2) The “sub-fractal level” is identified with a non- 

relativistic fractal fluid described by the probability den- 
sity and the momentum conservation laws—see relations 
((7a), (7b)). These equations correspond to the general- 
ised quantum hydrodynamic model (GQHM). Indeed, for 
motions that can be described via fractal curves in fractal 
dimension F  at Compton scale, 0  with 

the reduced Planck constant, the FHM reduces to a 
quantum hydrodynamic model (QHM). In this last case 
the “sub-fractal level” is identified with “sub-quantum 
level” [10-12]. 

2D m 


3) The fractal potential (8) results from non-differen- 
tiability and should be considered as a kinetic term and 
not as a potential one. Moreover, the fractal potential (8) 
can generate a viscosity stress tensor type [15-17]. 

    4 22
0ˆ d

,

FD

il i l

i l

l i

m D t

U U

x x

i l  



 

  
    

       
 (9a) 

  2 1
d FD

m D t


ˆi il lQ

0

1

2
                       (9b) 

whose divergence is equal to the usual force density as-
sociated with Q 

                  (10) 

4. Numerical Simulations 

Let us now rewrite the equations of FHM for the two- 

dimensional 

     2
x x x yV V V V

t x y x

     
   

   
  (11a) 

     2
y x y yV V V V

t x y y

     
   

   
  (11b) 

    0x yV V
t x y

    
  

  
            (11c) 

     x y

yx

e
eV eV

t x y

VV
e

x y


 



  
 

  

 
     

          (11d) 

 ewhere fractal continuity equation of density energy   
was added [15-17]. With non-dimensional vario ables, 

,t                     (12a)  

,kx                     (12b) 

,ky                     (12c) 

,xV k
V                   (12d) 


 

,yV k
V                   (12e) 


 

0

ρ
N 

ρ
                    (12f) 

in the case of the ideal gas and with variation σ being 
induced by the density and temperature variations 

  , const.N T       , Equations (11a)-(11d) be- 
comes: 

      2 N T
NV NV NV V      

   
   

   
 (13a) 

       2 N T
NV NV V NV      

   
   

   
 (13b) 

    0
N

NV NV   
  

  
  

               (13c) 

     N T
N T V N T V

V V
N T

 

 

  

 

   
     

  

  
      

       (13d) 

In Equations (13a)-(13d) the functional scaling rela-
tion, 2 2 1k    was considered. In a particular case, if 
we choose in (12a)-(12c) 0  corresponding to equilib-
rium plasma density, ω to ion plasma frequency, and k to 
the inverse of Debye length, then α will be the square of 
the ion-acoustic speed and σ the kinetic pressure. 
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For numerical integration, the initial conditions, 

(14a) 

 0, , 0,                  (14b) 

 

 0, , 0,V                   

V

10, , 4,                 (14c) 

 

N

10, , 4,                 (14d) 

0 1 1

T

         

an es, 

,0, 0,

            (14e) 

d the boundary on

V                  (15a) 

 ,1, 0,  V                (15b) 

 ,0, 0,  V                (15c) 

 ,1, 0,  V                (15d) 

 ,0, 1 4,                (15e) 

 

N

,1, 1 4,                 (15f) 

 

N

,0, 1 4,                 (15g) T

 ,1, 1 4,                 (15h) 

 , ,0 0, 

T

V                 (15i) 

 , ,1 0, V                 (15j) 

 , ,0 0,  

 , ,1 0,  

V                (15k) 

V                 (15l) 

 
 
 

 
 

2 2

2 2

1 4 1 2
exp exp ,

1 4 1 4
N

     
      

      
0

, ,0N  

 (15m) 

 , ,1 1 4,N     

 

             (15n) 

 
 

 
 

2 2

2 2

, ,0

1 4 1 2
exp exp ,

1 4 1 4

T

T

 

     
      

      
0

   (15o) 

 , ,1 1 4.T                   (15p) 

are considered. In the boundary condition ((15m), (15o)) 
we assumed that the laser pulse which “hits” the target 
induces a plasma source that has a spatial-temporal 
Gaussian profile, similarly with the laser beam. N0 is the 
maximum normalized atom density, while T0 is the 
maximum normalized temperature which is assumed to 
be proportional with the laser beam energy, by preserv- 
ing the number of total released atoms. 

The equation system (13a)-(13d) with the initial con-

di

 2(a) an a)—τ

llowing results are obtained: 1) the generation 
of

ement with the experimental 
im

tions (14a)-(14e) and the boundary ones (15a)-(15p) 
was numerically integrated via finite differences [20]. In 
Figures 2(a)-(c) space-dependence of the normalized 
density, N, normalized temperature, T, and in Figures 
3(a)-(c) of the normalized velocities, Vξ and Vη, are given 
for the initial conditions, 0 0.4T  , 0 1N   and various 
normalized times: Figures d 3(  = 0.29, Fig-
ures 2(b) and 3(b)—τ = 0.57, Figures 2(c) and 3(c)—τ 
= 0.88. 

The fo
 two plasma structures—see Figures 2(b), 3(b); 2) the 

symmetry of the normalized speed, Vξ, according to the 
axis symmetry of the space-time Gaussian; 3) shock 
waves and vertices at the plume periphery for the nor- 
malized speed field, Vη.  

These data are in agre
ages at various evolution stages [5,6,21]. Moreover, if 

the current density of the particle is plotted on the sym- 
metry axis  1 2  —see Figures 4(a)-(c), for various 
distances fro rget surface, a multi-peak structure 
as in [5,6] can be noticed. Increasing the value of the 
control parameter, , we conclude: 1) the arrival time of 
the first peak decreases; 2) the ratio between the first and 
the second maximum increases. This is in agreement 
with the experimental data according to which the parti- 
cles are gradually transferred from the fast into the slow 
part [22-24]; 3) the magnitude of the first maximum de-
creases as a consequence of lateral expansion. There- 
fore we conclude that plume splitting is a hydrodynamic 
process similar to Gaussian disturbance emission. 

m the ta

5. Self-Similarity in Plasma Ablation 

(4) takes Neglecting the convection ˆ ˆV V  , Equation 
the form: 

  2 1ˆ
ˆi d FD

D t
t


 


V

V = 0        (16) 

or, separating the resolution scales, 

t


   2 1

d 0FD
D t

  


U        (17) 

for the differentiable scale, and 

V

 2d 0D t  1FD

t


  


V        (18) 

for the fractal scale. Velocity fields are totally separated, 

U

firstly applying Equations (17) and (18) to the Δ operator, 
i.e. 

    2 1 2d 0FD
D t

t


   


V U     (19) 

and 

    2 1 2d 0FD
D t

t


   


U V     (20) 

then, by substituting the dissipative terms via Equations 
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Figure 2. (a)-(c) Space-dependence of the normalized density, N, and normalized temperature, T, resulting from numerical 

7) and (18), the Kirchhoff-type equations [25] result: 

simulations in Equations (13a)-(13d) for normalized initial conditions, T0 = 0.4, N0 = 1 and various normalized times: (a) τ = 
0.29; (b) τ = 0.57; (c) τ = 0.88. 
 

opyright © 2013 SciRes.    

(1    i; K , , 1, 2V U i           (22d) 

take the unitary form [26]:   
2 0     V4 2 2
2 d

0
FD

D t
t
            U

     (21) 

For the one-dimensional case, the previous equations 
w

4 2
4 2i i

4 2

K K
0L T

 
 

ith the substitutions: 

,
L

x                        (22a) 

,
t

T
                       (22b) 

  
4

4 22 d ,FDL
D t

            (22c) 
2T

 
 

   

onditions at 

         (23) 

We impose “clamping” c 1   for Equa- 
tion (23): 

 2
iK 1,

    
2

0,





          (24a) 

 3
i

3

K 1,
0








               (24b) 
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Figure 3. (a)-(c) Space-dependence of normalized velocities, Vξ and Vη, resulting from numerical simulations of Equations 
(13a)-(13d) for normalized initial conditions, T0 = 0.4, N0 = 1 and various normalized times: (a) τ = 0.29; (b) τ = 0.57; (c) τ 
= 0.88. 
 
and for boundary conditions at 0  : 

   
 i i0K ,0 K ,               (26b) 

iK 0,
0





 


       (25) 

n 

iK 0, 0,

These four boundary conditions i   associated with 
the two initial ones 

 iK ,0
0









              (26b) 

implies a unique solution  iK ,  to Equation (23)  
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Figure 5. Numerical solution of the Kirchhoff Equation (23) 
with “clamped-free” unitary conditions, for a uniform ini-
tial  

 
(b) 
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0.2

0.4

0.6

0.8
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(c) 

Figure 4. (a)-(c) Time-dependence of the particle current 
density on the symmetry axis (ξ = 1/2) resulting from nu-
merical simulations for various normalized distances from 
the target surface: (a)  = 0.19; (b)  = 0.28; (c)  = 0.42. 
 
—see Figure 5. 

Owi g ng to scalin ~x L t T , we find a solution for 
Equatio  the form: n (23) in

   i i0K , K iu                (27) 

where the self-similarity variable is: 

,i0 iK K 0   relaxes to zero within the first few time- 

steps. 
 

   x L t T x t         (28) 

The boundary condition for  u  derives from  iK  
conditions: 

 0 0,iu                  (29a) 

 0 0,iu                 (29b) 

  1iu                  (29c) 

Substituting this self-similar form of  iK ,  in 
Equation (23), the following equation for the self-similar 
solution  iu  results: 

     4 2
2

4 2

d d
4 3

d d
i iu u


d

0iu 


d 
    (30) 

The additional condition: 

 2

       (

us ones, gives a unique self- 
similar solution to Equation (30): 

2

d 0
0,

d
iu


         31) 

combined with the previo

 i i02K , 2K
2π

     
 

         (32) 

see Figure 6, where the Fresnel sine integral, 

   2sin π 2 d
x

S x y y            (33) 

een introduced. 
Relation (32) describes an oscillation via a self-similar 

solution 

0

from the theory of diffraction has b

x t . This reflects the disp
Equation (23). 

ersive nature of 
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Figure 6. Self-similar solution ( n of 32) as a functio  . 
 

Accordingly, self-similarity generates oscillations in 
plasma-ablation. This result is experimentally confirmed 
in [5,6,21,22]. 

6. Conclusions 

The m e 

z

built. Fractality is introduced
 suposing that the fractal potential is 
e ideal gas pressure, the ablation 

ain conclusions of the present paper are th fol- 
wing: 1) the plasma expansion was theoretically ana- lo

ly ed assuming that the particle moves on continuous 
and non-differentiable curves; 2) a fractal hydrodynamic 
model containing the density and momentum conserva- 
tion equations was  via 
fractal potential; 3)
connected with th
plasma expansion is studied through numerical simula- 
tions. The splitting of plasma plume, multi-peak struc- 
tures at various distances from the target surface can be 
noticed; 4) in the absence of convection, oscillations via 
self-similarity are induced in plasma-ablation. 

Theoretical data are in good agreement with the ex-
perimental ones. 
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