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ABSTRACT 

The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the 
statistical and phenomenological thermodynamics. The performed analysis shows that some concepts of the statistical 
and phenomenological methods of describing the classical systems do not quite correlate with each other. Particularly, 
in these methods various caloric ideal gas equations of state are employed, while the possibility existing in the thermo- 
dynamic cyclic processes to obtain the same distributions both due to a change of the particle concentration and owing 
to a change of temperature is not allowed for in the statistical methods. The above-mentioned difference of the equa- 
tions of state is cleared away when using in the statistical functions corresponding to the canonical Gibbs equations in- 
stead of the Planck’s constant a new scale factor that depends on the parameters of a system and coincides with the 
Planck’s constant in going of the system to the degenerate state. Under such an approach, the statistical entropy is 
transformed into one of the forms of heat capacity. In its turn, the agreement of the methods under consideration in the 
question as to the dependence of the molecular distributions on the concentration of particles, apparently, will call for 
further refinement of the physical model of ideal gas and the techniques for its statistical description. 
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1. Introduction 

At present, two methods are used to describe the ther- 
modynamic systems being an assemblage of randomly 
moving microparticles [1]. In one of them represented by 
the phenomenological classical thermodynamics, such 
systems are considered as a single whole without regard 
for their internal structure, with the properties of the sys- 
tem being characterized by several macroscopic parame- 
ters. 

In another method being referred to as statistical ther- 
modynamics or statistical physics, the models of the sys- 
tem’s internal structure allowing for changes in energy 
and coordinates of individual molecules in their interac- 
tion between themselves and the environment are treated. 
The results of such interaction are usually represented as 
the probability of distribution of the molecules according 
to energies, momenta, coordinates and the like micro- 
parameters of a system. In this case the macroscopic pa- 
rameters of the system are determined by the statistical 
methods as mean factors of the molecular ensemble, 
which can appear with the highest degree of probability 

during a long period of observation. 
It is generally suggested that both methods comple- 

menting each other agree nicely with one another, thus 
demonstrating the unity of the thermodynamic approach 
and the reliability of well-known thermodynamic con- 
cepts. 

However, such an agreement cannot be yet accepted as 
sufficiently complete because of the existence in the sta- 
tistical thermodynamics of a number of the concepts, 
which do not quite correlate with the principles of the 
phenomenological thermodynamics and the existing 
practice. 

Specifically, various caloric ideal gas equations of 
state [2] are employed in these techniques, besides the 
assumption of the statistical method about the independ- 
ence of the classical distributions by velocities and mo- 
menta from the concentration of particles is hard to fit to 
possible change of the distributions in the thermody- 
namic cycles.  

The existing difficulties of the statistical thermody- 
namics for classical systems are often not stated in an 
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explicit form or are justified to some extent with refer- 
ences to a partial agreement of the theory with the ex- 
perimental measurements or to a possibility of refine- 
ment of the classical approaches in the quantum statistics, 
for example, in the Bose-Einstein or Fermi-Dirac statis- 
tics. However, the experimental investigations do not 
cover every possible case, and the physical models of the 
quantum and classical statistics do not correlate very well 
with each other. In particular, in the quantum statistics as 
distinct from the classical ones the identical particles are 
deemed indistinguishable, and the molecules can be con- 
sidered in energetically excited states which are not taken 
into consideration in the classical systems, e.g. in the 
translational motion of the ideal gas molecules [3]. 

The presence of similar problems in the agreement and 
substantiation of the thermodynamic techniques makes 
necessary a search for further ways of their development. 
One of the steps in this direction pertaining to the re- 
finement of the entropy behavior in the adiabatic proc- 
esses of the open thermodynamic systems has been ex- 
amined comparatively recently in paper [4]. 

In the present paper, some problems and possible ways 
associated with a more comprehensive agreement of va- 
rious branches of the thermodynamics are treated from 
the standpoint of the statistical method. 

2. Dependence of the Statistical Functions of  
the Thermodynamic Systems on the  
Scale Factor 

One of the problems hampering the matching of the phe- 
nomenological and statistical models of the thermody- 
namics is the lack in the former case of such notion as 
the absolute entropy S, whereas it forms the basis of the 
statistical method. 

This circumstance seems at first sight to be of small 
importance because the statistical entropy is usually de- 
termined only to an accuracy of the arbitrary constant or 
otherwise the scale factor α, for example, using the for- 
mula 
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where  is the number of particles,  is the volume, 
 is the temperature of the thermodynamic system,  is 

the mass of molecules,  and e  are the Boltzmann con- 
stant and the base of natural logarithm, respectively [3]. 

In so doing, the effect of this constant when calculat- 
ing the entropy difference can be eliminated by assuming 
that the value of α does not depend on the parameters of 
the system and is equal for various systems. 

However, such an assumption leads to additional diffi- 
culties. In particular, it is generally supposed that the 
Planck’s constant raised to the third power can be chosen 

as such constant for classical (molecular) systems 

      (2) 

This coefficient is typically used for the description of the 
quantum phenomena of the microworld and, particularly, 
for the relations between the quantum energy  and the 
oscillation frequency of electromagnetic radiation  

,                    (3)  

or between the de Broglie wavelength   and the mo- 
mentum of particle  p

h p .                   (4)  

In so doing, the application of the Planck’s constant to 
the description of classical systems seems logically at- 
tractive for developing a general thermodynamic concep- 
tion. 

At the same time such an approach does nevertheless 
not quite conform to the physical nature of the classical 
systems and to the relationships between their parameters 
obtained using the molecular-kinetic theory. 

Thus, it is common knowledge that the degeneracy 
temperature gT  characterizing the possibility of the 
quantum effects appearing in the classical systems 
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is for the majority of ideal gases very small; it depends 
on the concentration n and the mass m of particles and 
makes up, e.g. for helium at standard conditions, 

g  , decreasing for the gases with greater mo- 
lecular mass [5]. 

Moreover, such choice of the scale factor entails the 
employment in the phenomenological thermodynamics 
and classical statistics of various caloric equations of 
state, which do not quite correlate with each other. In 
particular, the caloric ideal gas equation of state 

 p vTC U PV C R T   

U V

          (6) 

incorporates only macroscopic parameters of the system, 
such as the internal energy , the volume , the pres- 
sure P  and the heat capacity p  at  or the 
heat capacity C  at V

C constP 
v const , and the gas constant 

. R

TS U F U PV N

Whereas the canonical Gibbs equation of state 

          (7)     

involves additionally a number of statistical parameters, 
including the free energy of the system 

F PV N                (8)   

and its chemical potential 
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for finding of which, apart from the mass m and the 
number  of the particles, such parameters of the in- 
ternal structure of the system as the coordinates of the 
particles x y z , the projection of their momenta 

, ,x y zp p p

 

 on the axes of a rectangular coordinate system 
as well as the elementary volumes  

x y z  of the imaginary multidi- 
mensional phase space, are taken into account too [1]. 
dg dg dx dydzdp dp dp

It may appear thereby that canonical Equation (7) as 
compared with Equation (6) contains far more complete 
information about the system, incorporating also the data 
on the internal structure of the system and its possible 
microstates. 

However, this opinion is not quite justified because 
with allowance made for the formulas (6) and 

 5 2C kN

pTC N

p  the canonical Equation (7) can be repre- 
sented as Equation (10) 

TS  

N

,             (10) 

in which the statistical summand   should be taken 
equal to zero or to another constant magnitude. This cir- 
cumstance emerges from the thermodynamic determina- 
tion of change in the entropy of the system, for example, 
in an isobaric process 

 2 1lnpS C T T

N

  ,           (11) 

in which the summand   is not taken into considera- 
tion at all, and from the necessity of an identical notion 
of the entropy in both methods of the thermodynamics. 

One way to surmount this difficulty may lie with the 
assumption, which appears not to be considered previ- 
ously, about the advisability of using in the statistical 
description of the classical systems the variable scale 
factor depending on the parameters of the system. 

To realize such an approach let us represent the scale 
factor  for classical systems as Equation (12) 3

ca  3h

c ch p ,                 (12) 

determining the dependence of this factor on the average 
statistical parameters of the system: the length c  of the 
elementary volume 3

с V N   falling at one molecule 
of ideal gas, and the momentum of particles p mv .  

Equation (12) is similar in form to the known de 
Broglie relationship 

h p

h

,                 (13) 

correlating the Planck’s constant , the de Broglie 
wavelength   and the momentum of particle . p

,ch h

Both above formulas coincide with each other when 
the value of the scale factor becomes equal to the 
Planck’s constant  what from a physical point of 

view signifies the transformation of the classical gas into 
the degenerate state in which quantum effects manifest 
themselves. 

With due regard for Equation (12) the scale factor for 
the classical systems having a three-dimensional motion 
of gas molecules may be represented as Equation (14) 

 33 3 2
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in which the multiplier 
3 23 2p mkT

 

c  corresponds to 
the herein accepted projection of the average statistical 
momentum of particles of the system on the axes of a 
rectangular coordinate system 

1 2
2cp mkT

p

.              (15) 

In so doing, the accepted value c  coincides with the 
magnitude of the known statistical integral in the Max- 
well’s and Gibbs distributions 
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and differs from the known root-mean-square projection 
of such momentum 

1 2
3mp mkT                 (17) 

only by a near-one numerical coefficient. 
Equation (14) derived here is virtually analogous to a 

known criterion of the statistical physics 

2
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generally applied along with gT  to the assessment of 
the degree of manifestation of the quantum effects in the 
ideal gas, i.e. to the determination of the question as to a 
possibility of considering the behavior of gas from a clas- 
sical  1   1 , quantum  or intermediate 
 1 

 
However, contrary to Equation (18) in which the 

Planck’s constant  is used as scale factor, Equation 
(14) has another physical meaning, determining the de- 
pendence of the scale factor on the parameters of the 
classical systems, both of these expressions coinciding at 

standpoint [6]. 

h

a h . 
The employment of the variable scale factor enables a 

number of the known statistical functions of the classical 
systems to be interpreted in a new fashion. In particular, 
the known statistical functions of the monoatomic ideal 
gas, when substituting in them for the Planck’s constant 
the scale factor according to Equation (14), are rear- 
ranged to the form: 
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showing that in this event the chemical potential of the 
system is equal to zero (   ), the free energy of the 
system is equal to F pV , while the system entropy S 
may be identified with the heat capacity at a constant 
pressure . p

In this interpretation as well as in [2,4] such parame- 
ters as the heat capacity p v

S C

C C R  , the heat capacity 

v  at a constant volume and the gas constant  are con- 
sidered as the functions depending not only on the tem- 
perature, but also on the specific volume of the system. 

C R

2

In this case, it is enough to imagine that the distribu- 
tion of the particles of an ideal gas by velocity, momen- 
tum of the gas molecules satisfies the normal distribution 
of the random variables with the center µо and dispersion 
 . Suppose also that it is represented not in terms of the 
absolute values of the coordinates, as usual, but in terms 
of the normal coordinates normalized with a linear con- 
version of  oy x   

0M
 to the standard form with the 

center  and 

In that event the known canonical Equation (7) of ideal 
gas state being a consequence of the statistical method is 
rearranged to a similar Equation (6) of the classical ther- 
modynamics, what eliminates the discrepancies existing 
currently between them. 

Moreover, Equation (6) of the ideal gas state can be 
obtained by a statistical method without using the con- 
ventional concepts about the phase space of thermody- 
namic systems and their elementary cells (the scale fac- 
tor). 

y  1.  
Then the employment of the statistical integral of the 

normal standardized (normal coordinates) distribution 
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brings about the derivation of the thermodynamic func- 
tions of the form 

F kTN Z PV S Cp     ,        (23) 

correlating with Equation (6). 
Whereas in using the statistical integrals of the normal 

distribution with absolute coordinates 

 1
2

2 2

2
exp d 2

2

x
Z y 






 
    

 


2 2 2ln ln , ln , lnpF kTN Z PV kTN S C kN kN

        (24) 

the thermodynamic functions have the known form 
 

                            (25) 

 
analogous to Equation (7). 

Although nowadays the question as to the dependence 
of the statistical functions on the choice of the scaling 
factor and coordinate systems still remains open, the em- 
ployment of the statistical integral in the form 1Z  as 
compared to 2Z  is more preferential. Specifically, in 

this instance the Equation (26)of state 

TS U PV                     (26)  

becomes common to both the classical systems and the 
quantum ones. For example, this Equation (26) is appli- 
cable to the degenerate boson gas, for which 
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and to the equilibrium photon gas [7], for which 
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3. Dependence of the Molecular  

Distributions on the Concentration of  
Particles 

Besides, in this case the thermodynamic functions 
F and  (as opposed to similar known functions) be- 
come additive, what eliminates the known Gibbs paradox 
and the need to “improve” the classical distributions 
through introduction of arbitrary correction multipliers  

S

At present, the dependence of the probability density of 
the molecular distributions (for brevity sake, molecular 
distributions) by velocities or momenta on the concentra- 
tion of particles in the Maxwell-Boltzmann statistics is 
denied in principle even in the action on the system of 
the external force field [6]. 

  13æ ! NN


 
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 into them. 

In that event the condition p  at  
required under the third law of thermodynamics is car- 
ried out too. It substitutes the previously known result 

at  of classical distributions, which 
does not agree with experimental observations. 

Particularly, in the Maxwell statistics determining the 
distribution of molecules by projections of velocities 
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or momenta 
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the concentration of particles is not taken into account, 
while in the Boltzmann statistics determining the distri- 
bution of molecules by coordinates in the external force 
field the velocities of particles are not taken into consid- 
eration 

, , e .
pU
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In these expressions   i if v f

 , ,U x y z


p f x y z  is the 
probability density of the distribution of particles on pro- 
jections of velocities, momenta and coordinates respec- 
tively, p  is the potential energy of the parti- 
cles in the external force field, iv pi  is the projections 
of velocities (momenta) in the rectangular coordinate 
system, B is the normalization multiplier. 

However, this concept does not quite agree with the 
classical thermodynamics. Such a conclusion is sugges- 
ted by the consideration of probable molecular distribu- 
tions in the ideal gas cycle incorporating the adiabatic 
(1-2), isochoric (1-3) and isothermal (2-3) processes, it is 
represented in Figure 1. 

On the one hand, in that event one may assume that 
the distribution curves in the points 1 and 2 are alike by 
virtue of the constancy of entropy  in the adia- 
batic process (1-2), though it does not agree with the 
known dependence of distributions on the temperature in 
the Maxwell statistics. Then an equilibrium distribution 
by velocities (momenta) in the point 3 can be obtained 
both owing to a change of temperature in the isochoric 
process (1-3) occurring at constant concentration of par- 
ticles , and due to a change of the concentra-  

0S 

constn 
 

 

Figure 1. Ideal thermodynamic gas cycle. 

tion of particles in the isothermal process (2-3) occurring 
at constant internal energy of the system  and 
in the absence (or at constancy) of the external force 
fields. 

constU 

constn

In this case the relationship of the probability density 
of the molecular distributions by the projections of ve- 
locities in the characteristic points of this cycle may be 
represented as curves in Figure 2 showing a possibility 
of obtaining the identical (equal) distribution curves both 
at temperature change and at concentration change. 

At that, the comparison of the Maxwell distribution 
curves in the points 1 and 3 at temperatures T1 and T2 
respectively (the concentration of molecules is alike 
 ) is represented in Figure 2(a). In addition, the 

comparison of the distribution curves in the points 2 and 
3 at the concentration of molecules n2 and n1, respec- 
tively (the temperature is alike T2 = const) is shown in 
Figure 2(b). 

On the other hand, to analyze the distributions in the 
cycle of Figure 1 one may take another assumption ac- 
cording to which the distribution curves in the points 1 
and 2 of the adiabatic process 1-2 are diverse and cor- 
respond to a temperature change in the Maxwell statistics. 
However, such an assumption leading to the conclusion 
about the independence of the distributions from the 
concentration of particles should be supposedly rejected 
because of the contradictions regarding the determination 
of the statistical entropy and its association (correlation) 
with the molecular distributions. 
 

 

 

Figure 2. Comparison of the projection distributions of 

velocities  iv in the characteristic points of the ideal cycle 

in Figure 1 ( 2r iv v kT m , i = x, y, z are axes of the 

rectangular coordinate system). 
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The problems coming about thereby cannot be cleared 
away completely in the Gibbs statistics too. In this statis- 
tics one considers the distribution of the molecules (to be 
more specific, the distribution of their representation 
points) in the imaginary multidimensional phase space 
generated by the product of the coordinates of the mole- 
cules and their momenta. 

In the source prerequisites of these statistics as well as 
in the Maxwell-Boltzmann statistical model the principle 
of independence of the molecule distributions by coordi- 
nates and momenta for closed systems is adopted. 

However, despite a formal denial of such dependence, 
it nevertheless is partially provided for, though in an im- 
plicit form, in the ultimate results obtained thereby. Thus, 
for example, the entropy in the Gibbs statistics, as may 
be seen from Equation (1), is a function of both the mo- 
menta and the concentration of particles, what is achi- 
eved owing to a correction of the primary results obtain- 
ed thereby by inserting into them additional assump- 
tions, specifically the assumption of a necessity of im- 
proving the initial distributions by application of correc- 
tion multiplier æ. 

Moreover, the thesis on the independence of the mo- 
lecular distributions in the coordinate space (of the parti- 
cle concentrations) and in the momenta space does not 
agree with the great canonical Gibbs distribution for the 
systems with a variable number of particles. In that event, 
the probability distribution density of particles  ,f N E , 
even in the absence of external force fields, is represen- 
ted as a function 

 , e
N E

kTE С
 

f N ,             (30) 

depending both on the chemical potential   and the 
number of particles in the system  and on the energy 
of the subsystem i i

N
NE   incorporating i  number 

of particles with 
N

i  energy ( C  is here the normaliza- 
tion multiplier). 

However, in this case also the known statistical meth- 
ods cannot explain sufficiently enough the interrelation 
of the entropy with the changes of the molecular distri- 
butions in the adiabatic and polytropic thermodynamic 
processes. 

4. Conclusion 

The performed analysis shows that some concepts of the 
statistical and phenomenological methods of describing 
the classical systems do not quite correlate with each 
other. Particularly, in these methods, various caloric ideal 
gas equations of state are employed, while the possibility 
of obtaining the same distributions both due to a change 
of concentrations and owing to a change of temperature 
in the thermodynamic processes is difficult to explain 
from the standpoint of a statistical method. 

The above-mentioned difference of the equations of 
state may be cleared away using in the statistical func- 
tions corresponding to the canonical Gibbs equation a 
variable scaling factor instead of the Planck’s constant. 
The proposed factor depends on the parameters of a sys-
tem and coincides with the Planck’s constant in a par- 
ticular case in going of a classical system to the degener- 
ate state. Under such an approach, the statistical entropy 
is transformed into one of the forms of heat capacity, 
what correlates with the determination of the entropy in 
representing normal molecular distributions with the use 
of the normalized coordinates. 

In its turn, the agreement of the methods under consid- 
eration in the question as to the dependence of the mo- 
lecular distributions on the concentration of particles, 
apparently, will call for further refinement of the physical 
model of ideal gas and the techniques for its statistical 
description. 

In this regard, it is interesting to note that as one of the 
causes of difficulties arising in the harmonization of ther- 
modynamics can be considered the deterministic approach 
based on the possibility of determining the coordinates 
and momenta of individual particles at every instant by 
application of the equations of the classical mechanics. 

Presumably, these assumptions cannot be met enough 
strictly in all possible thermodynamic systems owing to a 
randomness of the heat motion occurring with a possibil- 
ity of the initiation thereby also of the forces of collective 
interaction in case of a departure of the particle’s para- 
meters from their average statistical values. 

To further refine the statistical conception of classical 
systems, the development of the statistical models based 
on the idea of the molecular distributions as a result of 
thermal fluctuations of the particle matter, i.e. on the idea 
of a random departure of the particles’ parameters from 
their equilibrium values, can turn out to be more prefer- 
ential. 

In this instance, the functional relation between the ge- 
neralized coordinates  g , ,x y z and momenta  
 , ,x y zp p p p  of the particles, which is characteristic for 

the known classical models, is not required, and the iden- 
tical molecules of the classical systems, just as in the 
quantum statistics, will be considered as indistinguish- 
able. 
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