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ABSTRACT 

The travelling wave group is a solution to the wave equation. With a Gaussian envelope, this stable wave does not 
spread as it propagates. The group is derived for electromagnetic waves and converted with Planck’s law to quantized 
photons. The resulting wave is a probability amplitude, and this is adapted to particles subject to special relativity. By 
including mass and by inverting the wave group, a description for antiparticles is derived. The consequent explanation 
is consistent with Dirac’s relativistic equation and with his theory of the electron; while being more specific than his 
idea of the wave packet, and more stable. The travelling wave group is extended to describe the positron, either free or 
in an external field. 
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1. Introduction 

Quantum mechanics has been chronically debated by the 
best known names. Einstein [1], Schroedinger and De 
Broglie employed wavelike models, and the first of these 
was “led to conclude that the description of reality as 
given by a wave function is not complete.” Their view 
contrasts with the more standard methods of Heisenberg 
and Bohr [2]. Previously, we have shown how Maxwell’s 
equations, applied to electromagnetic waves, can be 
quantized by means of a travelling wave group [3]. This 
wave group satisfies the requirements for Heisenberg’s 
uncertainty principles [4] for the case of the massless 
photon. The wave group can be extended to massive par- 
ticles by adding conditions derived from special relativity. 
The same conditions were used by Dirac [5] in the deri- 
vation of his relativistic equation, which is a first order 
equation that is derived from the corresponding relativis- 
tic second order equation for energy, momentum and 
mass. His theory has been extraordinarily successful in 
many ways. Notable examples are the explanation for 
spin and the prediction of the positron, beside ubiquitous 
application in high energy elementary particle physics, 
and in electrodynamics. 

Of course, positrons, and in general antiparticles, are 
real particles with positive energy and positive mass, and 
the successful framework of description is Quantum 
Field Theory. The Dirac Equation is a single particle 
theory and as such does not account for many funda-

mental processes, such as pair creation and annihilation. 
On the other hand, entanglement is a pure quantum me- 
chanical property associated to the non-locality of quan- 
tum mechanics. 

Dirac found that the application of Heisenberg’s dy- 
namics to the free electron1 gave the unphysical result 
that its speed is equal to the speed of light c [5]. He ex- 
plained this by noticing that the velocity has two com- 
ponents: one a lower velocity as measured in the labora- 
tory; and the second governed by a very high frequency. 
By use of the travelling wave group3, we find that the 
latter gives the phase velocity, the ratio of angular fre- 
quency/wave vector, p v k ; while the former is the 
group velocity, d dv k

1 1[ ]

g . The phase velocity is 
measurable either through the relation vp = 1/vg 

2 in units 
c = 1, the speed of light in vacuo, or through the ratio 
ω/|k| where both numerator and denominator are inde-
pendently measurable. The phase velocity can therefore 
be measured even though the carrier wave itself carries 
no energy. There have been related developments in 
other areas of quantum mechanics such as a quadratic 
equivalent to the first order Dirac equation [6]. Notice 
that the profile of the travelling wave does not broaden or 
change in time. Here we extend the concept of the travel-
ling wave group to include electromagnetic force and 

1From x x H c  . This result is the geometric mean of the phase 

and group velocities. 
2Similar to Ref 5 section 30, Equation (32). 
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antiparticles. 
Because electron and neutron optics employ the same 

principles as light optics, it is natural to extend the trav- 
elling wave group, derived from Maxwell’s equations in 
electromagnetism, to massive particles. The same wave 
group is therefore applied to both photons and particles 
even though the two types are described by different— 
commuting or anti-commuting—creation and annihila-
tion operators [4]. An advantage in applying it is that the 
uncertainties in time and space are linked, so that entan- 
glement at a distance can be naturally incorporated. The 
fact of entanglement at a distance has been demonstrated 
[7] and is an accepted fact in quantum physics. Mean- 
while much discussion has centered on the possibility of 
hidden variables and tests for them. For example, Bell’s 
inequalities [8] differentiate two correlated measure- 
ments from uncorrelated. The method is formal and gen-
eral, but when hidden variables are identified, the analy- 
sis is directed and simplified. 

Our method is illustrated in Figure 1. Measurement is 
probabilistic as defined by Bohm and Bub [9]. The fol- 
lowing explanation is well known, but needs re-statement 
in this context. 

When, in physics, we take a single measurement we 
assume it is the most probable one for the value being 
obtained. It is therefore the mean of a normal distribution. 
When we take two measurements, and they invariably 
differ if made with sufficient precision, we assume that 

their mean is the most probable, so that it is the center of 
a normal distribution with corresponding standard devia- 
tion. When we take multiple measurements, we divide 
the data into channels and fit the channels to a normal 
distribution. Typically each channel has a statistically 
unique error bar and this is incorporated into weighted 
fitting. The mean of the fitted distribution remains the 
most probable value for the measurement with the un- 
certainty for a measurement given by the standard devia- 
tion. Notice that the uncertainty of the mean is much 
smaller. Now Heisenberg’s Uncertainty Principle (HUP) 
applies to single measurement and describes the uncer- 
tainties in either space, when momentum is known and 
vice versa; or alternatively in time, when energy is 
known and vice versa. These are properties of all waves 
and are implicit in the travelling wave group. In multiple 
measurements of the same quantity, the uncertainty of 
the mean is smaller than the HUP allows, and can be 
very much smaller depending on the statistics of the 
measurements. The probabilities of measurements are 
represented by wave functions, including a function for 
free particles, like the travelling wave group earlier de-
scribed [3]. Here we expand its applications to accelera-
tion in an electro magnetic field and to antiparticles. 

Notice that our travelling wave group has some simi-
larity to Dirac’s wavepacket but with significant differ-
ences. His packet is a more general function, whereas our 
envelope is Gaussian which expresses its origin in 
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Figure 1. The travelling wave group (center) is derived from Maxwell’s equations for electromagnetism (left) and applied, 
with special relativity, to particles (right). Probability is assigned to measurement, rather than theory as in the Heisenberg 
epresentation. r  
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randomness within time or space. The probability density 
is given by the squared modulus of the complex function, 

*  . The wave group, including both the real Gaussian 
amplitude and also the complex, oscillating, part of the 
second argument in Equation (1), is a solution for the 
wave equation, 2 2 2 2c t  

1c 
 

  .  

2. The Travelling Wave Group 

For convenience we use units with the reduced Planck 
constant . Write the travelling wave group [3] 
for the wave function X  of a free particle: 

 
2

22

X
expX A X


 

  
 

* d 1   

 

 ,            (1) 

where A is a normalizing factor found after integration 
over all space of ; and the argument, in 
the direction of local propagation k = |k| 



X i t kx  ,                 (2) 

describes a plane wave travelling with mean wave vector 
k, mean angular frequency  , and therefore with phase 
velocity p kv  and group velocity d dg v k 3. 
The wave vector is the negative gradient of the three di-
mensional wave function. The second argument in the 
bracket of Equation (1) describes oscillating real and 
imaginary waves that are enveloped by the Gaussian dis- 
tribution in the first argument. The envelope is spread by 
the denominator,  , which is an experimental parame- 
ter that is related to uncertainty, and that correlates with 
A. The amplitude modulation provided by the envelope 
causes stable Gaussian distributions of k and   in 
space and time respectively. These distributions are con- 
sequences of modulations of wave vectors and of angular 
frequencies about their mean values. In electromagnetism, 
the real or imaginary parts of the travelling wave repre- 
sent propagating electric or magnetic fields. With Planck’s 
law, these fields define in turn the probability for a quan- 
tum event, and this is sometimes expressed through per- 
turbation theory. The travelling wave group is adapted to 
particle physics as the probability for an event, by apply- 
ing the equations of special relativity, i.e. the physical 
laws are invariant in all inertial reference systems, in- 
cluding the speed of light in vacuo, c, which depends on 
those laws. A consequence to be found in any elementary 
text on special relativity is the energy equation in terms 
of momentum and rest mass 

2 2 2
0E m p

2 2 2k m  

   

.                 (3) 

Substituting for Planck’s law and for the De Broglie 
hypothesis, the equation may be written: 

,                  (4) 

where m is now a quantity similar to rest mass4, by drop-
ping the subscript 0. This equation implies the solutions: 

2 2
k m      ,           (5) 

with the differential constraint: 
d

2 2 or 1
d p gk v v

k

    .        (6) 

So special relativity defines the group velocity. Dirac 
found the alternative negative solution for   in his 
solution for the relativistic equation. For the electron, the 
equations solve with all of  , k and m positive in the 
direction of propagation. We relate Equations (1)-(6) to 
possible negative values or to or imaginary values. This 
allows 16 (real or imaginary) permutations in the solu-
tion of equation 5; though several can be reduced. Our 
purpose is to find a solution of the wave equation for a 
positron that is consistent with Equations (1)-(6) and also 
with Dirac’s matrix solution. Our method resembles not 
so much the Schroedinger equation, which is classical 
and approximate when  (from Equation (5), m k

 2 2k m m   ), but the method searches a solution 
similar to Equation (1), where x and t may take positive 
or negative values etc.  

We first consider implications in Equations (4) and (5), 
and then in Equations (1) and (2). Consequences are 
listed in Table 1. Take the particular circumstance when 
k = 0, i.e. in the rest frame. The alternatives are 
  m so that (Equation (4))   

0

, i.e. both vari-
ables real. This is confirmed by the hypothetical condi-
tion k = ±im that turns out unrealistic. Then (Equation (5)) 
shows   , which gives unphysical values for vp and 
vg, since the latter would contradict relativity. Progress- 
ing further, since   is negative for |k| < |m|, it follows 
that when k = 0, then m   .  

This result is illustrated in Figure 2. Though these so-
lutions are sometimes given at special conditions (e.g. at 
k = 0), we generalize the solutions in order to apply the 
formulae and understand the properties. 

Proceed to Equations (1) and (2). If k and   were 
imaginary, then X would be real and the function would 
not be oscillatory. This is contrary to the initial supposi-
tion, so X is restricted to imaginary values, while k and 
  are real. Furthermore, unless k and   have the 
same sign,   would not be oscillatory which would 
again contradict the initial supposition. We are left then 
with the general alternative solutions for the wave func-
tion of the form  , ,k m    , being the wave 
function for the free positron. 

Previously we have illustrated the different dependen-
cies of group and phase velocities in a massive particle 
3]. The former is less than the speed of light; the latter  [   

4In particles rest mass is identical to m; in antiparticles the sign will 
turn out opposite. 3The derivation is an elementary exercise. 
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Table 1. Variables in the free electron travelling wave group (Equation (1)) compared with corresponding variables for a free 
positron. 

Equation Condition Consequence* 　 k m Vg Vp 

 electron  +|ω| +|k| +|m| >0 >0 

 Alternative  Possibilities     

 solutions       

 ω negative  −ω, ±iω ±k, ±ik ±m, '±im   

5 when k = 0** Ω = ±m −ω  m = ±ω   

5 when k = ±im w = 0; unphysical  ±k, ±ik ±m   

5 Since ω < 0 for |k| < |m| −ω = −m for k = 0 −ω  −m   

1,2 if k imaginary -       

 　　　ω imaginary X real, not oscillatory −ω ±k    

1 oscillatory behavior ω, k same sign −|ω| −|k| −|m| >0 >0 

 positron then Vg, Vp both +ve      

  X' = Xp = −Xe      

*variables shown are absolute values e.g. ω = |ω| etc.    

**some consequences at particular conditions are generalized for consisitency    
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Figure 2. Solutions for Equation (5), showing angular fre-
quencies, constrained by Equation (1), plotted against wave 
vector. The slope of the straight (dotted) line is the speed of 
light in vacuo, when m = 0. The speed is the same for group 
and phase velocities. In particles, at k = 0, ω = m (full line); 
when in antiparticles ω = −m (dashed). Notice that both ω/k 
and dω/dk are constrained everywhere positive; so that ω 
always increases with k; and mass is therefore always posi-
tive. 
 
greater. Figure 2 illustrates the dependence of angular 
frequency   on wave vector k in all of electrons, posi-
trons and massless photons. The graph also overcomes a 
difficulty: Dirac thought of the antiparticle as a kind of 
hole state, as in the valence band of an excited semicon-
ductor. There are however significant differences [4]. 
Whereas in semiconductors the sign of the group velocity 
depends on the shape of the valence energy band, both 

the group velocity and the phase velocity in our free an- 
tiparticle are positive. They are represented by the slopes 
of traces in the first and third quadrants of Figure 2. 

The graph provides an alternate way of conceiving the 
positron. Conservation laws remain as in the standard 
model: of fermion number, of hadron number; of charge 
etc. The graph is consistent with observed momenta of 
antiparticles and with inertial mass. The graphic repre-
sentation can be used to plot conserved quantities in en-
ergy and momentum during creation and annihilation 
events. There are, however asymmetries: whereas posi-
tive and negative values of m sometimes annihilate 
(when m1 = –m2, m1 + m2 = 0); and whereas momenta 
sometimes cancel (when k1 = –k2, k1 + k2 = 0); angular 
frequency is strictly conserved  1 2    , except-
ing transient virtual particles in quantum mechanics. The 
latter equality constrains the former two conditions. 

3. External Forces 

So far our discussion has been of free particles. Assume, 
as in the Dirac relativistic equation and as in the Klein- 
Gordon equation, that the dynamics are described in five 
dimensions that include mass as well as three dimensions 
of space an one of time. Rest mass is discrete owing to 
quantization in nuclear structure in the standard model; 
the other dimensions vary continuously. Now, include 
acceleration in an electromagnetic field and leave nuclear 
forces and gravitation for a later time. In order to plot the 
constraints that determine the travelling wave group in 
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relativistic frames, first summarize well known construc-
tions and then illustrate them graphically. Equations (1) 
and (2) can be made relativistic by writing X g k x 

 1 2 3 0, , ,k k k

 3 0,

  
in relativistic form using the Einstein summation con-
vention for repeated indices; where  
represents the three covariant components of wave vector 
plus angular frequency; where 

k k 

1 2, ,x x x  x x  rep- 
resents corresponding covariant components of space and 
time; and where g  represents the metric tensor. To 
include mass, the four dimensional mathematics can eas-
ily be increased to five dimensions that include mass by 
adding a fifth coordinate, and with the metric tensor, g55 
= 1, i.e. with the opposite sign to g44 in the convention 
used by Ziman [4]. The addition could be useful in de- 
scribing nuclear interactions, but possible applications 
are not developed here. To see how the formulae for the 
travelling wave group are used, consider first free parti-
cles and then accelerated particles. 

Notice that the classical Hamiltonian for a free particle, 
H = p2/2m is approximate when it is used in its derivative 
equivalent, 22H i m   

  k k  

, in the Schroedinger 
equation. The Hamiltonian is misleading when compared 
to the proper relativistic formula, including mass. This is 
illustrated in Figure 3(a) for a free particle. Here, Equa-
tion (4) is represented by the theorem of Pythagoras con-
sidering, in the first instance, positive values  

2  . The vertical (dashed) axis through 
k = 0 contains the discrete rest mass; the horizontal axis 
on k contains the locus of reference frames (RF) that can  

be used to observe the motion. Angular frequency   is 
constrained by relativity. The oblique hatched area is 
equal to the vertical hatched area, m2. By inversion 
through the origin following Figure 2, corresponding 
relationships between negative  , k and m in antiparti-
cles can be represented. On this general base, consider 
the application of external electromagnetic fields. 

The simplest way to represent the dynamics due to 
these fields is given by classical analogues [4]. This al-
lows us to replace the momentum p by p – eA, where e is 
the electric charge on the particle and A represents the 
four dimensional magnetic vector potential with scalar 
potential. The Hamiltonian then includes terms in (p – 
eA)2 and in m2 . Expanding these: 

2 2 22g k k eg p A e g A A m     
          (7) 

Figure 3(b) shows how the four terms, expressed in 
our units, are each accounted in the Pythogorean con-
straint on   or k. These figures show how the travel-
ling wave group may be used consistently with relativis-
tic equations. Notice that when |k| < |eA|, the model de-
scribes a bound state, as in the application of the Schroe- 
dinger equation to atomic orbitals in sub-relativistic ap-
proximation. Moreover, the formalism gives a more gen-
eral solution than does the elementary application of 
magnetic interaction with spin, as in the inner product of 
the vectors B  . For simplicity, that spin is sometimes 
treated as a separable variable on the wave function. The 
Dirac four-vector explanation for spin in the relativistic  

 

  
(a)                                                            (b) 

Figure 3. (a) Illustration of Pythagorean relationships in Equantion 4 for a free particle at particular reference frame RF on 

the horizontal axis, when   m k k     on the vertical axis. The squared mass m2 is shown hatched, first vertically, 

and secondly obliquely. The horizontal axis is the locus for RFs; (b) Illustration of Hamiltonian terms for a particle in an 
electromagnetic magnetic potential eA. The square of mass m2 is shown hatched, first vertically and secondly obliquely. No-
tice the double hatched square of area (eA)2 which is subtracted twice, within ek·A, from k2, while being added once in equa-
ion 8. The term (eA)2 is therefore not duplicated in the diagram. t    
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wave function will then give validity to a spinor matrix 
attached to our travelling group with inversion. 

4. Antiparticle Mass 

The travelling wave group has led, by an argument illus-
trated in Figure 2, to a treatment of mass: generally, 

. For reasons already given, the ratios 2 2 2m k  k  
and d dk  are always positive; but, as in Dirac’s the- 
ory,   is negative in antiparticles. Meanwhile the mo- 
mentum of a particle, derived from Equations (1) and (2) 
by the operator k i    , leads to the expected value 
for the wave vector k. Consider therefore the alternate 
expression for Equations (1) and (2) that might lead to 
negative values of   and k. These are provided when X 
changes sign: X X    . Then  *X X   , 
complex conjugates. It is not therefore necessary to think 
of holes in vacuis; it is simpler to think of alternative 
solutions to Equation (4), with their implications in the 
wave equation, whether continuous or in the travelling 
wave group. 

Supposing therefore that the antiparticle is described 
through the argument X  , commendable consistencies 
emerge. For example, superposition of two waves 
 X  and  X 

ii
E

 leads to a real, standing, sinusoidal 
wave which is an oscillating dipole in charged particles, 
easily able to radiate by annihilation. Moreover, the re-
versed momentum results in reversed magnetic force, 
with apparent reversal of charge, in a particle that is oth-
erwise the same. The alternative expression for X there-
fore has explanatory power, while the same metric tensor 
that preserves invariant vectors is retained for antiparti-
cles as for particles. Conversely in creation, the two par-
ticles emit in opposite directions. There is symmetry in 
the dynamics of positrons in a sea of electrons with those 
of electrons in a sea of positrons, and this is expressed 
yet more clearly in their travelling wave groups.  

Dirac’s description of the positron follows. The reader 
may compare it for consistency or clarity, and judge re-
spective assumptions and implications5: 

 “We are led to infer that the negative-energy solu-
tions …refer to the motion of a new kind of particle hav- 
ing the mass of an electron and the opposite charge. 
Such particles have been observed experimentally and 
are called positrons. We cannot, however, simply assert 
that the negative-energy solutions represent positrons, as 
this would make the dynamical relations all wrong. For 
instance it is certainly not true that the positron has a 
negative kinetic energy. We must therefore establish the 
theory of the positron on a somewhat different footing. 
We assume that nearly all the negative-energy states are 
occupied, with one electron in each state according to 
the exclusion principle of Pauli. An unoccupied nega-

tive-energy state will now appear as something with a 
positive energy, since to make it disappear, i.e. to fill it 
up, we should have to add to it an electron with negative 
energy. We assume that these unoccupied negative-en- 
ergy states are positrons.”  

Further consistencies in the wave group theory are left 
for a later time, but one that is more general is worth par-
ticular notice: a mechanistic interpretation of quantized 
interactions. Since energy of any system arises through  

superposition  

ii
P k

 and momentum arises in a 

similar way   , conservation of these proper-  

ties at macroscopic dimensions suggests and implies their 
conservation at individual microscopic dimensions. It is 
possible, especially with the travelling wave group, to 
visualize quantized interactions as occurring not only as 
probabilistic little bangs; but also as mechanistic conti-
nuities in wavelike transitions. Corresponding to the 
fields in electromagnetism, mass in a particle is an oscil-
latory disturbance over the planes normal to its direction 
of propagation. Given the different characteristic sum-
mation and conservation rules for energy and momenta, 
with relativistic invariance in the Euclidean coordinates 
of four quantities, quantized mass appears from an excess 
of energy over momentum in localized space. 

5. Conclusion 

A particle with negative energy might be thought to have, 
when at rest, negative mass. This is a pseudo mass. Ac- 
tually the solution to the second order relativistic equa- 
tion, using the travelling wave group, shows that the par- 
ticle has a positive group velocity and positive inertial 
mass. Of sixteen types of solution for the relativistic 
equation, two are consistent with the travelling wave 
group, and also with Dirac’s conclusions. The solutions 
are applied to free particles and to antiparticles, whether 
in vacuo or in electromagnetic force fields. The wave 
group gives an explanation for group and phase veloci- 
ties, and qualitatively for particle-antiparticle creation 
and annihilation. The group’s origin is random because 
consistently Gaussian; it is stable since its profile does 
not disperse in space with the passage of time; and it is 
easily quantized. The description provides a new per- 
spective for understanding mass and localization. 
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