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Abstract 
This paper integrates a quantum conception of the Planck epoch early un-
iverse with FSC model formulae and the holographic principle, to offer a 
reasonable explanation and solution of the cosmological constant problem. 
Such a solution does not appear to be achievable in cosmological models 
which do not integrate black hole formulae with quantum formulae such as 
the Stephan-Boltzmann law. As demonstrated herein, assuming a constant 
value of Lambda over the great span of cosmic time appears to have been a 
mistake. It appears that Einstein’s assumption of a constant, in terms of va-
cuum energy density, was not only a mistake for a statically-balanced universe, 
but also a mistake for a dynamically-expanding universe. 
 
Keywords 
Quantum Cosmology, Planck Scale, Cosmological Constant, Black Holes, 
Holographic Principle, Flat Space Cosmology, AdS-CFT, ER = EPR,  
Cosmology Model 

 

1. Introduction and Background 

It appears that the correct mathematical treatment of our visible universe as an 
expanding black hole-like global object was first successfully achieved in 2015 [1] 
[2]. To achieve this, a thermodynamic formula slightly different from the Hawk-
ing black hole temperature formula was necessary. This was accomplished pri-
marily due to the incorporation of a geometric mean refinement of Hawking’s 
black hole temperature formula taking the following form: 

3

8 4t
B t pl B t pl

c cT
Gk M M k R Rπ π

≅ ≅
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wherein Tt is time-dependent cosmic temperature, Mt is temperature-dependent 
cosmic mass, Rt is temperature-dependent cosmic Schwarzschild radius, Rpl is 
the Planck radius (to be defined below), and all other symbols are well-known 
physical constants. A stunning result was the prediction, in 2015, of today’s most 
precise (i.e., low uncertainty) Hubble constant measurement derived from a 
CMB temperature study reported in 2023 by Dhal et al. [3]. In the current paper, 
we will hereafter refer to Equation (1) as the Tatum et al. thermodynamic for-
mula. 

Although implied by the assumptions of the 2015 Flat Space Cosmology (FSC) 
model, their quantum cosmology equations were not published explicitly until 
2018 [4]. These equations are repeated herein for the convenience of the reader: 
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The right-hand column equations are for correlation with current cosmologi-
cal observations, using the 2009 Fixsen Cosmic Microwave Background (CMB) 
temperature of 2.72548 K as T0, the only observational input [5]. The remarkably 
good correlations between these FSC quantum cosmology equations and current 
observations have been well-documented [6] The FSC model has proven to be 
quite useful in its predictive capacity [7] [8]. 

It is the purpose of the present paper to show how the FSC model can employ 
the holographic principle to offer a solution of the cosmological constant prob-
lem, whereas this appears to be extremely difficult or impossible using the stan-
dard ΛCDM cosmology model. This difficulty can be expressed by quantifying 
the discrepancy between the quantum field theory estimate of the value of the 
cosmological constant and observational estimates of its value. The discrepancy 
is a factor roughly on the order of 10121! This has often been referred to as the 
most embarrassing problem in all of modern physics [9] [10]. 

2. The Solution 

It is theorized that the Big Bang may have started with what is likely to be the 
smallest possible micro black hole, the Planck mass particle, mP. Since the Planck 
mass has a density at or near what is referred to as the “Planck density,” one 
customarily derives its value according to 3

P Pm l , which equals 5.155 × 1096 
kg·m−3 using the NIST 2018 CODATA [11] [12]. However, we can also treat the 
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Planck mass particle as a micro black hole with a Schwarzschild radius of two 
Planck lengths (2lP). In FSC, this is referred to as the “Planck radius” Rpl [see 
Equation (1)]. If we divide the mP value of 2.17643424 × 10−8 kg by the volume of 
a sphere of Schwarzschild radius 2lP, we get a result of 1.538322 × 1095 kg·m−3. 
This corresponds to a Planck energy density value of 1.382584 × 10112 J·m−3. These 
are almost certainly more realistic values for a micro black hole Planck density, 
and will be taken as such in the calculations below. 

Furthermore, given its Schwarzschild radius 2lP, we can assume that the 
sphere of the Planck mass micro black hole has a surface area of 24 plRπ , which is 

216 Plπ . This implies a starting Hubble surface area value for the Planck epoch 
black hole universe of 1.3130 × 10−68 m2. We can then compare this starting 
Hubble horizon surface area value with that of the current Hubble surface. This 
would be according to the 2

04 Rπ  spherical surface formula. In FSC, the current 
Hubble radius value R0 is 1.382894 × 1026 m. Thus, the current value of 2

04 Rπ  
would be 2.40318 × 1053 m2. Interestingly, the ratio of 2.40318 × 1053 m2 to 
1.3130 × 10−68 m2 is 1.8303 × 10121, which also can be expressed as 10121.26. This is 
the longstanding FSC magnitude of the cosmological constant problem. This can 
hardly be a coincidence with respect to the magnitude of the standard cosmolo-
gy problem. 

It is reasonable to treat the expanding cosmic black hole horizon at radius Rt 
(the time-dependent Schwarzschild radius correlated to the increasing Schwarz-
schild mass Mt) as a membrane of area 24 tRπ . One can view this boundary sur-
face (hereafter referred to as the “boundary”) as continually radiating a Hawking 
temperature (see Haug & Tatum for details). Thus, this temperature smoothly 
declines as the cosmic black hole smoothly grows in mass and expands adiabati-
cally.  

We can also, according to the holographic principle of Susskind and ‘t Hooft 
[13], treat the boundary as a conceptually separate entity in comparison to the 
black hole interior (hereafter referred to as the “bulk”). Therefore, we are en-
titled to view the boundary as starting out, in the Planck mass epoch, with the 
Planck energy value of a single Planck mass micro black hole equal to mPc2 equal 
to 1.9561 × 109 J. The Planck epoch temperature TP of this 216 Plπ  membrane is 
equal to 5.65 × 1030 K (see Haug & Tatum, their Equation (6)), which can be 
compared to a 24 Plπ  (i.e., according to a single Planck length Schwarzschild ra-
dius) boundary membrane temperature of 1 2 5 2 1 2 1

bh c G k− −  equal to 1.4168 × 1032 
K, the classical Planck temperature (see Buczyna et al. reference [12] on Planck 
units).   

One can now use the holographic principle to create a one-to-one correspon-
dence of energy densities between the boundary and the bulk. The energy densi-
ty within the current boundary surface area should be the Planck energy density 
of 1.382584 × 10112 J·m−3 (as calculated above for the micro black hole epoch) di-
vided by 1.8303 × 10121 for the current cosmological epoch, to obtain the current 
FSC energy density within the boundary and bulk. The resulting energy density 
is 7.554 × 10−10 J·m−3 (see reference [6]). This is also quite consistent with the 
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current observed cosmological constant value of Pvac = 5.3566 × 10−10 J·m−3 from 
the 2015 Planck Collaboration data set [14]. In the FSC model, another cosmo-
logical conundrum, called the cosmological coincidence problem, is also solved. 
This is because, in FSC, the matter and vacuum densities are always highly cor-
related. This cannot be true for the standard ΛCDM model. 

3. Discussion 

The standard ΛCDM cosmological model is vexed by many conundrums, not 
the least of which are the cosmological constant problem and the cosmological 
coincidence problem. There has been a suspicion, for several decades now, that 
this may be because the ΛCDM model is not a fully-integrated quantum cos-
mology model. This appears to be true. On the other hand, the FSC model of 
Tatum et al. has derived some extremely useful Planck scale quantum cosmology 
formulae which, so far, appear to be accurate over a wide cosmic time and tem-
perature range. An exciting recent development was Haug & Wojnow’s deriva-
tion of the Tatum et al. thermodynamic formulae of Equation (1) using the Ste-
phan-Boltzmann law [15].  

Thus, FSC appears to be usefully integrating the general relativity of black 
holes with certain quantum formulae. This is what is meant by referring to FSC 
as a “quantum cosmology model.” It may be the first of many similar models to 
follow. To this author’s knowledge, no particularly useful quantum cosmology 
model preceded FSC, presumably because there was insufficient development of 
the appropriate cosmic thermodynamic formulae, which have always been a key 
feature of FSC.  

The purpose of the present paper has been to use the black hole holographic 
principle of Susskind and ‘t Hooft to provide a solution to the cosmological con-
stant problem. Maldacena’s AdS-CFT and ER = EPR hypotheses [16] [17] and 
the related holographic principle appear to have been the biggest cosmological 
breakthroughs in recent decades. They have a firmly-established mathematical 
basis, so that cosmologists can have some confidence in their careful application 
or, at the least, a direction in which to look for a new breakthrough, such as pre-
sented herein. 

Importantly, in just the last few years, some respected physicists and cosmolo-
gists have joined in the speculation that our universe might very well be an 
evolving and expanding black hole-like object [18] [19] [20] [21]. It is good to 
now have them joining the conversation. Siegel’s summary on this topic is espe-
cially nice. Lineweaver and Patel make some excellent points as well. Objections 
that such speculations should be forbidden by general relativity are simply 
short-sighted. Black holes and related objects, such as white holes, are clearly al-
lowed by general relativity and still too mysterious for us to forestall a debate on 
related cosmological models. The apparent successes of the FSC Schwarzschild 
cosmological model are also in support of this viewpoint. Our visible universe 
has a surprising number of mathematical similarities to a gigantic black hole. As 
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discussed in a comprehensive summary of the FSC model peer-reviewed publi-
cations [22], not the least of these are the mass-to-radius ratio and the current 
average density of the visible universe. For instance, the mass-to-radius ratio of 
the visible universe (if we include dark matter mass) and a Schwarzschild black 
hole are both in the range of c2/2G [23] [24]. Furthermore, the visible universe 
appears to be at or very near critical density. Surprisingly, this is the average 
density of a Schwarzschild black hole with a radius of approximately 14 billion 
light-years or very slightly larger (14.62 billion light-years in the FSC model). As 
a perpetual matter-generating model, FSC specifically models a universe at per-
petual critical density. It appears, from CMB observations, that our visible un-
iverse has shown this spatial flatness feature (i.e., critical density) as far back in 
cosmic time as we can observe to date. Thus, it appears to be an effective model 
for what we can see at present.  

In their holographical principle hypothesis, Susskind and ‘t Hooft make sepa-
rate distinctions between the horizon boundary of a black hole and its bulk. If 
their principle is correct, there is a one-to-one correspondence between proper-
ties of the boundary (a two-dimensional membrane of curved space-time) and 
the conventional 3-D bulk. As shown above, the original Planck mass energy 
(not density) within the boundary membrane is what is dispersed throughout 
the Hubble horizon boundary membrane during cosmic expansion. The result-
ing energy density dilutional effect is quantitively the same as observed in the 3D 
bulk. So, as often mentioned in previous papers, there is no cosmological con-
stant problem in FSC. Finally, although some theorists [25] have speculated that 
there is no need to introduce a cosmological constant, the current paper accepts 
the presence of such a constant, despite its small value. Otherwise, it would be 
most difficult to explain why the universal expansion is not decelerating.  

As for a way to potentially falsify the solution presented in the present paper, 
the best way to do so would be to measure the cosmic vacuum energy density so 
precisely that the calculated model density presented herein is consistently five 
or more standard deviations outside of the observational determination. At 
present, this does not appear to be the case. The two numbers are very close to 
one another, and there is yet too much uncertainty in the value of the Hubble 
constant. However, the coming decade of more precise dark energy observations 
and more precise Hubble constant determinations should be a good test of the 
hypothesis presented herein.  

4. Summary and Conclusions 

The current paper integrates a quantum conception of the Planck epoch early 
universe with FSC model formulae and the holographic principle, to offer a rea-
sonable theoretical explanation and solution of the cosmological constant prob-
lem. Such a solution does not appear to be achievable in cosmological models 
which do not integrate black hole formulae with quantum formulae, such as the 
Stephan-Boltzmann law.  
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Einstein’s “cosmological constant” was created only to achieve a statically- 
balanced universe (i.e., neither contracting nor expanding). This was a mistake 
which he admitted to as his greatest blunder [26]. What was particularly erro-
neous about his blunder is well-described by Bodanis. The assumption that our 
universe could be kept perpetually in static balance by any sort of energy force in 
opposition to that of attractive gravity was simply unrealistic in the face of any 
perturbations to such a precarious balance. 

However, in a dynamically-expanding universe, assuming the value of Lamb-
da to remain constant over the great span of cosmic time, in terms of energy 
density, also appears to have been a mistake. At the very least, this possibility has 
been a topic of serious discussion in a number of recent scientific papers [27] [28] 
[29] [30]. And now, with the aid of the FSC model, the cosmological constant 
problem appears to be understandable and solved. We humbly and respectfully 
request that other investigators in the field carefully consider the above mathe-
matical arguments and accept or attempt to refute the results. 
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Abstract 
This paper introduces the two Upsilon constants to the reader. Their useful-
ness is described with respect to acting as coupling constants between the 
CMB temperature and the Hubble constant. In addition, this paper summa-
rizes the current state of quantum cosmology with respect to the Flat Space 
Cosmology (FSC) model. Although the FSC quantum cosmology formulae 
were published in 2018, they are only rearrangements and substitutions of the 
other assumptions into the original FSC Hubble temperature formula. In a 
real sense, this temperature formula was the first quantum cosmology formu-
la developed since Hawking’s black hole temperature formula. A recent de-
velopment in the last month proves that the FSC Hubble temperature formu-
la can be derived from the Stephan-Boltzmann law. Thus, this Hubble tem-
perature formula effectively unites some quantum developments with the 
general relativity model inherent in FSC. More progress towards unification 
in the near-future is expected. 
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1. Introduction and Background 

To the best of this author’s knowledge, Planck scale quantum cosmology effec-
tively originated with the publication of the seminal papers of Flat Space Cos-
mology (FSC) in 2015 [1] [2] [3] [4]. By incorporating our model Hubble con-
stant definition and the Schwarzschild formula into our unique Hubble temper-
ature formula, we predicted in 2015 a Hubble constant value of 66.89 km/s/Mpc. 
A subsequent study in 2023 [5] yielded a nearly identical result (66.87117) to a 
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precision of ±0.00043. 
The only input of our 2015 FSC Hubble constant determination formula was 

Fixsen’s 2009 CMB temperature T0 value of 2.72548 K [6]. Our particularly use-
ful scaling cosmological black hole temperature formula is: 
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One can readily see that this FSC Temperature formula (top left equation) is a 
slight (but important) modification of Hawking’s black hole temperature for-
mula in terms of the product inside the radical of our denominator. It is also 
apparent that our FSC temperature formula and Hawking’s temperature formula 
give the same value for the Planck mass epoch universe, presumably at or near 
the beginning of universal expansion. Both formulae would also agree if the half 
Planck mass (correlating to a single Planck length Schwarzschild radius) were 
inserted for both terms inside the radical. The half Planck mass can also be re-
ferred to as the “instanton”. 

It is of great interest that Haug and Wojnow [7] have recently confirmed the 
importance of the FSC temperature formula by deriving it from the Stephan- 
Boltzmann law! This is a tremendous breakthrough in further certifying FSC as a 
useful model of quantum cosmology. One can then realize that the FSC temper-
ature formula is a major step forward in uniting the general relativity of black 
holes with their quantum physics, as Hawking attempted to do. 

Since the October 23, 2023 pre-print of Haug and Wojnow as described above, 
Tatum et al. [8] have derived two useful formulae using the Greek and Latin ver-
sions of letter Upsilon as a compound constant coupling the Hubble constant to 
the CMB temperature. They employ the Greek Upsilon symbol ϒ and the Latin 
Capital Upsilon symbol Ʊ as new constants defined below. 

In 2018, FSC quantum cosmology equations were fully derived by Tatum and 
published in several venues [9] [10] [11]. This was achieved by rearranging the 
FSC Hubble temperature formula and substituting c/R with the Hubble constant. 
Moreover, the Schwarzschild formula was used in order to substitute R with its 
definition in terms of M. The resulting quantum cosmology formulae are as fol-
lows, using only the standard cosmological and quantum symbols:  

3 2 7 2 3 2 7 2

02 2 2 1 2 2 2 2 1 2
0

         
32 32B B

c cR R
k T G k T Gπ

≅
π

≅
                (2) 
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3 2 5 2 3 2 5 2

02 2 2 1 2 2 2 2 1 2
0

         
32 32B B

c ct t
k T G k T Gπ

≅
π

≅
                (4) 

3 2 11 2 3 2 11 2

02 2 2 3 2 2 2 2 3 2
0

         
64 64B B

c cM M
k T G k T Gπ

≅
π

≅
               (5) 

3 2 15 2 3 2 15 2
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02 2 2 3 2 2 2 2 3 2
0

         
64 64B B

c cMc M c
k T G k T Gπ π

≅ ≅
              (6) 

As per convention, the T0 equations in the right-hand column are for current-
ly observed cosmological values, where the current and most precise value of the 
CMB temperature (Fixsen’s 2.72548 K) is used as the sole T0 input. The 2018 
NIST CODATA values for the constants are updated, in place of the 2014 NIST 
CODATA values used in 2015. These 2018 values are either identical (as in most 
cases) or minimally different (as for G) in comparison to those used in 2015. 
Therefore, the calculated results of the standard cosmological parameters remain 
essentially of the same values (see Section 3). 

2. The Upsilon Formulae for Calculating H0 

One can readily recognize that the H0 value calculated above can also be ex-
pressed as: 

2
0 0H T= ϒ                             (7) 

wherein all of the constants on the right-hand side of the H0 Equation in (3) can 
be replaced with the Greek Upsilon term. Thus, it becomes quite clear that there 
is an extremely interesting and simple relationship between the Hubble constant 
and the current CMB temperature in FSC which dates back to 2015. One can 
think of them as essentially two sides of the same cosmological coin! Given this 
new insight, H0 can be reconsidered as a scaling cosmic thermodynamic para-
meter. 

Equation (7), which we refer to as the first of our cosmological “Upsilon equa-
tions”, expresses the current Hubble constant in reciprocal seconds (s−1). Using 
the 2009 Fixsen CMB temperature value T0 of 2.72548 K, one gets a Hubble con-
stant value of: 

18 1
0 2.167899530268314 10 sH − −= ×                 (8) 

The value for ϒ in Equation (7) reduces to: 
19 1 22.91845601539730127466404708016 10 s K− − −ϒ = × ⋅        (9) 

One can then use the conversion factor for arriving at H0 in units of km/s/Mpc 
by multiplying ϒ by 3.08567758149137 × 1019 km/Mpc. A further simplification 
of the ϒ term, intended for immediate conversion of CMB temperature T0 to H0 
in units of km/s/Mpc, utilizes the most precise km/Mpc conversion number used 
by the IAU (International Astronomical Union). The Latin Capital Upsilon term 
Ʊ is then used instead of the Greek Upsilon term ϒ so that the second Upsilon 
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formula is: 

0H =Ʊ 2
0T                           (10) 

The value for H0 is then converted directly to km/s/Mpc, without requiring an 
intermediate km/Mpc multiplication step. 

0H =Ʊ 2
0 66.894389794746 km s MpcT =              (11) 

The value for Ʊ in Equation (11) reduces to: 

Ʊ 29.005414299280081 km s Mpc K=               (12) 

Or, if one chooses, the units of Ʊ can be expressed in km·s−1·Mpc−1·K−2  
So, a quick and useful approximation of H0 can be obtained by simply multip-

lying the square of the CMB temperature by 9. If anyone among our modern 
cosmologists has already found this quick rule-of-thumb CMB temperature-to- 
Hubble constant conversion method to km/s/Mpc, this paper provides, for the 
first time, the theoretical basis for this conversion method. Even using a Ʊ con-
version value of 9.0054143 km/s/Mpc/K2 gives an almost exact Hubble constant 
value. In such case, the extra decimal places in the above numbers add relatively 
little more value. The strength of the current paper is simply to provide the FSC 
rationale for generating such precise and accurate Hubble constant values from 
knowing only the best modern measurement of the CMB temperature. 

3. Results: Using FSC Formulae to Calculate Parameters 

Standard cosmological formulae are typically calculated using the current Hub-
ble constant H0 customarily given in S.I. units. Thus, the Hubble constant value 
in reciprocal seconds (s−1) is used. Below are the most commonly-used formulae 
in ΛCDM and FSC: 

17
0

0
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π

=              (18) 

The above results are similar to the ΛCDM values, allowing for some theoret-
ical differences and observational uncertainties. ΛCDM apparently doesn’t use 
the exact cosmological time formula given above, unless they are using a differ-
ent H0 value than that obtained from the Planck satellite CMB observations. It is 
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particularly puzzling that standard model cosmologists insist on a cosmic age of 
approximately 13.8 billion years, despite the current best estimate of the age of 
the Milky Way’s “Methuselah star” (HD 140283). This estimate has a reported 
value of 14.27 ± 0.38 billion years [12]. Furthermore, astrophysicists are deeply 
puzzled as to how the early galaxies could have become so large, if the universe 
was actually only 13.8 billion years old. Nevertheless, the difference between the 
“observed” cosmic age of about 13.8 billion years and the FSC calculation of 
about 14.6 billion years is only about 5.8%, which could well be within the mar-
gin of observational error (thinking again of the Methuselah star!).  

4. Discussion 

This paper has been written with several purposes in mind. First, in light of re-
cent breakthroughs having to do with uniting quantum physics with general re-
lativity, this paper provides a wider historical perspective which places the FSC 
model at the center of these developments. Our 2015 FSC papers introduced read-
ers to our new cosmological model which incorporates formulae representing 
reasonable speculations concerning the fact that our expanding universe has a 
number of parameter relationships not unlike a Schwarzschild black hole. First 
and foremost among these is the mass-to-radius ratio of our visible universe, 
which is very close to, if not exactly, the ratio of a Schwarzschild black hole, once 
one adds in the dark matter, which is at least five times the visible matter. In ad-
dition, it is almost unimaginable that the average density measurement of our 
universe is essentially that of a black hole with a radius of about 14 billion 
light-years. One only has to plug the numbers in and calculate M/R ratio and the 
average mass density calculated in this paper. If one compares these two figures 
with those of a Schwarzschild black hole of similar mass and radius, it certainly 
raises a number of interesting questions. These observations, among many oth-
ers, led to our development of the FSC model. We were curious as to what a 
model of reasonable black hole assumptions might produce. The result was the 
eventual development of what we believe are the first useful quantum cosmology 
formulae, some of which are repeated in this paper. Later publications [13] [14] 
[15] have suggested similar lines of development, perhaps inspired by the suc-
cess of FSC. As for any possible significance of the Upsilon constants with re-
spect to quantum symmetry in cosmology, or implications concerning a bounc-
ing quantum cosmology, this is unknown at the present time. 

Second, this paper introduces to readers the discovery by Tatum et al. [8] con-
cerning the use of the two Upsilon compound coupling constants relating the 
Hubble constant to the square of the CMB temperature in a surprisingly simple 
way. In a sense, the Hubble constant and the CMB temperature appear to be 
permanently bound together by our Upsilon constants. Apparently, one cannot 
consider one without considering the other. If this turns out to be true, then the 
Hubble constant is no more a cosmic constant (over time) than the CMB tem-
perature is a cosmic constant. Unless they violate the perfect cosmological prin-
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ciple (i.e., no particular cosmic time is particularly special for us as observers), 
they are both most likely better regarded as scaling thermodynamic cosmic pa-
rameters. Maybe it is true that “only time will tell”. 

5. Summary and Conclusion 

To summarize, this paper clearly defines a fascinating relationship between the 
CMB temperature and the Hubble constant. With the aid of FSC quantum cos-
mology formulae (in particular, the formula for the current Hubble constant 
value), it is apparent that there is a compound constant which couples these two 
universal parameters at present, and most likely for other cosmic times since the 
decoupling epoch. Tatum et al., in a recent paper [8], have named the first 
coupling constant Upsilon, using the Greek symbol ϒ. At about the same time, 
Tatum independently arrived at a different coupling constant which automati-
cally gives the Hubble constant in km/s/Mpc, without having to convert reci-
procal seconds to km/s/Mpc. This conversion is already accomplished with the 
use of the second Upsilon symbol, the Latin Capital Upsilon symbol Ʊ. Since the 
reader might be interested in the historical development of quantum cosmology 
to the present, this paper has also provided some context concerning the FSC 
model and its extremely useful Hubble temperature equation with much resem-
blance to the Hawking black hole temperature formula. In retrospect, and in a 
real sense, our slightly modified formula appears to be the very first useful quan-
tum cosmology formula. 

Comment: It should be noted here that this paper in no way attempts to ad-
dress the current “Hubble tension” problem. Because of dramatically different 
methods for measuring the Hubble constant value, there are a myriad of factors 
to consider before usefully comparing the CMB method and the nearby universe 
methods employed by the SHoES project [16] and Freedman [17]. 
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Abstract 
This paper shows how the Flat Space Cosmology model correlates the recom-
bination epoch CMB temperature of 3000 K with a cosmological redshift of 
1100. This proof is given in support of the recent publication that the Tatum 
and Seshavatharam Hubble temperature formulae can be derived using the 
Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high 
precision Planck scale quantum cosmology has arrived. 
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1. Introduction and Background 

It has long been established that the cosmic recombination epoch Cosmic Mi-
crowave Background (CMB) temperature of 3000 K correlates with a cosmolog-
ical redshift z value of around 1100. This has been especially true since Fixsen 
updated his fitting of the CMB black body radiation spectrum with a peak tem-
perature of 2.72548 K [1]. Given the black body nature of the 3000 K universe, it 
is perhaps not surprising that one can successfully apply the Stephan-Boltzmann 
dispersion law to derive the Tatum and Seshavatharam Hubble temperature TH 
formulae [2]: 
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Proof of the Stephan-Boltzmann derivation was given recently [3]. 
While the Tatum and Seshavatharam temperature formulae are modeled for 

a Planck scale quantum cosmology for the entire history of universal expan-
sion, we will specifically show in the present paper the correlation between the 
CMB temperature of 3000 K and the redshift z value of 1100. Our particular 
Planck scale quantum cosmology model is called Flat Space Cosmology (FSC) 
[4]. 

2. Relevant Equations for Our CMB Temperature and  
Redshift Calculations 

This section provides the relevant FSC equations useful for correlating a given 
Hubble CMB temperature TX with its predicted redshift z and predicted Hubble 
parameter value HT. 

The usual cosmology redshift formula with regard to past and current cosmic 
temperatures is: 

0

1xTz
T

≅ −                            (2) 

wherein z is the redshift, Tx is any given Hubble CMB temperature, and T0 is the 
2009 current Fixsen CMB temperature of 2.72548 K.  

To correlate the predicted z value with the predicted temperature-dependent 
Hubble parameter value HT, the following FSC Hubble quantum cosmology for-
mulae [5] are used: 

2 2 2 1 22 2 2 1 2
0

03 2 5 2 3 2 5 2

3232          BB k T Gk T GH H
c c

π
≅

π
≅

 

             (3) 

wherein the latest NIST 2018 CODATA [6] are used for all constants, and T0 is 
the 2009 Fixsen CMB temperature, the only observational input to the right-hand 
equation. 

To correlate the FSC cosmic radius value RT at a given CMB temperature, the 
top equation in formulae (1) is used (see the right-hand term): 

3

8 4t
B t pl B t pl

c cT
Gk M M k R Rπ π

≅ ≅
                    (4)  
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Results of calculations made using Equations (2) thru (4) are presented in Table 1. 

3. Discussion 

Beginning in 2015, FSC has proven to be one of the most successful Planck scale 
quantum cosmology models to date. In fact, the Hubble parameter quantum cos-
mology formulae [current Equation (3)] and the top equation of the Tatum and 
Seshavatharam Hubble temperature TX formulae [current Equation (4)] have been 
used to predict, with high precision, the most recent Hubble parameter values 
derived from CMB studies published in 2023 [7]. 

Reference [7] mentions a “deeper theoretical understanding” of the rela-
tionship between the Hubble parameter and the CMB temperature. One can 
see in our 2

X XH T  column of Table 1 that there is an obvious coupling con-
stant linking HX and 2

XT . There is slight variation in the value of this coupling 
constant in Table 1, but this is only because abbreviated numbers are used in 
order to fit them into the table. This coupling constant first appeared in 2015 in 
Equation (3) of FSC reference [2]. It has now been calculated out to 29 decimal 
places [7], using Mathematica software and the NIST 2018 CODATA [6]. How-
ever, the number of decimal places is not nearly as important as the expected 
reduction in the uncertainty of H0 in terms of standard deviation. The result of 
this new coupling constant precision should be high precision in Hubble para-
meter determinations going forward. Any cosmology formulae using a Hubble 
parameter value and incorporating this newer and more precise FSC coupling 
constant (tentatively called “Upsilon”) would be expected to vastly improve cos-
mological model predictions. Many such “Hubble formulae” are used in stan-
dard ΛCDM cosmology, in the same way that they are used in FSC. 

The “deeper theoretical understanding” mentioned above is now revealed to 
be inherent in the FSC model. As clearly alluded to by Lineweaver and Patel [8], 
the modeling of our universe as an expanding black hole-like object is not such 
an outlandish idea after all. 

 
Table 1. Correlations between radii, temperatures, redshift and Hubble parameter. 
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 z xH  

0 2.72548 7.4282412304 2.917245E-19 0 2.167E-18 

0 2.7 7.29 3.049643E-19 0 2.167E-18 

1.08 9.5 90.25 2.967313E-19 2.49 2.678E-17 

1.95 25.8 665.64 2.955051E-19 8.47 1.967E-16 

2.16 33.2 1102.24 2.944005E-19 11.18 3.245E-16 

2.38 42.7 1823.29 2.936998E-19 14.67 5.355E-16 

2.6 55.0 3025 2.920992E-19 19.18 8.836E-16 

2.87 70.8 5012.64 2.908647E-19 24.98 1.458E-15 

6.08 3000.0 9000000 2.918444E-19 1099.72 2.6266E-12 
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4. Summary and Conclusions 

This paper shows the exquisite FSC correlation between a CMB temperature of 
3000 K and a cosmological redshift of 1100. 

Furthermore, by revealing the obvious coupling constant linking HX and 2
XT , 

this paper shows the continued value of FSC as an accurate Planck scale quan-
tum cosmology model. Although the most useful FSC quantum cosmology for-
mulae were first published in 2018 (reference [5], Section 2.9), they have been 
inherent in FSC since its 2015 inception. Thus, a theoretical model which is now 
more than eight years old continues to show its value with respect to observa-
tional correlations.  

The “deeper theoretical understanding” mentioned in reference [7] comes 
from the gradual recognition in the astrophysics and cosmology community that 
modeling our universe as an expanding black hole-like object is likely to be ne-
cessary, in order to achieve high precision Hubble cosmology. Such a cosmology, 
which requires the use of the Hubble parameter in its formulae, also requires an 
exquisitely high precision in its CMB-derived Hubble parameter determinations. 
This appears to have now been achieved. FSC provides this “deeper theoretical 
understanding”.  
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Abstract 
The black hole model of the Universe evolution, accompanied by matter crea-
tion, already successfully accounting for many features of the past is discussed 
and further justified. It is once more stressed that even a very large object but 
with a big mass is in its own right a black hole. As a consequence, the extra-
polation of the past predicts for the future no big crunch, nor big bounce but 
a steady expansion with smaller matter density. 
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1. Introduction 

The inadequacy of the GR Friedman equations [1] for the description of the 
Universe evolution has to be attributed to the fact that in the one for the accele-
ration, the potential, due to the Hubble expansion, is not a state function [2]. 
Thus in its derivative another term enters in addition to the usual Newtonian 
one and the corresponding mass variation (matter non conservation) produces a 
totally different scenario corresponding to a black hole one (b.h.).  

This description of the Universe evolution as a gigantic and evolving black 
hole, which successfully combines gravitation and QM, in spite of its successes 
(prediction of the time dependent Universe age [3], inertial forces and gravita-
tional radiation, causality [4], and the relevance to the problem of the existence 
of dark energy and of the cosmological constant), has encountered many criti-
cisms which can be summarized by the following referee’s report “the universe 
and black holes are fundamentally different, and one should explain why the 
universe is expanding from the viewpoint of a black hole.” Indeed one is tradi-
tionally attached to the picture of a small very dense object, eventually shrinking, 
and one can view the numerical agreement of the model with present data at 
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most as a mere coincidence. 
The aim of the present work is to argue that this is not so.  
Starting from the “elementary” observation by Feynman [5] many people [6]-[14] 

have tried to elucidate the problem about what is known and what not about 
black holes. However with different degrees of sophistication (adding rotation 
for instance) they remain essentially attached to General Relativity whose basic 
assumption i.e. “matter conservation” has been disproved [3] mainly because of 
the obvious time dependence of the Universe age. 

We therefore proceed with very simple arguments to the justification of this 
unconventional black hole of a big mass in a large volume obeying however 
the same relation 2M R c G=  of a conventional tiny and very dense one.  

2. Discussion 

The basic relation, backed up at present by “data” [15] ( 8010 NM m , 2610 mR ) 
is as well known  

2
2 GMMc

R
=                            (1) 

or 

2 1GM
c R

ε = =                            (2) 

When taken to describe the Universe evolution, i.e. as an equation, down to 
the Planck epoch (whose quantities represents the smallest quantum b.h., where 
contrary to a wide spread opinion QM and gravitation successfully combine) 
this equation is not stable. In fact this condition which essentially corresponds 
to energy conservation does not correspond to a minimum in energy. Indeed if 
we allow a perturbation in R at the Planck era 

R R dR→ +  

we cannot have shrinking with a radius smaller than the Planck one and a bigger 
one naturally entails a correspondingly increase in the mass. 

The same argument also holds true also for later times even if a smaller radius 
cannot be discarded in principle. However the same observation remains valid: 
no restoring force! 

Consider indeed the radiation dominated era where the mass is given by [2] 

( )4 3M kT R                          (3) 

Of course in principle both possibilities exist i.e. increase and decrease in R 
with constant ( )4 2M R kT R . In the first case M/R remains constant at the 
price of a decreasing temperature ( ( )2 1KT R ) which is what is actually ob-
served. In the second case the opposite should happen in contrast to actuality. 

The possibility of perturbing to a smaller radius (at constant mass) would re-
sult in energy violation since the negative self energy would overcompensate the 
mass. In other words again only a bigger radius is possible (smaller self energy) 
and mass creation is demanded to restore energy balance. 
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In the case of the matter dominated era even if photons are a very small frac-
tion of nucleons the above argument remains true. A contraction would decrease 
the photon wavelength (anti CMB) and this implies that also for nucleons ex-
pansion is the only possibility. Thus the particle mass content simply increases. 

Therefore expansion in the radiation dominated era would correspond, loose-
ly speaking, to the Boltzmann thermal death whereas in the matter dominated 
era (where nucleons are non relativistic) the negative heat capacity would al-
low the birth of structures. 

In the b.h. model where ε  must be constant in time as proved in Ref. [4] the 
mass variation required by Equation (2) has therefore another fundamental ef-
fect in the equations of motion 

20 GM GdMd
RdRR

ε = = − +                       (4) 

where the first term represents the well known Newtonian acceleration counter-
balanced by the second one, due to mass variation. So self energy is seen to 
provide the repulsive force since it increases the total energy when particles 
move away and thus demands matter creation. This is the missing dark energy 
at present represented by the cosmological constant.  

Consider now the density given in the b.h. model by 
2

. . 2
3

4b h
c

G r
ρ =

π
                         (5) 

which, in line with the previous arguments, reads 
2

. .
3
4b h
H

G
ρ =

π
 

This has to be compared with the critical density of the standard GR treat-
ment in flat space 

23
8cr

H
G

ρ =
π

                          (6) 

. . 2b h crρ ρ=                          (7) 

This represents probably a rather unexpected result in the sense, first, that it 
seems to suggest that a sort of black hole description is contained also in a par-
ticular GR formulation, but with a numerical difference. This point can be un-
derstood by remembering that (probably inspired by a non relativistic origin) 

2H  appears in GR with the coefficient 1/2 and that in the given case (without 
the cosmological constant) also GR describes the same situation of the black hole 
model i.e. indefinite expansion consistent with energy conservation determined 
only by the density. Of course the difference between the two theories lies in the 
acceleration equation where the mass variation, necessary to account mainly for 
the time dependent age of the Universe provides the repulsive agent. The doubled 
ρ  has implications for the amount of the presumed dark energy in that it proves 
how this quantity be model dependent. 

In the b.h. model there is no such critical density. The given one, smaller than 
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the GR’s, is just of the right amount predicted by the model and the expansion, 
accompanied by matter creation and density decrease in time, happens inde-
pendent of the Universe curvature. That must have evolved becoming flatter and 
flatter from the Planck radius to the present one ( 2 21 cR G cρ , CR  standing 
for the curvature radius) i.e. a Universe in the matter era essentially flat. A totally 
different scenario than the GR one, which in connection with curvature proba-
bly suffers from being an essentially static, matter conserving, one. This also de-
termines the fate of the Universe: no big crunch, nor big bounce but a density 
decrease which might anyway foresee the possibility of structure formation due 
to the negative heat capacity of gravitation.  

So an innocent looking, unassuming relation turns out to produce two equa-
tions which reproduce and correct the cherished GR ones in the Friedman’s me-
tric without the epicycle add-ons criticized by Perlmutter [16]. 

3. Conclusion 

An elementary argument has been presented to show that in the black hole model, 
the Universe is not stable and expands according to the arrow of time accompa-
nied by mass creation. 
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Abstract 
A complementarity hypothesis concerning outsider and insider perspectives 
of a gargantuan black hole is proposed. The two thought experiments pre-
sented herein are followed by a brief discussion of a new interpretation of 
black hole interior “space-and-time-reversal”. Specifically, it is proposed that 
the “singularity” space of the black hole interior is time-like and the expan-
sion time of the black hole interior is space-like. The resemblance of this new 
insider interpretation to our own expanding and redshifting big bang universe 
is compelling. 
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1. Introduction and Background 

Stephen Hawking pointed out that quantum information passing through a black 
hole horizon into its interior should be permanently lost at the singularity, thus 
apparently violating a bedrock principle of quantum physics, that quantum in-
formation cannot be destroyed [1]. This has become known as the “black hole 
information paradox”. A hypothesis of “black hole complementarity” was sub-
sequently introduced by Susskind [2], as a means of solving Hawking’s paradox. 
He treated quantum information as interacting with a black hole in two different 
and complementary ways, only one of which could be observed from any given 
outside or inside perspective. Susskind’s follow-up book, entitled The Black Hole 
War [3], provides a nice historical summary of his philosophical battle and ap-
parent victory over Hawking with respect to this paradox.  

The concept of complementarity in physics goes at least as far back as Emmy 
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Noether’s strict and limiting mathematical definition in 1918. In a broader sense, 
differing but valid wave-and-particle interpretations of observations of double 
slit experiments, including Bohr’s Copenhagen interpretation of quantum phys-
ics, are examples of physical complementarity. The Copenhagen interpretation 
withstood a barrage of challenges by Einstein, Podolsky, and Rosen (EPR) [4] 
and others [5]. There have since been a number of other examples of comple-
mentarity in modern physics, now including Susskind’s important contribution 
concerning black holes.  

This paper is not intended as a comprehensive review of complementarity in 
modern physics. Rather, the above brief summary is merely offered in order to 
show that the concept of physical complementarity is now over one hundred 
years old, pre-dating any specific applications to black holes. In its broadest 
sense, a complementarity in physics can be defined as two different, but equally 
valid, perspectives concerning the same physical object or event. Such comple-
mentarities rely upon underlying conservation laws of great importance. Proving 
this was Noether’s greatest contribution to physics. As an extension of her logic, 
this author proposes that a deeper understanding of black hole complementari-
ties could well be an important key to uniting general relativity with quantum 
physics. Thus, we would have a useful and accurate quantum cosmology.  

It is the purpose of the present paper to present a somewhat different (with 
respect to Susskind) complementarity hypothesis concerning black holes. By 
means of thought experiments and a new interpretation of black hole interior 
“space-and-time-reversal”, the reader can perhaps gain a foothold on under-
standing how black hole cosmological models, a distinct category of Rh = ct 
models, can potentially resolve some cosmological conundrums [6] [7] [8] [9] 
[10]. 

2. The Outsider Perspective of a Black Hole  
(Thought Experiment) 

Most readers are already familiar with the outsider perspective of a black hole. 
Such a perspective is all that is available to us, whether we are Earth-bound or 
space satellite telescope observers. We see a black hole as a finite and circum-
scribed spherical object emitting no visible light or other detectable electromag-
netic radiation. If it does, in fact, emit Hawking radiation, as believed by nearly 
all black hole experts, such radiation is predicted to be so faint as to be forever 
beyond our means of detecting and measuring it. Furthermore, our Earth-based 
telescopes, as part of a planet-wide array, have revealed that selected nearby su-
permassive black holes (SMBHs) are bending light rays around them in exactly 
the way predicted by general relativity. Black holes have, so far, been highly pre-
dictable in terms of their relatively few measurable parameters. In this context, it 
is often said that “black holes have no hair”. They are viewed, from our outside 
perspective, as remarkably simple spinning objects surrounded by an accretion 
disk of hot gases emitting x-rays and/or gamma rays. Their powerful polar mag-
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netic fields can spin with great rapidity and eject concentrated beams of photons 
and charged particles (at nearly the speed of light) in “jets” many light-years in 
length. Quasars and blazars are almost-certainly some of the largest and most 
powerful SMBHs of the early universe, which just happen to be pointed in our 
general direction (as for quasars) or directly, or nearly so, at us (as for blazars).  

In the present paper, we offer a thought experiment of highly-reasonable 
assumptions about the experience of spacecraft observers outside, but close to, 
a SMBH, in a somewhat similar manner to that offered by Kip Thorne in his 
excellent book entitled Black Holes & Time Warps—Einstein’s Outrageous Leg-
acy (see pages 38-48) [11]. Let us imagine that we are observers on a large 
spacecraft (“mother ship”) hovering relatively close to the event horizon of a 
truly gargantuan supermassive black hole of 14.62 billion light-years in Schwarz-
schild radius. We have done our measurements and calculations and deter-
mined that our black hole, which doesn’t appear to rotate or have a net charge, 
has an average density of approximately 8.4 × 10−27 kg·m−3. Thus, it appears to 
be a real Schwarzschild black hole! From our safe distance of observation, our 
black hole is so large that we and our mother ship do not experience any sig-
nificant tidal effects of its gravitational field. We wish to send down a space-
craft probe to hover above the spherical horizon at various fixed distances, 
while returning a powerful laser pulse signal of predetermined frequency to 
our mother ship observers. These pulses are sent at regular time intervals ac-
cording to a clock on the probe. What will we observe at the mother ship with 
respect to these probe signals? 

The answers to such a question are a near-certainty, given our knowledge of, 
and extremely high confidence in, special and general relativity. At each hover-
ing distance above the SMBH horizon we can observe frequency, wavelength, 
energy and timing interval of the pulses coming from the probe. At first, when 
the probe is nearly at the orbital height of our mother ship, we notice little, if 
any, change of signal properties with respect to the pre-programmed pulse sig-
nals. Frequency, wavelength, energy and timing intervals of the pulses are in-line 
with our on-ship calibrations prior to release of the probe. However, we gradu-
ally and then more rapidly notice, as the probe decreases its hovering distance 
and moves closer and closer to the horizon, the following things: the pulse fre-
quency continuously decreases; pulse energy continuously decreases, in-line with 
decreasing frequency; the pulse wavelength continuously redshifts, getting long-
er and longer; and the pulses are more prolonged and separated by increasing-
ly-long time intervals. If we were to plot such signal features on a graph as a 
function of increasing probe proximity to the horizon (or increasing hover dis-
tance from the mother ship), we would notice that frequency and pulse energy 
asymptote towards zero, while wavelength and timing intervals asymptote to-
wards infinity. Although we would not be able to observe directly, due to infinite 
time dilation, we would expect that our probe, when embedded exactly in the 
horizon, would become completely undetectable to us, either by signal reception 
or by powerful optical, infrared or radio telescopes on the mother ship. From 
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our outside perspective, we mother ship observers can readily extrapolate that 
the clock on a horizon probe (were it possible to have an infinite quantity of fuel 
and infinite energy thrusters in order to maintain its position at the horizon) 
would be frozen in time! In our outside observer thought experiment, these very 
predictable observational phenomena would all be the result of gravitational red-
shift and time dilation, in exact agreement with special and general relativity. 

3. The Insider Perspective of a Black Hole  
(Thought Experiment) 

Now we introduce the reader to an equally valid and complementary perspective 
of our truly gargantuan black hole, which is the perspective of a free-falling (i.e., 
not hovering) astronaut passing through the horizon and into the black hole in-
terior. Our free-falling astronaut would have a markedly different experience in 
comparison to that of the hovering mother ship and probe. Let us consider this 
new perspective in a thought experiment.  

From our astronaut’s perspective, time is moving along at its usual pace, as 
she remembers it when she was last on the mother ship during calibrations of 
her watch and laser pulser with that of the aforementioned probe. She notices 
nothing unusual as she passes through the event horizon (according to her 
watch) and into the black hole. She also does not notice any frequency, wave-
length or energy change in the activity of her pulser or the activity of her watch. 
After passing through the horizon, which now becomes her future event hori-
zon, she puts the ticking watch up to a microphone in her helmet and hears it 
ticking just as loud and clear as it did back on the mother ship. She notices that, 
in all directions, objects more distant from her, but still inside the horizon, are 
more redshifted than nearby objects. She also notices, by leaning back and re-
turning her gaze in the specific direction of where the mother ship was, that it 
has disappeared, and that the stars which were behind the mother ship have 
been replaced by an impenetrable blackness. The light of the outside universe 
has long ago (in comparison to her new time frame) stopped pouring into the 
black hole, due to the extreme time differences between her new universe (the 
black hole) and her old universe (the parent of the black hole in which she now 
finds herself). This is also a predictable time dilation effect. 

Before we finish the story of our free-falling astronaut, we should take note of 
the following: black hole experts have shown mathematically how the interior of 
a black hole should have a very peculiar feature. Judging from signage changes in 
their mathematical formulae in the Schwarzschild metric, these experts are gen-
erally in agreement that a sudden switch takes place as one crosses the black hole 
event horizon into the interior: 

Space becomes time-like and time becomes space-like. 
The particular formula of interest for the Schwarzschild solution of the Eins-

tein field equations (leaving out rotational terms because we are referring to a 
Schwarzschild black hole) is commonly expressed as follows [12]: 
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( ) [ ]2 2 2 21 1 1s ss r r r r r c t∆ = − ∆ − − ∆                 (1) 

wherein the Schwarzschild metric term is on the left, the space-like term is in the 
middle and the time-like term is on the right. The symbol rs represents the 
Schwarzschild radius of the black hole. Notably, when Equation (1) applies to 
the interior of the black hole, both bracket terms switch to a negative signage, 
because rs suddenly becomes greater than radius r. General relativists interpret 
this signage change in terms of the space-and-time-reversal description above. 

We can maybe best understand this new interior perspective by comparing it 
to what we observe or imagine about a black hole as outsiders. We first imagine 
a “singularity” of infinite properties at the geometric center of space within the 
black hole interior. This is presumably, from the outsider perspective, where all 
matter and information of any kind ends up. For a Schwarzschild (i.e., non- 
rotating) black hole, this “singularity” is a point-like spatial object. For a Kerr-type 
rotating black hole, the “singularity” is ring-like and surrounding the geometric 
center of the black hole. Without confusing the matter further, or updating the 
reader on Kerr’s new view on singularities of any kind, suffice it to say that a 
space-like object of “infinite” properties (i.e., smallness, density and tempera-
ture) exists in the perspective of the outsider in, or very near, the geometric cen-
ter of a black hole. Obviously, these properties cannot actually be infinite, but 
the fully valid outsider perspective of such a “singularity” must be left to a final 
theory of quantum gravity in the future. 

However, according to a reasonable interpretation of the “space-and-time- 
reversal” math of black hole relativists described above, insiders should perceive 
a “singularity” of their black hole as no longer an object in space, but rather an 
object in time; this perspective resembles how we imagine our own cosmic sin-
gularity! In our own universe, there is no residual singularity within a localized 
point of absolute space; there is only a singularity in our most remote past. From 
her new “space-and-time-reversal” perspective, our free-falling astronaut might 
have no existing singularity to fall into. Rather, she may have fallen into an ex-
panding time-like structure with an average density of approximately 8.4 × 10−27 
kg·m−3, very much like our own universe. As in our own expanding (i.e., red-
shifting) universe, every point in her new space, because she can perceive it as 
expanding by her redshift observations, also represents a point in time; in other 
words, her continually expanding new environment is now time-like! Her new 
horizon is no longer acting as a time-less and fixed invisible spatial object, but 
rather acting as a dynamic, expanding, entropy-driven, time clock. The “ticking” 
of her new universal clock is the regular increase in horizon surface area (i.e., 
Bekenstein-Hawking’s entropy-as-time definition). Our imaginary astronaut is 
no longer falling towards a geographic center any more than an intergalactic as-
tronaut in our own universe falls towards a particular absolute center of space. 
In an expanding universe such as ours, there is no residual center. Likewise, one 
can perhaps imagine in this thought experiment that her new gargantuan SMBH 
environment could be perceived by her in a similar way. To put it in more mod-
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ern cosmological terms, the center of our free-falling astronaut’s new universe is 
not localized, but now everywhere. She is truly free to fall wherever the new gra-
vitation field in her new universe takes her. 

4. Discussion 

As presented, our outsider perspective of a black hole is highly-dependent upon 
our very limited human time perspective. Rather than perceiving a black hole as 
a dynamic and changing object once born, we tend to see and describe a black 
hole as an object almost frozen in time, other than when it ingests new matter or 
merges with another black hole. Although we tend to believe that, between such 
ingestions and mergers, a black hole continually radiates away a tiny amount of 
energy, complete evaporation would only occur at many times the current age of 
our universe. For all practical purposes, we can safely ignore the theoretical Hawk-
ing radiation and black hole evaporation. 

One of the most surprising findings from recent deep telescopic observations 
of our past early universe is that early SMBHs have grown even faster than we 
could have imagined. We have even had to consider new ways in which SMBHs 
could have initially formed, such as “direct collapse” from gargantuan primordi-
al gas clouds. Furthermore, the recent discovery by Farrah et al. [13] that the 
rapid growth of SMBHs appears to be coupled with the expansion of our own 
universe is astonishing. Their results and interpretations are understandingly 
preliminary, but they appear to imply that SMBHs could be a source of universal 
expansion dark energy. The present author has recently offered a quantum hy-
pothesis on how black holes might actually continually grow in size and produce 
such dark energy [14]. A follow-up paper on likely gravitational field effects on 
the quantum vacuum was also published [15], and now appears to have addi-
tional theoretical support [16]. 

Our second thought experiment introduces the mathematical discovery by 
black hole experts that, within the interior of a black hole, there is a switch in 
space and time perspective in comparison to our own outsider perspective. 
Space within the black hole interior is interpreted to be time-like and time is in-
terpreted to be space-like. This is a conclusion based upon signage changes in 
the terms of relativistic Schwarzschild metric equations for crossing over from 
outside to inside a black hole horizon.  

What is still open for interpretation is the exact meaning of such a mathemat-
ical signage change. Those theorists who apply light cone analysis to the inside of 
a black hole take the conventional point of view that anything inside a black hole 
rapidly gets stretched and then crushed at the singularity; this is really no differ-
ent from the outsider perspective and perhaps shows a bias in this respect. For 
the sake of argument, a new complementarity interpretation of black hole inte-
rior “space-and-time-reversal” is offered in the present paper, largely based upon 
the perspective that a SMBH is a dynamic object coupled with the expansion of 
our universe (see the Farrah et al. reference). The present author interprets the 
insider perspective as follows: 
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The ‘singularity’ space becomes time-like and the expansion time becomes 
space-like. 

What is meant by this is that the insider perspective of a truly gargantuan 
black hole the size and average density (8.4 × 10−27 kg·m−3) of our own universe 
could be that the singularity is only in the past, and that past epochs of such a 
black hole could perhaps be observed (by redshifting light within the SMBH) as 
past events of an expanding interior space, much like our own perceived ex-
panding universe. In summary, in a sufficiently large black hole, there might be 
conditions suitable for life, rather than lethal tidal forces ending in an infinitely 
small, infinitely dense and hot point.  

While such an insider interpretation might seem to be completely outlandish, 
no one can yet know exactly what the mathematical signage change means. Un-
derstandably, we may have been biased by our outsider perspective. It may also 
be that the Schwarzschild metric is not the correct metric to use for the inside of 
a black hole. The only thing which we can say for certain is that the inside of a 
black hole will always have some mystery about it. An inside observer will never 
be able to report back to us.  

A subject of debate among cosmologists is whether our universe is as spatially 
flat as recently observed in the Planck satellite survey, or is curved in some way 
[17]. If our expanding universe is ultimately observed to be at its Friedmann 
critical density for a flat universe (i.e., k = 0), we can call it spatially flat accord-
ing to the cosmological definition of “critical density”. In a similar fashion, if it 
turns out to be true that a supermassive or gargantuan black hole expands over 
the great extent of cosmic time (see the Farrah et al. reference), a black hole inte-
rior might also qualify for a critical density definition of spatial flatness. Ob-
viously, this would be a radically different perspective in comparison to the out-
sider perspective of spatial collapse to infinite spatial curvature occurring at a 
geometric center “singularity”. Lacking any possibility of observing a gargantuan 
black hole interior as an insider, one can only speculate about the true insider 
perspective. 

One could say that such an insider interpretation cannot be considered to be 
within the realm of scientific interest, because it can never be verified or falsified. 
This is a valid point of view. Nevertheless, as discussed in other publications 
within this Special Issue, the meaning of recently-discovered mathematical rela-
tionships between our universe and black holes and black hole-like objects is 
gaining in scientific interest among reputable physicists and cosmologists [18] 
[19] [20] [21]. For readers with a scientific interest but an open mind, one 
should perhaps begin with physicist Ethan Siegel’s article entitled “Are We Liv-
ing in a Baby Universe that Looks Like a Black Hole to Outsiders?”. 

5. Summary and Conclusions 

Following in the footsteps of Leonard Susskind, a new black hole complementar-
ity is offered in the present paper. After first detailing the well-known outsider 
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perspective of a black hole, using a thought experiment, a plausible speculation 
on the free-falling insider perspective is offered in a second thought experiment. 
This second experiment incorporates a new interpretation of the meaning of 
black hole interior “space-and-time-reversal”, owing to signage changes in the 
Schwarzschild metric mathematical formula, when one passes through a black 
hole event horizon. We can summarize this new interpretation as follows: The 
“singularity” space of the black hole interior is time-like and the expansion time 
of the black hole interior is space-like.  

While the Schwarzschild metric mathematical formula of Equation (1) is gen-
erally agreed upon, the precise meaning of the signage change for the interior 
perspective of a black hole can still be subject to different interpretations. We 
can never observe, and can only speculate, what the inside of a particularly gar-
gantuan black hole might be like. Perhaps the “singularity” of the outsider pers-
pective is no longer an impossibly small, dense, and hot object in space when 
one becomes an insider, but rather an object in time only, much as many believe 
to be true for our own universe. 

The resemblance of this new black hole insider interpretation to our own ex-
panding and redshifting universe is intriguing. It is particularly interesting in the 
context of the recent Farrah et al. observations and physicist Ethan Siegel’s ar-
ticle entitled “Are We Living in a Baby Universe that Looks Like a Black Hole to 
Outsiders?”. 
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Abstract 
This article gives a state-of-the-art description of the cosmological Lamb-
da-CDM model and in addition, presents extensions of the model with new 
calculations of background and CMB functions. Chapters 1-4 describe the 
background part of the model, i.e. the evolution of scale factor and density 
according to the Friedmann equations, and its extension, which results in a 
correction of the Hubble parameter, in agreement with new measurements 
(Cepheids-SNIa and Red-Giants). Based on this improved background calcu-
lation presented in chapters 5-9 the perturbation part of the model, i.e. the 
evolution of perturbation and structure according to the perturbed Einstein 
equations and continuity-Euler equations, and the power spectrum of the 
cosmic microwave background (CMB) is calculated with a new own code. 
 

Keywords 
Lambda-DCM, Friedmann Equations, CMB, Metric Perturbation, Hubble 
Parameter 

 

1. Introduction 

The Lambda-CDM model is widely accepted as the valid description of universe 
on large scales and its evolution history. It is based on General Relativity and 
consists of two parts: 

- Background part with the ansatz Robertson-Walker (RW) metric, based on 
Friedmann equations and equations-of-state for the different component par-
ticles. It describes the evolution of scale factor and density without perturbations, 
i.e. without local structure (like galaxies and galaxy groups); 

- Perturbation part with the ansatz perturbed RW-metric and locally per-
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turbed density, velocity, and pressure of the component particles. It describes the 
time-evolution and (quasi-random perturbed spatial distribution) of density, 
velocity, and pressure, i.e. the actual structure of the universe on inter-galactic 
scale. 

The parameters of the perturbed model are fitted in chap. 10 with the CMB 
spatial spectrum measured by Planck. 

We present here in chap. 2-5 the background part with Friedmann equations 
and equations-of-state for the components with two notable extensions: explicit 
temperature dependence and classical gas as baryon eos. From this follows a new 
solution and own calculation in chap. 5, which offers an explanation for the ap-
parent experimental discrepancy concerning the Hubble parameter. 

Based on the improved background calculation, we present the perturbation 
part in chap. 6-10, with the derivation of the CMB spectrum, and new calcula-
tion of it. 

2. Friedmann Equations 

In this chapter, we present in concise form the basic equations (Friedmann equ-
ations) and equations of state (eos) for density and pressure with their different 
components radiation γ, neutrinos ν , electrons e, protons p, neutrons n (re-
spectively baryons b), cold-dark-matter cdm d. The presentation relies basically 
on the four monographies [1] [2] [3] [4], with two notable extensions. 

-Temperature 
The eos depend explicitly on temperature T, resp. thermal energy th BE k T= , 

and thermal energy is introduced as a function of time ( )thE t , as all other 
variables, and has to be calculated. 

-Baryon eos  
The baryons are modeled as classical gas, and not as dust with zero pressure. 

We shall see in the background calculation in chap. 5, that this model increases 
the value of the Hubble parameter, which basically solves the Hubble-discrepancy 
problem. 

2.1. Friedmann Equations and Metric 

The metric which fulfills the conditions of space homogeneity and isotropy is the 
Robertson-Walker (RW) metric [1] [2] [3] [4]: 

( )
2

2 2 2 2 2 2
2 2

dd d d
1 H

rs c t a t r
kr R

 
= − + + Ω − 

               (1) 

with Hubble radius 26

0

1.37 10 mH
cR

H
= = ×  (Planck value), and scale factor 

( )a t . 
The Einstein equations [1] [5] [6] [7] [8] for this metric are the two original 

Friedmann equations a and b (with d
d
aa
t

= ) and two derived equations c (acce-

leration eq.) and d (density equation): 
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  derived: density equation (2d) 

with dimensionless variables using Planck-values: Hubble constant  
1 1
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Hubble radius 26

0
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H
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The Friedmann equations can be reformulated dimensionless with 0x tc= , 

0

d'
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= , 3crHρ =  
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' 1 0
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crH

H H

a k
a a R R

ρΛ  + − − Ω = 
 

, i.e. 
2

1
2 2 2

' 0
3 H H

a k
a a R R

Λ Ω  + − − = 
 

 

2
1

2 2 2
2 '' ' 0r

H H

Pa a k
a a a R R

Λ + + − + = 
 

 

( )' ' 0
3
r

r r
a a Pρ

ρ+ + =  

rescaled with 
H

a a
R

→  

( )2 2 21' 0
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Conformal Friedmann equations 

In conformal time η, dd t
a

η = , with comoving distance in η:  

( ) ( )
0

1 1

d d
t

t

tc c
a t

η

η

χ η η= =∫ ∫ , or with redshift 1 1z
a

= − : ( ) ( )0

dz zz c
H z

χ = ∫ , follow the 

Friedmann conformal dimensionless equations [2] [3] [4] after rescaling 
H

a a
R

→ , 

c = 1, conformal Friedmann equations: 
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2 2

4'' 3
33H

kc a G c aa c P a
R c

ρ Λ
− +

π
+ =  

and rescaled conformal: 

( )
4

2 2 41'
3 3

crHaa ka aρ
ρ

Λ
+ = +  scF1 

( )2 2
21

2

'
3 3

crHa ak a
a

ρ
ρ

Λ
= − + +   (4a) 

( )
3

3 1'' 3
6 3
crH aa ka P aρ

ρ
Λ

+ = − +  scF2             (4b) 

Friedmann radial equation 
It is convenient to reformulate the first Friedmann equation in the form of 

velocity-potential equation, which we call here Friedmann radial equation [1] [2] 
[3] [4] [9]. 

We get the Friedmann radial equation  

( )2 2
2 0

3
s mK Ka a k

aa
Λ

− − − + =                   (5) 

it follows the potential form ( )
2

2
a V a k
c

+ = −
  with c = 1 

( ) 2
2 3
s mK KV a a

aa
Λ

= − − −  
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with Planck data we have  
260.423 10 mmK = × , 48 21.01 10 msK = × , 52 21.1 10 m− −Λ = ×  

dimensionless 

1 ,0 0.309m m H mK K R= = Ω =  

2 4
1 ,0 ,0 ,0 0.54 10 0.0012 0.00125s s H radK K R γ ν

−= = Ω = Ω +Ω = × + =  

2 2
1 1.1 1.37 2.06HRΛ = Λ = × =  

from this we get the dimensionless Friedmann radial equation  

( )2 21 1 1
2 0

3
s mK Ka a k

aa
Λ

− − − + =                  (5a) 

2.2. Relative Density and Pressure (Relative to critc2
,0ρ ) 

In the following, we present the eos for the components radiation γ, neutrinos 
ν , electrons e, protons p, neutrons n, cdm d [2] [3] [4] [10] [11]. 

Relative density & pressure baryons b, CDM c, matter density ρm,r de-
pendent (Eth independent variable) 

With thermal energy th BE k T=  matter density 1
, 3

m
m r

K
a

ρ = , b = baryon, c = 

cdm (cold dark matter) 

( ),m r b caρ ρ ρ= + , ( ) ,0
, ,

,0 ,0

b
b m r m r

b c

ρ ρ ρ
Ω

=
Ω +Ω

, ( ) ,0
, ,

,0 ,0

c
c m r m r

b c

ρ ρ ρ
Ω

=
Ω +Ω

, 

we have for the pressure before (1) and after (2) nucleosynthesis 

( ),2 2, th
b b th b

p

EP E
m c

ρ ρ= , ,th c nsE E>  ideal gas, 2 0.938 GeVmp pE m c= = , 

using today’s He-H-ratio ,
4 0.25He He

H He
H H

nY
n

ρ
ρ

= = = , 4 0.25He He

H H

n
n

ρ
ρ

= =  

,
,1 2 2

,

1 4
0.85

1
H He th th

b b b
H He p p

Y E EP
Y m c m c

ρ ρ
+

= =
+

, ,th c nsE E< , , 100 keVc nsE = , 

with the soft-1-0-step function for state-transition at ns = nucleosynthesis with 
transition energy , 100 keVc nsE =  (see chap. 9) we get the pressure 

( ) ( ) ( ) ( )( ) ( ),2 ,1 ,2 1 0 , 0 ,, , , , , ,b b th b b th b b th b b th th c ns c nsP E P E P E P E E E Eρ ρ ρ ρ δ−= + − Θ , 

0 0.1δ = , 

( ), 0c c thP Eρ = . 

Relative density & pressure neutrinos 
We have for neutrino density and pressure before (1) and after (2) neutrino 

decoupling [12] with threshold energy , 1 MeVcE ν = : 

( )
2

,1 2
,0

,
th

b b
th

b th b b
crit p

En EcE
m c

ν

ν νρ ρ ρ
ρ

Ω
= = Ω , b bn nν ν= Ω  
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( ),2 2, th
b th b b

p

EE
m cν νρ ρ ρ= Ω , ,th cE E ν> , in thermal equilibrium,  

( )
3

. .
,1 2, c v c v

b th b b
thp

E EE
Em cν νρ ρ ρ

−
 

= Ω  
 

, ,th cE E ν<  decrease with 3~ a−
  

( ) 1
3

Pν ν νρ ρ= , parameters today 9
,0 10ν

−Ω ≈ , ,0 1.95 KTν = ,  

4
, 0 ,0

1.95 K 0.026 eV 1.69 10 eV
300 Kth BE k Tν ν

−= = × = × , it follows  

2 9
,0 ,0 5

, 4
,0 ,0 ,0

10 0.938 GeV 1.13 10
0.049 1.69 10 eV

p
b

b b B

m cn
n k T
ν ν

ν
ν

−

−

Ω
Ω = = = = ×

Ω ×
. 

Relative density & pressure photons 
The Stefan-Boltzmann law gives  

( ) 4T aTρ = , 16
3 4 3 4
J MeV7.56 10 4.717

m K m K
a −= × =

⋅ ⋅
, 

4

3 3

451.9 Bka
c h
π

=   (6) 

( ) 4
th SB thE a Eρ =  

( )

( )

16

3 3 4 4 3 323

76
20

3 3 3 3 318

207.6 7.56 10 1
J m1.38 10

2.08 10 1 10.856 10
eV m eV m6.24 10

SB
B

aa
h c k

−

−

×
= = =

⋅×

×
= = ×

⋅ ⋅×

π

 

20 11 11
,03 3 4 3 4

1 1 GeV 10.856 10 0.856 10 0.178 10
eV m eV m eVSB Ecrita ρ= × = × = ×

⋅
 

11
0 4

,0

1 0.178 10
eV

SB
SB

Ecrit

aa
ρ

= = × . 

Before photon decoupling the photon energy density is 

( ) 4
0th SB thE a Eγρ = , ( ) 1

3
Pγ γ γρ ρ=  

after photon decoupling at ,th c dcE E= , , 0.25 eVc dcE = , Planck 1090dcz = , it 
becomes 

( ) ( ) 4

,
,, c dc

th SB c dc

a t
a E a E

aγρ
 
 =
 
 

, ,th c dcE E< , ( ),
1 1

1 1091c dc
dc

a t
z

= =
+

 

at e-pair production and above photons lose energy and keep a mean energy  
2

eE m c≥ , 22th eE m c≈  

at p-pair production and above photons lose energy and keep a mean energy  
2

pE m c≥ , 22th pE m c≈ . 

Temperature jumps at phase transitions 
At recombination ,th c reE E= , , 0.29 eVc reE =  temperature goes up due to free 

electrons forming atoms with baryons, 
before recombination:  
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2b e bn n n n= + = , b en n= , 
( )
( )

,
,

c re
th c re

a t
E E

a t
= , ( ),

1 1
1 1271c re

re

a t
z

= =
+

,  

1270rez = , 13
, 1.16 10c ret = ×  

after recombination: Saha equation:  

( )
( )

( )
1 1 4

2
the e

e th
e H b th

f En nX E
n n n f E

− + +
= = =

+
             (7) 

( )( )1b e b e thn n n n X E= + = + , , 13.6 eVH reE =  

( ) ( ) , ,9
2 2

3 2 3 2
24 3 exp 2.26 10 expH re H reth th

th
th the e

E EE Ef E
E Em c m c

ζ η −      
= = ×      

    π  
. 

The equation for thE  after recombination with ,H H reE E= , 2
m eE m c=  is: 

0
,2

d d dd
d d d d

th th e th
H re

E E X EfE
a f a aa

= − − , 0
, 2

d d d1
d d d

th e th
H re

E X EfE
a f a a
 
+ = − 

 
 

with solution ( ),th aE a  [13] shown in Figure 1. 

( ), ,01 0.000663 eVth a thE E= = , ( )( ), ,1 1 0.2842 eVth a re re c reE a z E= + = ≈ . 

At nucleo-synthesis ,th c nsE E= , , 100 keVc nsE =  temperature goes up due to 
helium synthesis with energy released , 12 MeVHe nsE = , thermal energy beha-
vior is analogously for , ,c re th He nsE E E< < , 84 10rez = ×  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

, , , ,
, 2

, ,

, , , ,
2

,

4

3 4

, ,

3

1 0.021 exp
2

exp
2

c ns c ns c ns He ns
th c ns

p c ns c ns

c ns c ns He ns He ns

p He ns c ns c ns

a t E a t E a t
E E

a t m c a t E a t

E a t E a t
m c a t E a t

−

−

        ≈ + −        
       − −       

 

where the baryon temperature depends on the photon temperature  

( )' 8' 2
3

b
b b e T b

e b

maT T an T T
a m

γ
γ

ρ
σ

ρ
= − + −  with 

d'
d

aa
η

=  [14].  

 

 

Figure 1. Temperature after recombination ( ),th aE a  in eV.  
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Density electrons 
The density of electrons is described by the Peebles equation with the para-

meters 

( ) 2

2
rC T γ α

γ α αβ
Λ + Λ

≡
Λ + Λ +

, 1
2 8.227 sγ

−Λ = ,  

( )
( )

( )( )( )3
27

128 3 1 e b B I

H T

X n n k T E
α

γ
ζ

Λ =
−

, ( ) 3exp
4

I

B

ET
k Tαβ β

 
=  

 
,  

13.6 eVIE =  = hydrogen ionization energy, 1s ionization rate, ( )1 1s e bn X n≈ − , 

bn nγη= , 8
3 I

c
Eαλ
π

=
  Lyman wavelength,  

( )
2

2 2

3 2

exp
2

e B I

B

m c k T ET v
k Tc

β σ
   

= −   
 π 

 

( )
( )

12 2

22
9.8 logI I

B Be

E ET
k T k Tm c

αα
    

≈          
 

we get the Peebles equation ([4] 3.153) for the hydrogen ionization percentage 

( )
( )( ) ( )

( ) ( ) ( ) 2
2

1

3

22d 1 exp
d 1 2

2 3

e Bre I
e

B

b
B e

m c k TC TX EX
z H z z k T

nT k T X
nγ

ζ
α

   = − − −     +   

−

π

π





        (8) 

where  

( ) ( )0
3 2 11 1

1m
eq

zH z H z
z

 +
= Ω + +  + 

, 33
0 1.5 10 eVH −≈ ×  

( )1 0.235 eVT z= + . 

We get for the electron density before (1) and after (2) recombination 

( ),1 2, th
e b th b

p

EE
m c

ρ ρ ρ= , ,c epE E< , 2
, 511 keVc ep eE m c= =  

2 22 2
3

2 20.17 1.2 10b th b th
e

e e

n E n En
n nm c m cγ γ

α −
+

   
≈ = ×   

   
, ,0

,0
crit

b b
p

n
m
ρ

= Ω  

3 3 3
,0 0 ,0 ,0

3 3 3 3
,0 ,0

0.242 m 590
0.41 10 m

b th bb

th

n a E nn
n n na Eγ γ γ

−

− −= = = =
×

 scale-independent 

follows 
2 2

2 20.17 0.708e b th th

b e e

n n E E
n n m c m cγ

α+    
≈ =   

   
,  

( )
2

,2 2

2, 1 e th e
e b th b

b p

n E m cE
n m c

ρ ρ ρ +  +
= + 

 
, ,c epE E>  

due to Saha equation 
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( ) ( )( )

( )( )

,0 ,1 , , ,
,

, ,
,

1 1, , exp

1 1exp

e b th e b c re c re H re
c re th

e
b c re H re

p c re th

E t E E
E E

ma t E
m E E

ρ ρ ρ ρ

ρ

  
≈ −      

  
= −      

  

alternatively 

( )e b e thn n X E= , ( )
2

2
e

e b e th
p

m c X E
m c

ρ ρ=  

,c reE E< , , 0.29 eVc reE = , ( ), , ,0,b c re c re b ret E zρ = Ω ,  

,0 0.0486bΩ = , 1270rez = , ( ),
1 1

1 1271c re
re

a t
z

= =
+

. 

Fermi pressure electrons 
The pressure of electrons is the Fermi pressure PFe of a (spin_1/2) fermion gas 

( ) ( ), ,e e th Fe e thP E P Eρ ρ=  

with low- and high-density limits 1
1
5 FP np c= , 2

2
5 FP nE= . 

Fermi energy ( ) ( )22 2
F F eE p c m c= + , ( )2 1 3

3Fp c c nπ=   

( ) ( ) ( ) ( )( ) ( )2 2
2 1 2 1 0 0, , ,Fe e eP E P P P E m c m cρ ρ ρ ρ δ−= + − Θ        (9) 

2 10 3 3 3
,0 0.77 10 J m 0.484 10 MeV mcr crit cρ ρ − − −= = × ⋅ = × ⋅  

2 3 3
,0 ,0 3

,0 2
0.484 10 MeV m 0.047 0.0242 m

0.938 GeV
crit b

p
p

c
n

m c
ρ −

−Ω × ⋅ ×
= = =  

16 51.96 10 GeV m 1.96 10 eV mc − −= × ⋅ = × ⋅  
2

,0 3 3
,02

,0

0.0242 m 39.0 10 943.8pcrit e
e p e e e

b ee

mc
n n

mm c
ρ ρ

ρ ρ ρ−= = = × =
Ω

 

,0 ,0

339055.6pe
e e

p b e

mn
n m

ρ ρ= =
Ω

. 

For electrons we get the expressions 

( ),0
1 2

1

0

3

2 2
, ,0

201.781 1 1 1
5 5 5 5

p pe b eF F F
e e

crit p e ep p p

m mnnp c p c p cP
n m mm c m c m c

ρ
ρ ρ

ρ
 Ω    

= = = =           
 

( ) ( )22 2
,0

2 2 2
,0 ,0

2 1 1
5 5 5

F epe bF F
e

crit p ep p

p c m cmnnE EP
n mm c m c

ρ
ρ

+ Ω  
= = =       

 

( ) ( )

( ) ( )

( )

2
,0

5 2

1 3 1 3

1 3 1 3

1

3 3

3

3 33.91

1.96 10 eV m 3 0.947 10 m 33.91

201.78 eV

F e e

e

e

p c c n ρ

ρ

ρ

− −

=

= × ⋅ ×

=

π

π



 

( )1 3201.78 eVF ep c ρ= . 
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State transitions radiation γ, neutrinos ν , electrons e, protons p, neutrons n, 
cdm d.  

Generally, the density state transition from 1ρ  to 2ρ  at transition temper-
ature Tc (transition thermal energy c B cE k T= ) has the form  
( ) ( ) ( )2 1 2 1 0 , ,c cE E E Eρ ρ ρ ρ δ−= + − Θ ,  

with soft-0-1-step function ( )0 1
1, ,

1 exp
c c

c

c

E E E
E E

E

δ

δ

−Θ =
 −

+  
 

,  

with soft-1-0-step function ( )1 0

1 exp
, ,

1 exp

c

c
c c

c

c

E
E

E E E
E E

E

δ
δ

δ

−

 
+ − 

 Θ =
 −

+  
 

,  

where cEδ  is the standard deviation of cE . 

We can set approximately 0

0

c c

c c

E T T
E T T
δ δ δ

= ≈ , where (measured in CMB) 

,0 50

0 ,0

30 K 1.1 10
2.72 K

TT
T T

γ

γ

δ −∆ µ
= ≈ = × . 

2.3. Transition Thermal Energies and Eos 

-neutrino decoupling , 1 MeVcE ν = , , 1sct ν = , ( )1 , 1, ,c ctν ν νρ ρ= ,  

( )1, th thE Eνρ = , ( ) ( )

4

2, 1 ,
,

,th c
c

aE a
a tν ν

ν

ρ ρ
 
 =
 
 

; 

-e-p-annihilation  

, 0.5 MeVc epE = , , 6 sc ept = , 4
SB thn a Eγ =  for all t 16 2 47.56 10 J m Ka −= × ⋅ , 

4

3 3

451.9 Bka
c h
π

=  

( )( )1, ,e b e c ep en n t mρ += + , 2,e b en mρ =  with  
2 22 2

3
2 20.17 1.2 10b th b th

e
e e

n E n En
n nm c m cγ γ

α −
+

   
≈ = ×   

   
; 

-photon recombination  

, 0.29 eVc reE = , , 290 kyc ret = , ( )2 , 1 , , ,c re c re b c re c ren t Eρ ρ= +   

1,e b en mρ = , ,
2, 1,

1 exp
2

th c re
e e

th

E E
E

ρ ρ
− 

=  
 

; 

-photon decoupling  

, 0.25 eVcE γ = , , 370 kyct γ = , ( )1 , 1, ,c ctγ γ γρ ρ= ,  

( )1, th thE Eγρ = , ( ) ( )

4

2, 1 ,
,

,th c
c

aE a
a tγ γ

γ

ρ ρ
 
 =
 
 

; 

-nucleo-synthesis helium 
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, 100 keVc nsE = , , 3 minc nst = , 24p 2e He+ − ++ → , ratio 0.25He

p

ρ
ρ

= , eos 

transition 1 2→  with ideal gas 1
th

b th b
p

EP n E
m

ρ= = , ,c nst t< , with ideal gas 

( )2 ,1 ,10.75 0.25 4 0.81 0.81 th
b th b th b

p

EP n E n E
m

ρ= + = = , ,c nst t< .  

3. Parameters 

The simple ΛCDM model is based on seven parameters: physical baryon density 
parameter Ωbh2; physical matter density parameter Ωmh2; the age of the universe 
t0; scalar spectral index ns; curvature fluctuation amplitude As; and reionization 
optical depth τ, dark energy density ΩΛ. 

The parameters of the ΛCDM are given in the following table (Table 1). 
11 independent parameters: Ωbh2, Ωch2, t0, ns, 

2
R∆ , τ, Ωt, w, ∑mν, Neff(ν), As;  

7 fixed parameters r, dns/d lnk, H0, Ωb, Ωc, Ωm, ΩΛ;  
5 calculated parameters ρcrit, σ8, zdec, tdec, zre;  
13 total parameters Ωb, Ωc, t0, ns, As, τ, ΩΛ, w, ∑mν, Neff(ν), r, dns/dk, H0;  
derived parameters ρcrit, σ8, zdec, tdec, zre, ωb = Ωbh2, ωm = Ωmh2.  

 
Table 1. Planck Collaboration Cosmological parameters [15]. 

 Description Symbol Value 

Independent 
parameters 

11 

Physical baryon density parameter Ωbh2 0.02230 ± 0.00014 
Physical dark matter density parameter Ωch2 0.1188 ± 0.0010 

Age of the universe t0 13.799 ± 0.021 × 109 years 
Scalar spectral index ns 0.9667 ± 0.0040 

Curvature fluctuation amplitude, k0 = 0.002 Mpc−1 2
R∆  2.441 + 0.088 − 0.092 × 10−9 

Reionization optical depth τ 0.066 ± 0.012 

Fixed 
parameters 7 

Total density parameter Ωtot 1 
Equation of state of dark energy w −1 
Sum of three neutrino masses ∑mν 0.06 eV/c2 

Effective number of relativistic degrees of freedom Neff 3.046 
Scalar amplitude As (2.215 ± 0.13) 

Tensor/scalar ratio r 0 
Running of spectral index dns/dlnk 0 

Calculated 
values 5 

Hubble constant H0 67.74 ± 0.46 km·s−1·Mpc−1 
Baryon density parameter Ωb 0.0486 ± 0.0010 

Dark matter density parameter Ωc 0.2589 ± 0.0057 
Matter density parameter Ωm 0.3089 ± 0.0062 

Dark energy density parameter ΩΛ 0.6911 ± 0.0062 
Critical density ρcrit (8.62 ± 0.12) × 10−27 kg/m3 

Fluctuation amplitude at 8 h−1 Mpc σ8 0.8159 ± 0.0086 
Redshift at decoupling z* 1089.90 ± 0.23 

Age at decoupling t* 377,700 ± 3200 y 
Redshift of reionization (with uniform prior) zre 8.5 + 1.0 − 1.1 
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The additional parameters of the extended ΛCDM are given in the second ta-
ble (Table 2). 

Some specifications 
The amplitude As, is determined by the CMB power spectrum 

( )
1

2 2

0

sn

R s
kk A
k

−
 

∆ =  
 

, 1
0 0.05 Mpck −≈ . 

The relative current Hubble parameter is 0

100
Hh = . 

The fluctuation amplitude is defined by ( ) 18 8 Mpc
,mat R h
Rσ σ ρ −=

= , where  
( ) ( )stdev,mat matRσ ρ ρ=  smoothed by distance R ([2]). 
Key cosmological events 
Key cosmological events calculated from the ΛCDM model with temperature, 

energy scale and cosmic time are given below [4] [16] in Table 3. 
 

Table 2. Extended model parameters [15]. 

Description Symbol Value 

Total density parameter Ωtot 1.0023 + 0.0056 − 0.0054 

Equation of state of dark energy w −0.980 ± 0.053 

Tensor-to-scalar ratio r <0.11, k0 = 0.002 Mpc−1 (2σ) 

Running of the spectral index dns/dlnk −0.022 ± 0.020, k0 = 0.002 Mpc−1 

Physical neutrino density parameter Ωνh2 <0.0062 

Sum of three neutrino masses ∑mν <0.58 eV/c2 (2σ) 

 
Table 3. Key cosmological events ([4], chap. 2). 

Event Temperature Energy Time 

Inflation ends 1029 K 1016 GeV 10−35 s 

CDM decouples, GUT scale 1029 K 1015 GeV 10−36 s 

Baryons form 1016 K 1 TeV? 10−12 s 

El-weak force 1015 K 100 GeV 10−11 s 

Hadrons form 1012 K 150 MeV 10−5 s 

Neutrinos decouple 1010 K 1 MeV 1 s 

Nuclei form 109 K 100 keV 200s 

Atoms form 3460 K 0.29 eV 290 ky 

Photons decouple 2970 K 0.25 eV 370 ky 

First stars 50 K 4 meV 100 My 

First galaxies 12 K 1 meV 400 My 

Dark energy domination 3.8 K 0.33 meV 9 Gy 

Now 2.7 K 0.24 meV 13.8 Gy 
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4. Inflation 

The “naive” so called Hot-Big-Bang model has several aspects, which are in dis-
agreement with cosmological observations. 

Hot Big-bang problems  
- the observed homogeneity of the present universe (distances > 200 Mly) 

should arise from arbitrary initial conditions: horizon problem; 
- the observed curvature is small: flatness problem; 
- the observed correlation regions in the CMB have supraluminal distance: 

superhorizon correlations. 
Cosmological inflation  
In the approximation that the expansion is exactly exponential, the horizon is 

static, i.e. aH const
a

= ≈
 , and we have an inflating universe [17]. This inflating 

universe can be described by the de-Sitter metric [1] [2] [3] [5] 

( )2 2 2 2 2 2 2
2

1d 1 d d d
1

s r c t r r
r

= − − Λ + + Ω
−Λ

           (10a) 

For the case of exponential expansion, the equation of state is P ρ= − , with 
world radius  

( ) 0 exp
3

R t R ct
 Λ

=   
 

                   (10b) 

The expansion generates an almost-flat and large-scale-homogeneous un-
iverse, as it is observed today. 

Furthermore, horizon ( ) 11
HR a Ha −−= =  reaches a minimum at the end of 

inflation, and then rises again, this explains superluminal correlations in the 
present universe. 

Inflation in Ashtekar-Kodama quantum gravity [18] 
Inflation takes place between 351.61 10 mi pr l −= = ×  and 5

inf 3.1 10 mgrR r −= = ×  

with expansion factor 30
inf infexp 1.9 10

3
f r

 Λ
= = ×  

 
, 26

inf 2 10 mr −= × ,  

16
10

inf 26
inf

1.96 10 GeV 0.98 10 GeV
2 10 m

cE
r

−

−

×
= = = ×

×


, 34inf
inf 0.66 10 srt

c
−= = × ,  

2
inf 10 mR −= . 

Inflation with standard assumptions ([4], chap. 4) 
283 10 mir
−= × , 36

inf 10 st −= , 30
inf 10f = , 28

inf 10a −= , 2
inf 3 10 mR = × , 

inf infexp
3

f r
 Λ

=   
 

, ( ) 2
inf 60 2

inf

log
3 1.4 10 m

f
r

− 
Λ = = × 

 
,  

( )inf 29 1

inf

log
6.9 10 m

3
f

H
r

−Λ
= = = × . 

Assessment of the inflation factor ([3], chap. 4),  
f = end inflation, i = start inflation, eq = matter-radiation-equality, 0 = today, 

ER = f = expansion rate 
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( )
( )

expf

in

a t
N

a t
= , 

0

1log log
2

f eq

eq

T T
N

T T
   

+       
 ,  

1610 GeVfT  , 1eVeqT  , 4
0 10 eVT −
  

60N ≥ , 
( )

2

37060 360 10 s
8 ER ff

Tt
G TH t ρ

−
 

∆ ≥ ≈  
 π


. 

Inflaton model ( ),t xφ  with GR-action  
The action is ([3], chap. 4) 

( )4d EHS x g L Lφ= − +∫  

with the Einstein-Hilbert action of GR 

42 d
2EH

RS g x
κ
− Λ = − 

 ∫  

2
2EH

RL
κ
− Λ

=  

and the inflaton action 

( )4d
2
cS x g g Vµν

φ µ νφ φ φ = − ∂ ∂ − 
 ∫
   

( )
2
cL g Vµν

φ µ νφ φ φ= ∂ ∂ −
  

with energy-momentum ( )
2
cT c g g Vµν

µν µ ν µν µ νφ φ φ φ φ = ∂ ∂ − ∂ ∂ − 
 



   

( )
2

0
0 2

T c Vφ φ= +


 , ( )
2

2
j j

i iT c Vφδ φ
 

= − − 
 



 . 

For RW-metric the action is ( ) ( )
2

24
2

1d
2 2

S x g c V
a

φ φ φ
  

= − − + ∇ −     
∫



   

with eom = Klein-Gordon equation ( )d13 0
d

V
H

c
φ

φ φ
φ

+ + = 



  

which represents an oscillator with Hubble-friction 3Hφ  

and energy density ( )
2

2
c Vφ
φρ φ= +


 ,  

and pressure ( )
2

2
P c Vφ

φ φ= −


  (4.50). 

If ( )21
2kin potE E Vφ φ≡ ≡


, ( )

2

2kin potE c E Vφ φ= =


  , we have Pφ φρ≈ −  

i.e. equation-of-state of dark energy ΛΩ  generating temporary inflation.  

We get the Friedmann equations (radiation-matter density rmρ  added)  

( )
2

2

3 3 2E rmH c Vκ κ φρ φ ρ
 

= = + + 
 



                 (11a) 

( ) 2 4
2 2 3rm rm rmH P P cφ φ
κ κρ ρ φ ρ = − + − − = − − 

 


            (11b) 
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and the Klein-Gordon equation 

( )d13 0
d

V
H

c
φ

φ φ
φ

+ + = 



                   (11c) 

We get dimensionless 2 equations in Planck-units 351.62 10 mPll −= × ,  

( )
2

23
8 2rm H Vφρ φ= − −
π



 

Friedmann ( ) ( )
2 2 2

2 24 3 3 44 4
3 8 2 2 2 3

HH H V Vφ φφ φ φ
    

= − − − − = − − +        
π π

π  π

 

 . 

Klein-Gordon ( )d
3 0

d
V

H
φ

φ φ
φ

+ + =  . 

Slow-roll approximation 

If ( )21
2kin potE E Vφ φ≡ ≡


 or 1Hε  , 2H

H
H

ε ≡ −


 (slow-roll parameter 

1), and almost constant velocity, 1H H
φη
φ

= −






 (slow-roll parameter 2), we 

have persisting slow-roll condition 1Hε  , 1Hη   (slow-roll approxima-
tion), which yields approximate fundamental equations with approximations 

3H Vφ ′≈ −  and 23 8H GV≈ π  and 
2

2
1

2 16H
H V V

V H G VH
φε

′ ′ = − = − = 
π 





 and 

2
1

83H
V V

G VH H
φη
φ

′′ ′′ = − = =  
 π





 and for the scale factor  

( ) ( ) ( ) ( )exp d exp 8 d
in in

t t

in in
t t

Va t a t H t t a t G
V

φ
   

= = −      ′  
π


∫ ∫ . 

Square potential 
We use the square potential ( ) ( )2

1 2 0V c cφ φ φ= + − , 124
1 1.16 10c −= × , slow-roll 

condition: 1 2c c  with the minimum value ( ) 124
0 1 1.16 10V cφ

κ
−Λ

= = = ×  and 

26
inf 2 10 mr −= × , we get the following relations: 

( ) ( ) ( ) ( )exp d exp 8 d
in in

t t

in in
t t

Va t a t H t t a t
V

φ
   

= = −      ′  
π


∫ ∫  

( ) ( ) ( ) ( ) ( )
0

2
0 0

0

exp 4 d exp 2in ina t a t a t
φ

φ φ φ φ
 

= − =π 


π


∫  

( )
( ) ( )0 inf

1 1log log 3.31
2 2in

a t
f

a t
φ

 
= = =  π π   

( ) ( ) ( )

2

2

2
1 00

2 0

1 1 2 1 1
16 16 4H

V
cV

c

ε
φ φφ φ

φ φ

 
 ′   = = ≈   π π π  −+ − − 
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( ) ( )
2

2 2
1 2 0 0

21 1 1 1
8 8 4H

cV
V c c

η
φ φ φ φ

 ′′   = = ≈     + π− − π π
 

( )
2

23
8 2rm H Vφρ φ= − −
π



 

for t →∞ , 1 1cφ δ=  , 0H H= , 0φ φ→ , 2
0 1

3 0
8rm H cρ  = − = 

 π
, 

so condition for convergence is: 2
1 0

3
8

c H
π

= . 

The fundamental equations become 

Friedmann ( )
2

2 24 34
3 8 2

H H Vφφ φ
 

= − − − − 
π 


π



 ; 

Klein-Gordon ( )d
3 0

d
V

H
φ

φ φ
φ

+ + =  ;  

slow-roll 26H φ≈ − π  ; 
3 boundary conditions for 1Plt l= = : ( ) 11H H= , ( ) 11φ φ= , ( ) 11 dφ φ= ; 
with 3 potential parameters 1c , 2c , φ .  

Example: 1 0.05cδ = , 0 5H = , 0 2.3φ = , 1 3c = , 2 1c =  [13]. 
Below in Figure 2 and Figure 3 are inflaton amplitude and Hubble parameter. 

5. Background Calculations 

There are basically two possible ways for background calculation:  
-numerical solution of two Friedmann equations in two variables, calculating 

backward from boundary conditions at present time x0; 
-analytical solution, where the second equation is solved analytically, and in-

serted into the first, which gives an integral, which is calculated numerically. 
The numerical solution encounters the problem of limited convergence: it 

stops at some time xc. 
The analytical solution avoids the convergence problem, and this solution 

scheme is used in the calculation of results presented below. 
 

 

Figure 2. Inflaton amplitude ( )tφ . 
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Figure 3. Hubble parameter ( )H t .  

5.1. Numerical Solution 

We solve for dimensionless function variables , ra ρ , in dimensionless relative time 

variable 
H

tcx
R

= , limits 000 0.96x x≤ ≤ = , where the upper limit is the relative 

cosmic time today 0 0
00 0.96

H H

ct Rx
R R

= = = , from Planck data 9
0 13.9 10 yt = × , 

with boundary conditions: ( )0 ,0 ,0r m radxρ = Ω +Ω , ( )0 1a x = , ( )0' 1a x =  (be-

cause ( )0 HH x R= ) from ( )0' 1a x =  follows 0 0.0042k = −  which is compati-
ble with Planck data 

( )2 2 21
0' 0

3 ra k a aρΛ
+ − − =  sF1                 (3a) 

2
2

1
1''
3 2 3

crH r
r

aa a a Pρ ρ − Λ = − + 
 

 sF2              (3b) 

( ) ( )2 2 2
1'' 2 ' 2 0

2
crH

r ra a a k a P aρ
ρ+ + − Λ + − =  sF3         (3c) 

( )' ' 0
3
r

r r
a a Pρ

ρ+ + =  sF4                    (3d) 

The two independent (3c and 3d is derived) Equations (3a, 3d) are non-linear 
second-order differential equations quadratic in the variables , ra ρ . 

Alternatively, one can solve for function variables a, th BE k T= , the latter with 

thermal energy th BE k T= , photon density 4
0SB tha Eγρ = , ( ) 1

3
Pγ γ γρ ρ= , matt-

ter density m
mat b c r

s m

K a
K K a

ρ ρ ρ ρ= + =
+

, baryon density ,0

,0 ,0

b
b mat

b c

ρ ρ
Ω

=
Ω +Ω

, 

cold-dark-matter (cdm) density ,0

,0 ,0

c
c mat

b c

ρ ρ
Ω

=
Ω +Ω

 

( ) 2, th
b b th b

p

EP E
m c

ρ ρ= . 
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The additional equation for pressure is the equation-of-state (eos) for the 
pressure rP : ( ),r rP P a ρ= . 

Solution 1 
One solves numerically [9] [13] [19] (3ac) with boundary conditions  
( )0 1a x = , ( )0' 1a x =  as algebraic-differential equations for function variables a, 

th BE k T= . The solution exists until 1 0.14cx = , where numerical integration stops 
converging. 

Solution 2 
One solves numerically [9] [13] [19] (3ad) with boundary conditions  
( )0 1a x = , ( )0' 1a x =  as differential equations for function variables , ra ρ . The 

solution exists until 1 0.0196cx = , where numerical integration stops converg-
ing. 

Plot a(x) is shown below [13] in Figure 4. 
The solution limit 1 0.0196cx =  indicates the transition from matter-domi- 

nated to the radiation-dominated regime, which happens approximately at pho-
ton decoupling time 370 kyret = , 0.000026rex = . For 1cx x≤  solution is con-
tinued by pure radiation density ([13]). 

Solution 3 
One solves numerically [13] (3a) with boundary conditions ( )0 1a x = ,  

( )0' 1a x =  as differential equation for function variable a, with ansatz for  

4 3
s m

r
K K
a a

ρ = + . This is the usual solution method for background functions, used 

in CAMB [20] and in CMBquick ([21] [22]). 
The solution exists until 1 0.0055cx = , where numerical integration stops con-

verging, and the solution becomes complex (i.e. ( )Im 0a ≠ ). 
Plot a(x) is shown below [13] in Figure 5. 
The solution limit 1 0.0055cx =  indicates the transition from matter-domi- 

nated to the radiation-dominated regime, which happens approximately at pho-
ton decoupling time 370 kyret = , 0.000026rex = . For 1cx x≤  solution is con-
tinued by pure radiation density ([13] [20] [22]). 

 

 
Figure 4. The scale factor a(x) in dependence of relative time 

H

tcx
R

= , numerical solution 2. 
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Figure 5. The scale factor a(x) in dependence of relative time 

H

tcx
R

= , numerical solution 3. 

5.2. Analytic Solution  

The analytic solution scheme transforms the two basic equations into a parame-
terized integral ( )x a , which is the inverted scale factor ( )a x .  

In order to calculate the thermal energy, we apply an iteration, we calculate 

the temperature ( )thE a  from s
rad r

s m

K
K K aγ νρ ρ ρ ρ≡ + =

+
, using the solution 

( )a x  in the next iteration: ( ) ( ) ( ) ( )( )1n n n
th thE E a x+ = , as shown in the schematic in 

chap. 11.  
The zero iteration is the “naive” thermal energy ( )0

,0th thE E a= . 
The variables are scale factor and density , ra ρ .  
The boundary conditions are ( )0 ,0 ,0r m radxρ = Ω +Ω , ( )0 1a x = , ( )0' 1a x = , 

from ( )0' 1a x =  follows 0.0042k = −  which is compatible with Planck data 

( )2 2 21
0' 0

3 ra k a aρΛ
+ − − =  sF1                 (3a) 

( )' ' 0
3
r

r r
a a Pρ

ρ+ + =  sF4                   (3d) 

The two Equations (3ad) are non-linear first-order differential equations qua-
dratic in the variables , ra ρ . 

The third equation is the equation-of-state (eos) for the pressure rP : 
( ),r rP P a ρ= . 

The density and pressure have the form: relative energy density  

r b c eγ νρ ρ ρ ρ ρ ρ= + + + +  for baryons, photons, dark matter, free electrons, 

neutrinos, relative pressure r b c eP P P P P Pγ ν= + + + + , where radiation pressure 

3radP P P γ ν
γ ν

ρ ρ+
= + = , and matter pressure (neglecting electrons) is the ba-

ryon ideal gas pressure 2
B

mat b b
b

k TP P
m c

ρ= = , for under-nuclear temperature 

2 0.94 GeVB bk T m c =  the baryon matter is dust-like, i.e. pressure is almost 
zero. 
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The densities have the form  

r mat radρ ρ ρ= +  

m
mat b c r

s m

K a
K K a

ρ ρ ρ ρ= + =
+

, s
rad r

s m

K
K K aγ νρ ρ ρ ρ= + =

+
 

,0

,0 ,0

c
c mat

b c

ρ ρ
Ω

=
Ω +Ω

, ,0

,0 ,0

b
b mat

b c

ρ ρ
Ω

=
Ω +Ω

 

4
0SB tha Eγρ = , ,0

3a
ν

νρ
Ω

=   

We calculate the temperature ( )thE a  from s
rad r

s m

K
K K aγ νρ ρ ρ ρ≡ + =

+
(12a) 

i.e. ( ) ( )
1 4

1 4
,0

3
0

1 s
th r

s mSB

KE a a
K K aa a

νρ
Ω 

= − + 
           (12a1) 

and all the pressure becomes a function of a,  

( ) ( ),0
2

,0 ,0

, b ths m
r r rad mat r

s m s m b c b

E aK K aP a P P
K K a K K a m c

ρ ρ
 Ω

= + = +  + + Ω +Ω 
 (12b) 

i.e. ( ) ( ),0
2

,0 ,0

b ths mr

r s m s m b c b

E aK K aP P a
K K a K K a m cρρ

 Ω
= = +  + + Ω +Ω 

 

then we can integrate (3d) in a :  

( )( ) ( ) ( )
1

0

3'log ' d
3

a
r

r r r

P aaa a P a c
a
ρρ

ρ ρ
+ 

= + + = − +  
 

∫      (12c) 

and then can integrate (3a) in a :  

( ) ( ) 01
22

0

d
3

a

r
kx a a a a c
a

ρ
Λ

= + − +∫ ,             (12d) 

where 1c  and 2c  are set to fulfill the boundary conditions  

( )0 ,0 ,0r m radxρ = Ω +Ω , ( )0 1a x = , 
,0crit

ρ
ρ

Ω =  

5.3. Background Results 

Results for density and relative time in dependence of scale factor ( )r aρ , 
( )x a , are shown below [13]. 
Relative density in ,0critρ  units is shown over scale factor a, in double-loga- 

rithmic plot Figure 6. 
There is a critical point 40.5 10Ta −≈ × , where the density changes its beha-

vior, it coincides roughly with the critical point in temperature. The corres-
ponding time is 810Tx −≈ , thermal energy 1eVthE ≈ . 

The analytic solution yields directly the inverse scale factor function ( )x a , it 
shown in Figure 7. 
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Figure 6. The density ( )r aρ  in dependence of scale factor a, 

analytic solution. 
 

 

Figure 7. Relative time 
H

tcx
R

=  and scale factor a, analytic solu-

tion. 
 

There is a critical point at photon decoupling, 30.9 10deca −= × ,  
40.3 10 370 kydecx −= ×  , redshift 1090decz = , thermal energy 0.25 eVthE = . 

The scale factor changes its power-law dependence on time: 

( ) 1 2

,

,
dec

dec

x x x
a x

x x x

>≅ 
<

 

It is useful to compare the result for ( )x a  from the analytical solution and 
the standard CAMB solution ([13] [20]) Figure 8. The two curves separate 
roughly at 30.9 10deca −= × , the CAMB curve continues approximately linearly, 
whereas in the analytical solution time decreases quadratically, ( ) 2x a a≅ .  

The plots of density ( )r aρ  (blue) and radiation density ( )rad aρ  are shown 
in comparison below ([13]) in Figure 9. As expected, we have radiation domin-
ance roughly for deca a< , and matter dominance for deca a> . 

The Hubble parameter is approximately linear in x, as it should be. However, 
there is a small deviation at critical point 810cHx −≈ , scale factor 40.5 10cHa −≈ × , 
redshift 1 20000cHz a≈ ≈ .  

This is apparently responsible for the small correction of the present Hubble 
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constant H0, compared to CAMB solution. 
The plot of the Hubble parameter is shown in Figure 10. 

 

 

Figure 8. Relative time 
H

tcx
R

=  in dependence of scale factor 

a, analytic solution (blue), CAMB-solution (orange). 
 

 

Figure 9. The density ( )r aρ  (blue) and radiation density 

( )rad aρ  (orange), in dependence of scale factor a, analytic 
solution. 

 

 

Figure 10. The Hubble parameter ( )H x , in dependence of 

relative time 
H

tcx
R

= , analytic solution. 
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The “naive” temperature ( ) ( )0
thE a  from (12a) is compared to the iterated 

temperature ( ) ( )1
thE a  calculated from the first analytic solution in (12a1) is 

shown in Figure 11. The point of deviation is 40.5 10Ta −≈ × , the corresponding 
time is 810Tx −≈ , thermal energy 1eVthE ≈ . This point coincides roughly with 
the critical point in density Figure 6. 

Hubble parameter  
Baryon pressure correction 
Baryon pressure correction yields 0 0 01.043ct t t= , so 0 01.043cH H= , the cor-

rected Planck-value is 0 0 1.043 70.6 0.4Pc PH H= × = ± ; 

0 69.8 1.7RH = ±  Red-Giants Freedmann 09/21; 

0 73.04 1.04SH = ±  Cepheids-SNIa SHOES 12/21; 

0 67.66 0.42PH = ±  Planck 07/18. 
H0R Red-Giants is in agreement with corrected Planck within error margin. 
Assessed correction of the Cepheids-SNIa-measurement 
Cepheids-SNIa-measurement based on time-brightness calibration for small 

redshift z, peak power ( )max ~ ~cr bP T t m , with average nucleus mass bm  per-

centage of higher-mass nuclei at present: ( ) 1.04%r O = , ( ) 0.46%r C = , so 

( )
( ) ( ) ( )( )max

max

1
1 1.015

1
P z

r O r C
P z

≈ + + =




 so z-corrected Cepheids-SNIa becomes 

73.04/1.015 = 72. 0 0 1.015 72. 1.Sc SH H= = ± , which is at error margin. 

6. Relativistic Perturbations and the Perturbed  
Lambda-CDM Model 

The Lambda-CDM model is locally homogeneous, but during inflation the 
quantum fluctuations are “blown-up”, and the universe becomes inhomogene-
ous on small (galactic) scales and remains homogeneous on large scales. These 
local inhomogeneities generate structure, which we observe today. 

In order to reproduce these local inhomogeneities in the perturbed Lamb-
da-CDM model, we introduce small perturbations in the metric and in the den-
sity distribution. These perturbations are functions of conformal time η (defined  

by dd t
a

η = ), and space location vector ix , and are not random variables. 

The randomness is introduced by initial conditions for perturbations (see 
chap. 8). 

We introduce metric perturbations , ,i ijA B E  in the RW-metric [2] [3] [4] 

( ) ( ) ( )( )2 2 2d 1 2 d 2 d d 2 d di i j
i ij ijs a A B x E x xη η η δ= − + + + +        (13) 

and split-up in scalar, vector, tensor parts: 
scalar A 

ˆ
i i iB B B= ∂ + , scalar B, vector ˆ

iB  

( )ˆ ˆ ˆ
ij ij i j i j j i ijE C E E E Eδ= + ∂ ∂ + ∂ − ∂ + , scalar C E, vector ˆ

iE , tensor ˆ
ijE , 

where 3i
i

i
E C=∑  

Furthermore, we form the gauge-invariant Bardeen variables with 8 = 1scalar 
(A) + 3vector (Bi) + 4tensor (Eij) degrees-of-freedom (dof’s)  
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Figure 11. The naive temperature ( ) ( )0
thE a  compared to the iterated 

temperature ( ) ( )1
thE a , in dependence of scale factor a, analytic solution. 

 

( ) ( )A H B E' B E' 'Ψ = + − + − , ( )21
3

C E H B E'Φ = − + ∇ − − ,  

ˆ ˆˆ
i i iB E 'Φ = − , ˆ

ijE   

Since we have 6 Einstein equations, we can remove the 8 − 6 = 2 dof’s by 
gauge-fixing. 

▪ Newtonian gauge 0B E= =  

( ) ( ) ( )( )2 2 2d 1 2 d 1 2 d di j
ijs a x xη η δ= − + Ψ + − Φ  

A = Ψ , C = −Φ                      (6.30) 

▪ Spatially flat gauge C = E = 0  
▪ Synchronous gauge A = B = 0  
From now on, we use the Newtonian gauge. 
We get for the energy-density tensor 

( )0
0T ρ δρ= − +  

( )0
i iT P vρ= − +  

( )i i i
j j jT P Pδ δ= − + +Π , 0i

i iΠ = ∀                (14) 

The relativistic Euler equation is 

( ) ( ) ( ) ( )

2

2 2 2 22 2

1 d 1 d 0
d d1 1 1 1

i
i i

vc pp p v
t tv c c v c v c c v c

ρ   
   + + ∂ + =
   − − − −   

,  

The Euler equation in the RW metric becomes 

( )1 j
i i i i j i

P'v ' H v P
P P

δ
ρ ρ

 
= − + − ∂ + ∂ Π − ∂ Ψ + + 

       (6.76) 

where ijΠ  is the anisotropic stress with the decomposition 

( )ˆ ˆ ˆ
ij i j i j j i ijΠ = ∂ ∂ Π + ∂ Π − ∂ Π +Π              (6.39) 
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Finally, we get 10 fundamental equations: 
6 Einstein equations  
[4] 

( )2 23H H Ga δρ′∇ Φ − Φ + Ψ = π  

2 aH Ga
a H
′′

′Φ + Ψ =
′

π  

( ) 28 ,i j i jGa i j∂ ∂ Φ −Ψ = Π <π  

( ) ( )2 2 212 2
3

H H H H Ga Pδ′′ ′ ′ ′Φ + Ψ + Φ + ∇ Φ = π−Ψ + + Ψ    (15a-d) 

4 conservation equations: continuity +Euler  
[4] 

( )1 3 3i
i

P P Pv H δδ δ
ρ δρ ρ

   ′ ′= − + ∂ − Φ − −   
   

 

( )1 j
i i i i j i

P'v ' H v P
P P

δ
ρ ρ

 
= − + − ∂ + ∂ Π − ∂ Ψ + + 

       (15ef) 

( )i iq Pρ= + v , 
δρδ
ρ

=  decelaration conformal aq
a
′′

= −
′H

, 0
i iT q= ∂ , 

for 10 variables 4 scalar , , , Pδ δΦ Ψ , 3 vector iv , 3 tensor i
jΠ ;  

initial conditions 6 
Φ  2c, Ψ  1c, iv  3c, ( ), Pδ δ  0c; 
background parameters 

a
a
′

=H , aq
a
′′

= −
′H

, a , ρ , P .  

Fundamental equations in k-space ([14] Ma)  
In the following, we transform the fundamental equations via Fourier-transform 

into k-space. 

We use Newtonian gauge, conformal time η , 
d
d

aa
η

′ = , the metric in New-

tonian gauge reduces to 

( ) ( ) ( )( )2 2d 1 2 d 1 2 d di is a x xη η= − + Ψ + − Φ  

We get 4 Einstein equations in k-space 

( )2 23k H H Ga δρπ′Φ − Φ + Ψ =  

( ) ( )2 2k H Ga P ρ θπ′Φ + Ψ = +  

( ) ( )2 212k Ga P ρ σπΦ −Ψ = +  

( ) ( ) ( )2 2 212 2 4
3

H k H H Ga Pδ′′ ′ ′ ′Φ + Ψ + Φ + Φ − πΨ + + Ψ =   (16a-d) 

and 2 continuity-Euler equs in k-space 

( )1 3 3P P PH δδ θ δ
ρ ρδ ρ

  ′ ′= − + − Φ − −  
   

 density equ  
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2 2 2P PH k k k
P P

δθ θ σ
ρ ρ
′ ′ = − + − − + Ψ + + 

 velocity equ     (16ef) 

with the definitions 

δρδ
ρ

= , j jik vθ = , 

ˆ ˆ
3
i j

i j i jk k

P

δ

σ
ρ

 
− Π 

 = −
+

,  

where ˆ kk
k

=


 is the k-unit-vector, i
jΠ  anisotropic stress 

and the relations 

( )0
0T ρ δρ= − + , ( )0

i iT P vρ= + , ( )i i i
j j jT P Pδ δ= + +Π , 

0
0Tδρδ

ρ ρ
= = −  

0, 1,2,3i
i iΠ = = , i i k i

j j k jT T δΠ ≡ −  

j
jik vθ = , ( ) 0j

jP ik Tρ θ δ+ = , ( ) 1ˆ ˆ
3

i j i
ij jP k kρ σ δ + = − − Π 

 
.  

We have here 6 variables , , , , , Pθ σ δ δΦ Ψ , i
iP Tδ δ= , 0

0Tδρ δ= , which are 
functions of ( ),k η . 

7. Evolution of Distribution Momenta 

We introduce here density distribution momenta for density components radia-
tion γ, neutrinos ν , electrons e, baryons b, cold-dark-matter d. The densities 
acquire their random nature from random initial conditions, and have therefore 
a (Gaussian) probability distribution. These distribution momenta are used in 
the calculation of CMB spectrum in chap. 10. 

Evolution of distribution function momenta (Ma [14])  

We have for Newtonian gauge, conformal time η , 
d
d

aa
η

′ =   

( ) ( ) ( )( )2 2d 1 2 d 1 2 d di is a x xη η= − + Ψ + − Φ . 

Phase space distribution 
With phase space element 1 2 3

1 2 3d d d d d dx x x P P P  

( ) 1 2 3
1 2 3d , , d d d d d di

jN f x P x x x P P Pη=  particle number in element (32) 
( )1i iP a p= −Φ  co-moving disturbed momentum  

density distribution for matter fermions (Fermi-Dirac distribution +), density 
distribution for radiation bosons (Bose-Einstein distribution -)  

( )0 3
1,

exp 1

s

B

gf T
h

k T

ε
ε

=
 

± 
 

                 (17) 

energy 2 2 2 2 2a p m P a mε = + = + , temperature T, today temperature T0.  
We change variables: i

jx P  to i
jx q , and get the expressions: 

scaled momentum j j jq ap qn= = , unit momentum vector n̂  with 1i
in n =   

energy 2 2 2q a mε = + ; 
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change distribution ( ), ,i
jf x P η  to ( ), , ,i

jf x q n η .  
Finally we get for the neutrino distribution perturbation function ( ), , ,i

jx q nψ η  
(not equal to the metric perturbation Ψ ) 

( ) ( ) ( )( )0, , , 1 , , ,i i
j jf x P f T x q nη ε ψ η= +  (35) 

for the distribution of energy tensor  

( )( )0 4 2
0 0d d , 1T a q q f Tε ε ψ−= Ω +∫  

( )( )0 4
0d d , 1i iT a q qn f Tε ψ−= Ω +∫  

( )( )
2

4
0d d , 1i ji

j

n n q
T a q f Tε ψ

ε
−= Ω +∫  

Boltzmann equation in ( ), , ,i
jx q n η , with collision term Cf

η
∂
∂

 becomes 

i
i C

i
i

n fDf f x f q f f
d q nxη η η η η η

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

 

GR geodesic equation 0 d 0
d
PP P P

µ
µ α β
αβη

+ Γ =  gives 

( )d ,
d i i

q q q nε η
η
= Φ − ∂ Ψ  (39) 

and Boltzmann equation becomes 

( ) ( )0

0

d ln 1ˆ ˆ
d ln

Cf fqi k n i k n
q q f

ψ εψ
η ε η

  ∂∂
+ ⋅ + Φ − ⋅ Ψ = ∂ ∂ 

 

         (18)  

with fluid equations cdm 

3c c' 'δ θ= − + Φ , 2
c c

a'' k
a

θ θ= − + Ψ         (19a)  

Component evolution equations 
In the following we present the evolution equations for l-momenta in k-space 

for important components. 
Evolution equations massive neutrinos 
We have for (average) background density, pressure 

( )4 2
0d d ,h a q q f Tρ ε ε−= Ω∫ , ( )

2
4 2

0
1 d d ,
3h

qP a q q f Tε
ε

−= Ω∫  

the perturbations 

( )4 2
0d d ,h a q q f Tδρ ε ε ψ−= Ω∫ , ( )

2
4 2

0
1 d d ,
3h

qP a q q f Tδ ε ψ
ε

−= Ω∫  

( )0 4
0d d ,h i iT a q qn f Tδ ε ψ−= Ω∫ ,  

( )
2

0 4 2
0

1 1d d ,
3 3h i i j i j

qa q q n n f Tδ δ ε ψ
ε

−  Π = Ω − 
 ∫  

distribution perturbation function are developed in Legendre polynomials of the 
angle ( )ˆ ˆk n⋅  

( ) ( ) ( ) ( ) ( )
0

ˆˆ ˆ, , , 2 1 , ,l
l l

l
k n q i l k q P k nψ η ψ η

∞

=

= − + ⋅∑
 

 (54) 
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( )4 2
0 04 d ,h a q q f Tδρ ε ε ψ−= π ∫ , ( )

2
4 2

0 0
4 d ,
3h

qP a q q f Tδ ε ψ
ε

−π
= ∫  

( ) ( )4 3
0 14 d ,h h hP ka q q f Tρ θ ε ψ−π+ = ∫ ,  

( ) ( )
2

4 2
0 0

4 d ,
3h h h

qP a q q f Tρ σ ε ψ
ε

−+ =
π

∫ . 

Boltzmann equation yields for evolution of perturbation momenta  

0
0 1

d ln
d ln

fqk' '
q

ψ ψ
ε

= − −Φ , ( ) 0
1 0 2

d ln2
3 3 d ln

fqk k'
q q
εψ ψ ψ

ε
= − − Ψ  

( ) ( )( )1 11
2 1l l l

qk' l l
l

ψ ψ ψ
ε − += − +

+
, 2l ≥             (19b) 

truncating order maxl   

( )
max max max

max
1 1

2 1
l l l

l
qk

ε
ψ ψ ψ

η+ −

+
= − . 

Evolution equations photons 
We assume eγ −  Thomson scattering with the Thomson cross-section 

2d 1 cos3
d 16T
σ θσ +
=

Ω π
, 24 20.665 10 cmTσ

−= ×  

with ( )ˆ, ,F k nγ η  distribution total intensity 
with ( ), ,G k nγ η  distribution difference polarization components 
with collision terms 

( ) ( )( )0 2 0 2 2ˆ4e T e
C

F
an F F n v F G G Pγ

γ γ γ γ γσ
η

∂ 
= − + + ⋅ − + + ∂ 

  

( )( )2 0 2 2
1 1
2e T

C

G
an G F G G Pγ

γ γ γ γσ
η

∂   = − + + + −   ∂   
 

with expansion 

( ) ( ) ( )1 0 2 2
3

4 1 19 2 1
2 2

l
e T b l l

lC

F ian P G G P i l F P
k

γ
γ γ γ γ γσ θ θ σ

η

∞

=

∂    = − + − − − − +    ∂    
∑

 

( )( ) ( ) ( )2 0 2 2
0

1 1 2 1
2

l
e T l l

lC

G
an F G G P i l G Pγ

γ γ γ γσ
η

∞

=

∂   = + + − − − +   ∂   
∑ . 

Resulting fluid equations are then 

4 4
3

' 'γ γδ θ= − + Φ , ( )2 21
4 e T b' k k anγ γ γ γθ δ σ σ θ θ = − + Ψ + − 

 
  (19c1) 

and momenta evolution becomes 

( )

( )( )

2 3

0 2

8 3 92
15 5 5

1
10

e T b

e T b

F ' ' kF an

an G G

γ γ γ γ γ γ

γ γ γ

σ θ σ σ θ θ

σ θ θ

= = − − −

+ − +
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( ) ( ) ( )( )1 11
2 1l e T ll l

kF ' lF l F an F
lγ γγ γ σ− += − + −
+

, 3l ≥         (19c2) 

( ) ( ) ( )( )
( )

1 1

2
2 0 2 0

1
2 1

1
2 5

l l l

l
e T l l

kG ' lG l G
l

an G F G G

γ γ γ

γ γ γ γ
δ

σ δ

− += − +
+

  + − + + + +  
  

       (19c3) 

Evolution equations baryons 
We have the fluid equations 

3b b' 'δ θ= − + Φ , ( )2 2 24
3b b s b e T b

b

a'' c k an k
a

γ
γ

ρ
θ θ δ σ θ θ

ρ
= − + − − + Ψ  (19d1) 

with sound speed 2 d ln11
3 d ln

B b b
s

k T Tc
aµ

 = − 
 

, µ  mean baryon mass. 

The temperature equation becomes  

( )82
3b b e T b

e b

a'T ' T an T T
a m

γ
γ

ρµ σ
ρ

= − + −  

Before recombination tight-coupling bγ − , we have  

2 21
4b c ' k kγ γ γ γθ θ τ θ δ σ  − = − − − Ψ  

  
           (19d2) 

3
8 10 3

9 3
c ' kFγ γ γ γ
τ

σ θ σ = − − 
 

                (19d3) 

2 2 2 23 1 31
4 4 4

b b
b b s b

a'' ' c k k k
aγ γ γ

γ γ

ρ ρ
θ θ θ δ δ σ

ρ ρ
    = − + − + − + + Ψ           

  (19d4) 

8. Initial Conditions  

Initial conditions in k-space for density components (radiation γ, neutrinos ν , 
electrons e, baryons b, cold-dark-matter c) and metric perturbations ,Ψ Φ  gen-
erate the random (Gaussian distributed) inhomogeneities required for structure 
formation.  

Initial conditions k-space 
For Newtonian gauge in conformal time η , initial conditions are chosen in 

such a way, that only the largest order in kη  is present (Ma [14]) 

( )
40 2

3
C

Pγδ ρ
= − = − Ψ

+
 

3 3
4 4c b ν γδ δ δ δ= = =  

( )
2

210
15 4 2b c

C kk
Rγ ν
ν

ηθ θ θ θ η= = = = = Ψ
+

 

( ) ( ) ( )2
24

3 15 4 15
kC k

Rν
ν

η
σ η= = Ψ

+
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20
15 4

C
Rν

Ψ =
+

, 21
5

Rν
 Φ = + Ψ 
 

 

with neutrino density ratio R ν
ν

γ ν

ρ
ρ ρ

=
+

  

9. Structure Formation  

In the following, we present in concise form cross sections, reaction rates and 
densities for important cosmological particle processes [2] [3] [4] [11] [23]. They 
are used in the background eos equations in chap. 2, and in the evolution equa-
tions of density distribution momenta in chap. 7. 

Cosmic neutrino background 
The reaction is e e e eν ν + −+ ↔ + , e ee eν ν− −+ ↔ +  

with reaction rate 2 5
Fn v G TσΓ = ≈ , 5 21.2 10 GeVFG − −≈ ×  (3.58) 

and corresponding Hubbble rate 
2

Pl

TH
M

≈ , 
3

1 MeV
T

H
 Γ

≈  
 

, 

neutrinos decouple at , 1 MeVdTν = , , 1sdtν = , 

the number density 3 3 1d
exp 1

n a q
q

aT

ν

ν

−∝
 

+ 
 

∫ ,  

with 1T aν
−∝  for ,dT Tν ν> . 

Gamma pair production 
The gamma-pair production reaction is A e e Aγ + −+ → + +  [24] [25] 

with the cross-section ( )2 2 ,er Z P E Zσ α= , where Z = atomic number of materi-

al A, 
e

E
k

E
γ= , α  fine-structure-constant, and  

( )
3

22,
3

k
P E Z

k
 −π 

≈  
 

, 2 4k< < , 

( ) ( )28 218, ln 2 3.11ln 2 8.07
9 27 e

E
P E Z k

E
γ 

≈ − = − 
 

, 4k > , 

wih reaction rate n cσΓ = . 
Electron-positron annihilation 
The ep-annihilation reaction is e e γ γ+ −+ → +  shown in Figure 12. 

wih the cross-section  

( ) ( ) ( )
2

0 0 0
0

2 1 11 log 1 log
2 1 2e e

s
v
α α β βσ ω σ β σ β

β β ω+ −

   + + = + − − −       −    π 

π


 [24] 

 

 
Figure 12. e-p annihilation. 
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where ( ) ( )
2 4

2
0

3 1log 2 2
1s

α β βσ β β
β β β

  − +
= − − −  −

π

  
 Born cross-section, and 

Mandelstamm variables ( )2
1 2s p p= + , ( )2

1 3t p p= − , ( )2
1 4u p p= − , where  

( )221 4 mc sβ = − , 
1
1

z β
β

+
=

−
 

0ω  soft cut-off, 2
2

1
v β

β
=

+
 relative velocity, dof number  

7 112 4
8 2

2

e
S

e

T m
g

T m

 + × = ≥= 
 <

 with photons decoupling at , 0.5 MeVe dT = ,  

, 6 se dt = , duration 
2

18
, 10 se d

e

t
m
α −∆ = =  

1 34
11

T Tν γ
 =  
 

, ,e dt t>  after ep-annihilation, so ,0 2.73 KTγ = , ,0 1.95 KTν = . 

Planck data yield 0.13 eVi
i

mν <∑ , 0.003νΩ < . 
General photon eos 
For T > Tan in pair-production regime, we have in equilibrium (relativistic) 

( )
2

0
2

s
ασ β
β
π

= , ev
c

β =   

2 2 222 2 1ee e e
cn v n c

sγ
α ασ β
β β+ +

π  
Γ

π
= ≈ + 

 



 

2 22 2 3.1ln 8.1ee e ef
e

E
n c n c r Z

E
γ

γ γ γσ α
  
 Γ = ≈ −     

 with 1 b
ef

nZ
nγ

= , 24 ths E=  

ee eeγ γΓ = Γ  results 

2
2

2

2 2

3.1ln

4 1

e
eb

th
e

e

E
r

Enn E
n cc

v

γ

γ αα+

 
  
 =

 
+ 



π
π




, i.e. 2 4~ b
b th th

e

nn n E E
nγ

+

 , 

with thermal energy th BE k T= . 
In the black-body regime we have the Stefan-Boltzmann relation 4

SB thn a Eγ = . 
The positron density en +  results from equality of both nγ  from pair-pro- 

duction-annihilation and Stefan-Boltzmann 
2 22 2

3
2 20.17 1.2 10b th b th

e
e e

n E n En
n nm c m cγ γ

α −
+

   
≈ = ×   

   
. 

Thomson scattering ([26] Hu) 
We get density of free electrons  

( )32 5 31 1 10 cm
2
p

e e b b

Y
n X n h z − − 
= − ≈ Ω + × 
 

, ionization fraction 1eX ≈ ,  

where 0.24pY ≈  Helium mass fraction.  

The optical depth τ  results from the Thomson equation 
d
d e Tn aτ σ
η
= , 
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where 
2

25 2
2 6.65 108 cm

3T
em
ασ −π

×= =  is the Thomson cross-section in photon- 

electron scattering. 
Photons and neutrinos 
After photon decoupling we have the relation for neutrino and photon tem-

perature 
1 34

11
T Tν γ

 =  
 

                        (3.62) 

Hydrogen recombination ([4], chap. 2) 
For hydrogen recombination we have the reaction e p H γ− ++ → + , 

and number density 
3 2

2
2 exp ionH

ee

En
m T Tn

     =     


π

 
, 

with ionization energy 13.6 eVion p e HE m m m= + − = , , 13.6 eVH reE =  

and free electron fraction e e
e

p H b

n nX
n n n

≡ =
+

.  

The free electron fraction obeys Saha equation  

( ) 3 2

2 2

2 31 2 expe ion

ee

X E
m T TX

ζ
η

 −  =    


π

π 
 (3.78) ( )3 1.202ζ =  

where 
3

,0 9
9 3

,0

0.242 m 0.59 10
0.41 10 m

bb nn
n nγ γ

−
−

−= = = ×
×

, and baryon-photon ratio  

106 10η −≈ × . 

The solution is 
( )

( )
1 1 4

2
th

e
th

f E
X

f E
− + +

= ,  

( ) ( ) , ,9
2 2

3 2 3 2
24 3 exp 2.26 10 expH re H reth th

th
th the e

E EE Ef E
E Em c m c

ζ η −      
= = ×      

    π  
, 

with limits 

1f  , 
( )
1

e
th

X
f E

≈ , e bn n= , 1b

H

n
n
  

1f  , 1eX ≈ , e bn n= , 0Hn = , 

and recombination temperature 0.32 eV 3760 KrecT ≈ = , 290 kyrect ≈ . 
Photon decoupling 
The photon decoupling reaction is e eγ γ− −+ ↔ + , with reaction rate  

e Tnγ σΓ ≈ , 3 22 10 MeVTσ
− −≈ × , and decoupling temperature  

( ) ( )dec decT H TγΓ ≈ , ( ) ( )
2

3
3 2

0

0

2

2 3
m

e dec dec
T

H
X T T

Tζ ησ
π Ω

≈ , 0.25 eV 2970 KdecT ≈ =  

for 370 kydect ≈ .  

The Boltzmann equation is ( )f p ff F C f
t m p

∂ ∂
+ ∇ + ⋅ =

∂ ∂







, for reaction  
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1 2 3 4+ ↔ +  collision term is { } 1 2 3 4i j c c cC n n n n nα α β  = − +  , where c vα σ=  

thermally averaged cross-section, 1 2

3 4
c

eq

n n
n n

β
 

=  
 

 detailed balanced coefficient. 

From this follows cosmic Boltzmann equation with collision term 

( )
( )

3

1 2 3 43

d1
d

i
c

n a
v n n n n

ta
σ β= − −               (3.96) 

where the particle number is 3i
i i

nN n a
s

≡ ∝ , ( )
( )

1 3 41 1 2

3 4 1 2

d log
1

d log
eq

N N NN N
a H N N N N

  Γ  = − −     
, 

where 1 2n vσΓ ≡  (1,2) interaction rate.  

Dark matter cdm decoupling 
The reaction for cdm particle X, light particle l: X X l l+ ↔ +  with 

Boltzmann equation 
( )

( )( )
3

22
3

d1
d
X

X X eq

n a
v n n

ta
σ= − − , with 3

X
X

nY
T

≡  particles 

in co-moving volume, and reduced mass XMx
T

≡ , d
d
x Hx
t
= .  

Using ( )
( ) ( )

3
XX

X X

M vM
H M H M

σ
λ

Γ
≡ = , we get the Riccati equation  

( )( )22
2

d
d

X
X X eq

Y Y Y
x x

λ
= − − .  

The asympotic value is ,
f

X

x
Y

λ∞ ≈  with fx  reduced mass at freeze-out. 

The cdm density is 
( )

8 210 GeV~ 0.1 f
X

s X

x
vg M σ

− −

Ω  with reaction rate  

8 2~ 10 GeV ~ 0.1 Fv Gσ − −  (≈weak interaction). 

Baryo-genesis 
In the following we present important cosmological processes of nuclei, with 

density evolution equation, cross-section, and charasteristic (freeze-out) time. 
Neutron-proton decay 
The reaction here is en p eν + −+ ↔ + , en e p ν+ ++ ↔ +  with density ratio 

exp npn

p Beq

En
n k T

   
= −       

, ( ) 2 1.30 MeVnp n pE m m c= − = , and with n
n

n p

nX
n n

≡
+

 

relative n-abundance. 
For nX  we get the equation 

( ) ( )d 1 exp
d

npn
n n n

B

EX x X X
t k T

  
= −Γ − − −     

  

where  

( )
2

5
255 12 6

n
n

x xx
xτ

+ +
Γ = , np

B

E
x

k T
= , 886.7 0.8 snτ = ±  neutron lifetime.  

With freeze-out abundance , 0.15nX ∞ =  it becomes ( ) , expn n
n

tX t X
τ∞

 
= − 

 
.  
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Deuterium 

The density ratio is 
3 2

2 2

, 2
3 4 exp
4

npDD
n eq

p Bp Beq

En cn
n k Tm c k T

    
=            

π



 , with  

( ) 2 2.22 MeVnpD n p DE m m m c= + − =  and temperature 0.06 MeVnucT =  at 

( ) 1D
nuc

p eq

n T T
n

 
= =  

 
, the corresponding time is 

2
0.1 MeV 120 s 330 snuc

nuc

t
T

 
= ≈ 
 

.  

Helium  
The reactions are 

3D p He γ++ ↔ + , 3 3H p He n++ ↔ +  

3D D H p++ ↔ + , 3 4H D He p++ ↔ +  

3D D He n+ ↔ + , 3 4He D He p++ ↔ +  

helium-hydrogen ratio is then  
( )
( )

24 4 ~ 0.25
1

n nucHe He
P

H p n nuc

X tn nY
n n X t

= = ≈
−

, which is observed. 

Lithium beryllium  
The reactions are 

7 7Be n Li p++ ↔ + , 7 4 4Li p He He++ ↔ + , 7 7
eBe e Li ν−+ ↔ +  

3 4 7He He Be γ+ ↔ + , 3 4 7H He Li γ+ ↔ + . 
Hydrogen recombination  
The process of hydrogen recombination is shown in Figure 13. 
We have the Peebles equation for free electron density Xe with an improved 

calculation in redshift z [27] 

( )
( )( ) ( )

( ) ( ) ( ) 2
2

1

3

22d 1 exp
d 1 2

2 3

e Bre I
e

B

b
B e

m c k TC TX EX
z H z z k T

nT k T X
nγ

ζ
α

   = − − −     +   

−

π

π





       (20) 

 

 
Figure 13. Hydrogen recombination state diagram [4]. 
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with  

( ) 2

2
rC T γ α

γ α αβ
Λ + Λ

≡
Λ + Λ +

,  

( )
( )

( )( )( )3
27

128 3 1 e b B I

H T

X n n k T E
α

γ
ζ

Λ =
−

,  

1
2 8.227 sγ

−Λ = ,  

8
3 I

c
Eαλ
π

=
  Lyman wavelength, ( ) 3exp

4
I

B

ET
k Tαβ β

 
=  

 
,  

( )
( )

12

22

2

9.8 logI I

B Be

E ET
k T k Tm c

αα
   

≈    
   

,  

( ) ( )0
3 2 11 1

1m
eq

zH z H z
z

 +
= Ω + +  + 

,  

33
0 1.5 10 eVH −≈ × , ( )1 0.235 eVT z= + . 

10. CMB Spectrum 

In this chapter, we present first in concise way the contributions to the temper-
ature anisotropy of the cosmic microwave background CMB. 

Then we describe the scheme for the calculation of the CMB spectrum coeffi-
cients Cl. 

The schematic of the calculation is shown in chap. 11. 
Finally, we present the self-calculated results and a comparison with data. 

10.1. CMB Spectrum Theory 

CMB spectrum today  
CMB as measured today has the parameters [28]: 

temperature ,0 2.7255 0.0006 KTγ = ± . 
CMB dipole is around 3.3621 ± 0.0010 mK 

relative density 56 10γ
−= ×Ω  

temperature anisotropy ,0 30 KTγ∆ ≈ µ , so ,0 5

,0

30 K 1.1 10
2.72 K

T
T

γ

γ

−∆ µ
≈ = × . 

Temperature anisotropy 
The temperature anisotropy of the CMB has the following contributions: 

( ) ( )( ) ( )( )0

**
*

1ˆ ˆSW Dop ISW d
4 b

T n n v
T

η
γ η

δ δ η
   ′ ′= = + Ψ + = − ⋅ + = Φ +Ψ  

  
∫

  (7.29) 

at conformal time * decη η η= = . 
▪ SW The first term is the so-called Sachs–Wolfe term. It represents the in-

trinsic temperature fluctuations associated to the photon density fluctuations 
4γδ  and the metric perturbation Ψ  at last scattering. 

▪ Doppler The second term is the Doppler term ˆ bn v⋅   caused by local veloc-
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ity, this contribution is small on large scales.  
▪ ISW The last term describes the additional gravitational redshift  

( )0

*
d

η

η
η ′ ′Φ + Ψ∫  due to the evolution of the metric. 

The temperature anisotropy has the form 

( ) ( )
( )

( )( ) ( ) ( ) ( )( )
3

* * *3
dˆ ˆ ˆ ˆexp , ,
2

T kn n ik nct F k i k n G k
T
δ η η ηΘ ≡ = ⋅ + ⋅

π
∫

   

, 

where ( )*
1,
4

F k γη δ = + Ψ 
 



, ( )*, bG k vη =


, ( )
( )

( )
*

*

,

0,

F k
F k

R k

η

η
=

=




,  

( )
( )

( )
*

*

,

0,

G k
G k

R k

η

η
=

=




 and ( )0,R kη =



 are the initial curvature anisotropies. 

We get for the anisotropy the series in Legendre polynomials  

( ) ( )
( )

( ) ( ) ( )
3

3
dˆ ˆ2 1 0,
2

l
l l

l

kn i l k R k P k nΘ = + Θ ⋅
π

∑ ∫
 

 

with the transfer function including ISW  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )0

*
* * * * dl l j j jk k F k j k G k j ' k j ct k

η

η
χ χ η η′ ′Θ = Θ = − + Φ +Ψ∫ , 

with ( )* *ctχ η= . 
The two-point temperature correlation (scalar TT-correlation) spectrum meas-

ured in CMB is ( ) ( ) ( )ˆ ˆC n nθ ′= Θ Θ , with directions ˆ ˆ,n n′ , angle ˆ ˆcos n nθ ′= ⋅ , 
and the series in Legendre polynomials  

( ) ( )2 1 cos
4 l l

l

lC C Pθ θ
π
+

=∑   

with series coefficients lC   

( ) ( ) ( ) ( ) ( )1 2 2
1

d2 d cos cos 4l l l R
kC C P k k
k

θ θ θ
−

Θπ= = ∆π∫ ∫        (7.6) 

where ( )
1

2

0

sn

R s
kk A
k

−
 

∆ =  
 

 is the power amplitude, and where sound horizon is 

( )( )
d

3 1
sr

R

η

η
=

+
∫ , with curvature ( )R η . 

Weinberg semi-analytic solution [29] 
Weinberg proposed a semi-analytic solution for photon density perturbations 

( ) ( )

( )( )
( )( ) ( )( ) ( )1 4

4 0, cos 1 3 ,
5 1 ,

s
S k

R k kr k R k T k
R k

γδ η θ η
η

 
 = = + − + 
 +
 

 



  

with Weinberg semi-analytic transfer functions for SW and Doppler with  

( ) ( )

( )( )
( )( ) ( ) ( )1

2

* * *2
*

*

4
1 exp cos 3 ,
5 1 ,

s
D

S kkF k kr k R k T k
k R k

θ η
η

 
  = − + −  
  +
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( ) ( )

( )( )
( )( )

2

* *2
*

1

*

4
3 exp sin

5 1 ,
s

D

S kkG k kr k
k R k

θ
η

 
= − − + 

  +


 where 

1
* 8.8 MpcDk − =   

and the resulting CMB power spectrum 
( ) 2

2 2 2
* *22 2

* * *1

1 d 1
2 1

l R
l l l l lC F Gβ β β β β

χ χ χββ β

∞  +      −
= + ∆       −      π 
∫  with 

( )* *ctχ η=   

where  

( ) ( ) ( ) ( )
( ) ( ) ( )

22 4 6

2 4 6

1 1.209 0.5611 5 0.1567

1 0.9459 0.4249 0.167
S

κ κ κ
κ

κ κ κ

 + + +
 =
 + + + 

 

( )
( )( )

( )
( ) ( ) ( )
( ) ( ) ( )

2 2 4 6

2 4

1

6

2

2

log 1 0.124 1 1.257 0.4452 0.2197

0.124 1 1.606 0.8568 0.3927
T

κ κ κ κ
κ

κ κ κ κ

+  + + +
 =
 + + + 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 4 6

2 4 6

1 2

8

1.1547 0.5986 5 0.2578

1 1.723 0.8707 0.4581 0.2204

κ κ κ
θ κ

κ κ κ κ

 + +
 =
 + + + + 

.  

Calculation of CMB spectrum coefficients Cl ([30] Hu) 
The temperature and photon polarization Stokes parameters anisotropy are 

expanded in a series in angular momentum (l, m),  

( )
( )

3 2

3
0 2

dˆ, ,
2

lm lm
l m

kx n Gη
∞

= =−

Θ = Θ
π
∑ ∑∫

                (21a) 

( )( )
( )

( )
3 2

3
0 2

dˆ, ,
2

lm lm lm
l m

kQ iU x n E iB Gη
∞

= =−

± = ±
π
∑ ∑∫

  

with temperature (l, m)-moments 
( ) ( ) ( )*dm
l lmnY n nΘ = Θ∫

                    (21b) 

and with temperature basis functions 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
4 ˆ exp 4 2 1 ,

2 1
l l

lm lm l l
l

G i Y n ik x i l j kr Y
l

θ ϕ= − ⋅ = +π−
+
π ∑





,  

( ) ( ) ( ) ( )' '4 2 1 ,l
l m ll m lm

l
G i l j kr Y θ ϕπ= − +∑ , 

where  

( ) ( ) ( ) ( ) ( )0exp 4 2 1 ,l
l l

l
ik x i l j kr Y θ ϕ⋅ = − +π∑


 . 

In this representation, the spectrum coefficients Cl are  
( ) ( ) ( ) ( ), d *m m m m
l l l l ll mm lC

η
η δ δ′ ′

′ ′ ′ ′Θ Θ ≡ Θ Θ =∫            (21c) 

where the power spectrum on the angular momentum l is 

( ) ( )2 21
2T l

l l
l C T

+
π

∆ =  in μK2                (21d) 
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We use the variables: 

averaged pressure ( ) 4
2

0

8, dGV k a P
ka

η

η η δ
′

= −
π′ ∫ , ( ) 28, GV k a P

k
η δπ′ = −  

optical depth ( )
0

dT en a
η

τ η σ η
′

′ = ∫ , ( ) e Tn aτ η σ′ = . 

The temperature (l, m)-moments are calculated from the evolution equations 

0 0 1
12 1 2 3

m m
l l

lm lm l m lm lm' k ' S
l l
κ κ

τ+
+

 
Θ = Θ − Θ − Θ + − + 

          (21e) 

with sources 

00 00S 'τ ′= Θ −Φ , 10 0bS v kτ ′= + Ψ , 11 1bS v Vτ ′ ′= +  

( )20 20 20
1 6

10
S Eτ ′= Θ − , ( )21 21 21

1 6
10

S Eτ ′= Θ − ,  

( )22 22 22
1 6

10
S Eτ ′ ′= Θ − −Φ  

( )20 20 20
1 6

10
S Eτ ′= Θ − , ( )21 21 21

1 6
10

S Eτ ′= Θ − ,  

( )22 22 22
1 6

10
S Eτ ′ ′= Θ − −Φ  

( ) ( ) ( ) ( )( )
0

0
0

0

,
d exp

2 1
lm

l m ll m
l

k
S j k

l

ηη
η τ η η η′ ′

′

Θ
= − −

+ ∑∫   

and ll mj ′  are spherical Bessel functions 

( ) ( )00l lj x j x= , ( ) ( )10l lj x j ' x= , ( ) ( ) ( )( )20
1 3
2l l lj x j '' x j x= +  

( ) ( ) ( )
11

1
2

l
l

l l j x
j x

x
+

= , ( ) ( ) ( )
21

3 1 d
2 d

l
l

l l j x
j x

x x
+  

=  
 

,  

( ) ( )
( )

( )
22 2

2 !3
8 2 !

l
l

l j x
j x

l x
+

=
−

. 

10.2. CMB Calculation Results 

The metric perturbations ,Ψ Φ  in k-space for k = 5 are shown in Figure 14, as 
a function of relative scale factor eqa a , where 30.9 10eq deca a −= = ×  at photon 
decoupling. Note the transition from high to low amplitude at decoupling. 

Density fluctuations for baryons, radiation, cdm δb, δr, δc, for k = 5 are shown 
in Figure 15, as a function of relative scale factor eqa a . The matter fluctua-
tions decay before or after decoupling, whereas radiation fluctuation stabilizes at 
a higher level. 

The calculated normalized scalar TT-correlation power spectrum of CMB, 

( ) ( )2 21
2T l

l l
l C T

+
π

∆ = , is shown in Figure 16, in μK2 over multipole order l, cal-

culated for the original Planck Hubble value 1
0, 67.74 km s MpcPH −= ⋅ ⋅ . Note 
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the characteristic decrease from the first to the second maximum and from the 
third to the following maxima. 

 

 
Figure 14. Metric perturbations, Ψ, k = 5 [31]. 

 

 
Figure 15. Density fluctuations δb, δr, δc, k = 5 [31], double loga-
rithmic plot. 

 

 
Figure 16. Temperature scalar TT-correlation spectrum  

( )2 1
2 l

l l
y T C

+
=

π
, [ ] 2Ky = µ , x l=  [31]. 
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The background Hubble parameter H0 influences the CMB spectrum, but the 
deviation δ = 1.3% caused by the calculated correction from chap. 5 is within 
measurement error.  

The plot in Figure 17 shows the difference between the power spectrum for 

Planck-Hubble-parameter ( ) ( )2 2
0,

1
,

2T P l
l l

l H C T
π
+

∆ = , and for the background- 

corrected Hubble-parameter ( ) ( )2 2
0,

1
,

2T Pc l
l l

l H C T
+

∆ =
π

, where  

0, 0, 1.043 70.6 0.4Pc PH H= × = ± , with maximum deviation of δ = 1.3%. 

In Figure 18 is shown the scalar TT-correlation power spectrum from Figure 
16, together with measurement data and its error bars. 

 

 
Figure 17. Power TT spectrum Hubble correction, max rel.dev. δ = 1.3% 
[31]. 

 

 
Figure 18. Temperature scalar TT-correlation power spectrum with 
measured data [22] [31], for measurements Planck, WMAP, ACBAR, 
CBI, and BOOMERANG.  
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11. Concise Presentation  

In the following, we present the fundamental equations, the solution process and 
results in form of schematic diagrams for the background calculation and for the 
CMB calculation. 

Lambda-CDM background calculation: 
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Lambda-CDM CMB calculation: 
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12. Conclusions 

The results for the background part are presented in schematic form in chap. 11 
Lambda-CDM background calculation. 

We start with the Friedmann equations  

( )2 2 21' 0
3

a k a aρΛ
+ − − =  

( )' ' 0
3

a a Pρ ρ+ + =  

with the variables in dependence of the scale factor a (inverting the scalefactor- 
time relation ( )a a x= ,  

( )x a  time,  
( )i aρ  density of component i,  
( )thE a  temperature,  

for components radiation γ, neutrinos ν , electrons e, protons p, neutrons n, 
cdm d, where the pressure ( )iP a  is eliminated using the component eos 

( ),i i i thP P Eρ= . 
In difference to the conventional ansatz,  
-the temperature resp. thermal energy is introduced as explicit function of 

time ( )thE t ; 
-we use the ideal gas eos for baryons, instead of the usual setting 0bP =  

(dust eos). 
As we show in chap. 5, this leads to a correction of 4.3% for the present value 

of Hubble parameter 0 01.043cH H= , which brings it into agreement with the 
measured Red-Giant-result, and within error margin with the Cepheids-SNIa- 
measurement. 

We carry out an iterated calculation with two steps i = 1 and i = 2, the results 
are shown graphically in chap. 10.2. 

Note the deviation of the temperature from the conventional linear behavior 
(brown) to the calculated first-iteration-value (blue) for later times. This pro-
duces also a slight “bump” for the Hubble parameter ( )H a , and there is a 
slight “kink” in ( )x a . 

The results for the perturbation part are presented in schematic form in chap. 
11 Lambda-CDM CMB calculation. 

We start with the perturbed metric  

( ) ( ) ( )( )2 2d 1 2 d 1 2 d di is a x xη η= − + Ψ + − Φ  

perturbations , , , , , Pθ σ δ δΦ Ψ , where  
Pδ  pressure 

j
jik vθ =  velocity 

δ δρ ρ=  relative density 

( )1ˆ ˆ
3

i j i
ij jk k Pσ δ ρ = − − Π + 

 
 stress 

, , , thP a Eρ  are background functions calculated already in the background 
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part. 
And τ = reionization optical depth is a parameter used for the CMB calcula-

tion. 
The perturbations result from (random) initial conditions and represent the 

random nature of structure formation.  
The resulting fundamental equations are transformed to k-space (i.e. Fourier 

transformed), and consist of two parts. 
The Einstein equations in k-space resulting from the perturbed metric ansatz 

( )2 23k H H Ga δρπ′Φ − Φ + Ψ =  

( ) ( )2 2k H Ga P ρ θπ′Φ + Ψ = +  

( ) ( )2 212k Ga P ρ σπΦ −Ψ = +  

( ) ( ) ( )2 2 212 2 4
3

H k H H Ga Pδ′′ ′ ′ ′Φ + Ψ + Φ + Φ − πΨ + + Ψ =  

and the thermodynamic: density and Euler (relativistic fluid) equation, resulting 
from the relativistic Boltzmann transport equation 

( )1 3 3P P PH δδ θ δ
ρ ρ δ ρ

  ′ ′= − + − Φ − −  
   

 

2 2 2P PH k k k
P P

δθ θ σ
ρ ρ
′ ′ = − + − − + Ψ + + 

 

The CMB power spectrum coefficients Cl depend on the angular moments of 
temperature correlation lmΘ , which obey the iterative differential equation in 
k-space  

0 0 1
12 1 2 3

m m
l l

lm lm l m lm lm' k ' S
l l
κ κ

τ+
+

 
Θ = Θ − Θ − Θ + − + 

 

with parameters, which are calculated from the fundamental equations.  
The actual numerical calculation is performed in program [31], based on a 

function library from [22]. 
Then a fit is carried out between the calculated parameterized coefficients 
( )l iC p  and tthe measured values ,l expC . 

The 13 fitted parameters 

0 0
d, , , , , , , , , , , ,
d

s
i b c s s t

np t H A n w m N r
kν ντΛ

 = Ω Ω Ω Σ 
 

 are calculated by the Plan- 

ck collaboration [32], and are not recalculated here. 
The fitted [32] and measured coefficients Cl are shown in a plot. 
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