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∗  of Relativistic Form-Invariance 
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Abstract 
The inclusion of space-time in the extended group of relativistic form-inva- 
riance, *

3Cl , is specified as the inclusion of the whole space-time manifold in 
this multiplicative Lie group. First physical results presented here are: the geo-
metric origin of the time arrow, a better understanding of the non-simultaneity 
in optics and a mainly geometric origin for the universe expansion, and its 
recent acceleration. 
 

Keywords 
Space-Time Manifold, Invariance Group, Standard Model, Acceleration of 
Expansion 

 

1. Introduction 

The inclusion of space-time in the group of form-invariance of the relativistic 
quantum theory of the electron results from our previous works: 

1) We have expressed the Dirac theory of the electron in 3Cl , Clifford algebra 
of the 3-dimensional space [1] [2] [3]. 

2) We have extended the form-invariance of the Dirac theory from ( )2,SL   
to ( ) *

32,GL Cl= , where *
3Cl  is the multiplicative group of the invertible ele-

ments in 3Cl  [4]. 
3) The value of the quantum wave has been extended to ( )3End Cl , the Lie 

group of invertible linear applications in 3Cl , with its subgroup *
3Cl  as group of 

relativistic form-invariance, and the ( ) ( ) ( )1 2 3U SU SU× ×  group of the Standard 
Model as group of gauge invariance [5]-[15]. 

Nearly a Century Ago 

Early quantum physics, as soon as 1927, wrote in the framework of the Pauli’s 
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wave equation:  
3 1 2

1 2 3
1 2 31 2 3

x x x
x x x x .

x x x
i

i
σ σ σ

 −
= = + + 

+ − 

            (1) 

where the three jσ  matrices are the well-known Pauli matrices. The set ( )2M   
of the 2 × 2 complex matrices is isomorphic to the Clifford algebra 3Cl  of the 
3-dimensional space (see for instance [14] A.3 for more details). The center of 
this real algebra is isomorphic to  , this allows quantum physics to identify 

3Cl  and ( )2M  , the center being identified to the set of scalar matrices. 
Starting from the Pauli equation, P.A.M. Dirac wrote a relativistic wave equa-

tion [16] [17]. Since this equation uses time at the same level as space coordi-
nates, the relativistic invariance needs an extension of the previous inclusion in 

( )2M  :  

0 3 1 2
0 0

1 2 0 3

x x x x
x : x x x ; x : .

x x x x
i ct

i
µ

µσ
 + −

= = + = = 
+ − 

          (2) 

And then space-time is identified with the auto-adjoint subset of the Pauli al-
gebra 3Cl , which is the part of the M elements satisfying †M M= . We note x  
the co-matrix: 

0 3 1 2
0

1 2 0 3

x x x x
x : x x .

x x x x
i

i
 − − +

= − =  
− − + 

                (3) 

Thus the space-time metric satisfies:  

( ) ( ) ( ) ( ) ( )2 2 2 20 1 2 3xx xx det x x x x x .= = = − − −            (4) 

2. Form-Invariance of the Dirac Equation 

Let M be any nonzero element in 3Cl  (that means any fixed nonzero Pauli ma-
trix) and let R be the transformation of space-time into itself such that for any 
x  is associated x′  given by  

( )0x x x x x .' R M M′ ′= + = =
 †                   (5) 

We note, if ( )det 0M ≠ :  

( ) ( )det e  ,  det .iM r r Mθ= =                   (6) 

Then r is the modulus and θ  is an argument of the determinant of M. We 
get:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2 20 1 2 3

2 2 2 22 0 1 2 3

x x x x det x det x

e det x e x x x x .i i

M M

r r rθ θ−

′ ′ ′ ′ ′− − − = =

 = = − − −  

†

        (7) 

Therefore R multiplies any space-time distance by r and we name this trans-
formation “similitude with ratio r”. We name M the “dilator” of the similitude R, 
and we define the Rµ

ν  matrix of this similitude as follows:  
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x x .Rµ µ ν
ν′ =                          (8) 

For any dilator 0
a b

M
c d
 

= ≠ 
 

:  

2 2 2 20
02 0,R a b c d= + + + >                  (9) 

Thus 0x′  has the same sign as 0x  at the origin: the similitude R conserves 
the time arrow. Moreover, for any dilator M in 3Cl , we have (proof in [14] 
A.4.5):  

( ) 4det .R rµ
ν =                        (10) 

Hence if r is nonzero 4 0r > : ( )det 0R > . Thus R conserves the orientation 
of space-time and since the transformation conserves the orientation of time, R 
conserves also the orientation of space. Using only 3Cl  for the Dirac theory 
(see [14] 1.3) the linear Dirac equation is expressed as:  

†
21 21 2 1 3

0
0

ˆ ˆ ˆ0 ; : ; : ; : ,

: 1; : , 1, 2,3.j
j

qA m i

j

µ
µφσ φ φ φ φ σ σ σ σ σ

σ σ σ σ

= ∇ + + = = = − ∇ = ∂

= = = − =
     (11) 

The form-invariance of the Dirac equation results from:  

† ˆ; x x ; ; 
x'

M M M M M µ
µφ φ σ ∂′ ′ ′ ′= = ∇ = ∇ ∇ =

∂
         (12) 

Which gives:  

21
ˆ ˆ0 ,q A mφ σ φ φ′ ′ ′ ′ ′ ′ ′= ∇ + +                   (13) 

ˆ ; e .iqA Mq A M m r mθ′ ′ ′= =                   (14) 

We then have a double inclusion: space-time of special relativity is included in 

3Cl  and the ( )2SU  group of invariance of non-relativistic quantum theory is 
a subgroup of ( )2,SL  , itself a subgroup of ( ) *

32,GL Cl= , where *
3Cl  is the 

multiplicative Lie group of the invertible elements in ( )2 3M Cl= , itself Lie 
algebra of *

3Cl . Moreover *
3Cl  is a subgroup of ( )3End Cl , which is a group 

containing the ( ) ( ) ( )1 2 3U SU SU× ×  group of the Standard Model (see [14] 
Chapter 2 and Chapter 3). 

The only difficulty of (14), the eiθ  factor, is solved with the simplification of 
the Dirac Lagrangian containing ( ) ( )cos detψψ ρ β φ= = ℜ    where we have 
suppressed the cosine (see [14] 1.5). This gives our improved nonlinear wave 
equation:  

( ) 21
ˆ ˆ0 ,qA mφ φ σ φ φ ρ= ∇ + +                  (15) 

where the form-invariance of the wave equation results now from:  

( ) 21
ˆ ˆ0 ,q A mφ φ σ φ φ ρ′ ′ ′ ′ ′ ′ ′ ′ ′= ∇ + +                (16) 

ˆ; ; .M qA Mq A M m rmφ φ′ ′ ′ ′= = =                (17) 

And since each interesting solution of the Dirac equation has values in *
3Cl  

(see [14] 1.5.3 and 1.5.7), we may suppose the inclusion of the space-time mani-
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fold itself in *
3Cl . This hypothesis also relies on the experimental building of 

geometry, by telescopes which are turned before each observation: the invariance 
under rotation is always assumed [18] and since quantum mechanics replaces 
the invariance under rotation by the invariance under ( )2SU , the invariance 
under a subgroup of *

3Cl  is necessarily at the center of the geometry of the un-
iverse. Moreover, space-time is a 4-dimensional manifold, thus 3Cl , which is 
8-dimensional, is large enough to host the space-time manifold. 

3. Space-Time Manifold in Cl3
∗  

3.1. Local and Global Structure of Space-Time 

Since any measurement of length is always a measurement of the ratio between 
two lengths, we let  

3
x: ; ,
a

Cl
l

= ∈x x                         (18) 

where a Pl lα=  is an absolute length, linked to the fine structure constant α  
and to the Planck length Pl  [15]. The first difference with classical geometry is 
that the origin of the measure of time and space is at 1=x  (neutral element of 
the Lie group), not 0 which is the neutral element of the Lie algebra. Second, 

3Cl  is the Lie algebra of the *
3Cl  multiplicative group. This means that the vi-

cinity of any point O is isomorphic to 3Cl . This set is a linear space which con-
tains two subsets: *

3Cl , which is the set of x  satisfying ( )det 0≠x , and the 
light cone, which is the set of x  satisfying ( )det 0=x . Third, these conditions 
exclude themselves, therefore the light cone is included in each (local) Lie alge-
bra, not in the (global) Lie group *

3Cl . Fourth, the only link between each Lie 
algebra and the whole Lie group is the exponential function, which we calculate 
as follows:  

( ) ( ) ( )2 2 21 2 3 1 2 3
1 2 3; ; 1,a b x x x x x xσ σ σ= + = + + + + =x u u  

( ) ( ) ( ) ( )1 1 1
2

n nn a b a b = + + + − − x u u               (19) 

( ) ( ) ( ) ( ) ( )
0

1exp e 1 e 1 e cosh sinh .
! 2

n
a b a b a

n
b b

n

∞
+ −

=

 = = + + − = +   ∑ xx u u u  (20) 

Thus the same unitary vector u  ( 2 1=u ) is used for x  and for ( )exp x . 
Moreover, we have:  

( ) ( ) 2det exp exp tr e .a= =      x x                 (21) 

Thus, with ( ) ( )1 2 3
1 2 3exp A B A B x x xσ σ σ= + = + + +x u  we obtain:  

( ) ( )( )2 2 2e det expa A B A B A B= = + − = −  x u u           (22) 

This implies that the light cone ( 2 2A B= ) is the boundary of the space-time 
manifold and that nothing exists outside this boundary, since 2e 0a > . From 
this sign we may see the purely local character of the classification of events in 
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five categories.1 We obtain:  

( ) ( )2 2

2 2
e ; cosh sinh .a A BA B b b

A B

+
= − + =

−

uu  

( ) ( ) ( )2 2 1ln ln ln ,
2

a A B A B A B= − = + + −              (23) 

( ) ( )1

2 2

1sinh ln ln ,
2

Bb A B A B
A B

−  
= = + − −    

− 
 

( )ln ; e .a ba b A B A B ++ = + + =                   (24) 

3.2. The EPR Paradox 

Two photons are emitted at the point-event O. We suppose, simplifying the cal-
culation, that they are emitted in two orthogonal directions, 1σ  and 2σ . They 
are absorbed at the same time 0y > , also to simplify the calculation. The pho-
ton emitted in the direction 1σ  is absorbed at the point-event:  

( ) ( ) ( )1 2 3
1 1 1 1 1 2 3 ,a b a y bx y b x xσ σ σ= + = + + + + +x u  

( ) ( ) ( )2 2 21 2 3 1 2 3
1 1 1 1 1 2 1 3 1 1 1; ; 1,a a y x x x x x xσ σ σ= + = + + + + =u  

( ) ( ) ( ) ( )
2 2 2 21 2 3 11 2 ,x y b x x x y b y b+ + + = + +            (25) 

( )
( )

( )

1 2 3
1 2 321

1 1 21
1 2 ; .

1 2

x y b x x
b b x y b y b

x y b y b

σ σ σ+ + +
= + + =

+ +
u  

The photon emitted in the direction 2σ  is absorbed at the point-event:  

( ) ( )1 2 3
2 2 2 2 1 2 3.a b a y bx bx y bxσ σ σ= + = + + + + +x u         (26) 

And we also have:  

( ) ( ) ( )2 2 21 2 3 1 2 3
2 2 2 1 2 2 2 3 2 2 2; ; 1,a a y x x x x x xσ σ σ= + = + + + + =u  

( ) ( ) ( ) ( )
2 2 2 21 2 3 21 2 ,x x y b x x y b y b+ + + = + +           (27) 

( )
( )

( )

1 2 3
1 2 322

2 2 22
1 2 ; .

1 2

x x y b x
b b x y b y b

x y b y b

σ σ σ+ + +
= + + =

+ +
u  

On the space-time manifold, the emission is at aO l A B= = +x u  while the 
photon emitted in the direction 1σ  is absorbed at the point-event  

( )1 1exp xaM l= =x . The photon emitted in the direction 2σ  is absorbed at 
the point-event ( )2 2exp xaP l= =x . The position of the point event P, seen 
from 1, is:  

( ) ( ) ( )0
2 2

1 2 1 2
exp exp x exp .

− −
=       x x x              (28) 

The position of the point event P, seen from M, is:  

 

 

1E being a given event, the five categories are: events on the future light cone of E; events on the past 
light cone of E; events inside the future light cone of E; events inside the past light cone of E; else-
where: all other events. 
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( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 21
2 1 2 1exp exp exp x exp exp x .

− −
=               x x x x     (29) 

The position of the point event M, seen from 1, is:  

( ) ( ) ( )0
1 1

1 2 1 2
exp exp x exp .

− −
=       x x x               (30) 

The position of the point event M, seen from P, is:  

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 22
1 2 1 2exp exp exp x exp exp x .

− −
=               x x x x    (31) 

And we have, since the determinant of a product is the product of the deter-
minants:  

( ) ( ) ( )2 21
2det e e e e e e ,a y a y ya y a a a y+ + ++ − − += =x  

( ) ( ) ( )2 22
1det e e e e e e .a y a y ya y a a a y+ + ++ − − += =x              (32) 

Therefore at each point-event, when a photon is absorbed at the local time 
a y+ , each observer sees the absorption of his photon as preceding, with the 
same length of time y, the arrival of the photon for the other observer: the ab-
sorption of the other photon is in the future of each observer, not at the moment 
of arrival. This strange result seems very similar to the fact that each observer 
sees any length shorter for a moving object: an observer in the moving object al-
so sees the other observer as moving, thus with shorter length. The paradox is 
that a measurement made on either of the particles apparently collapses the state 
of the entire entangled system and does so instantaneously, before any informa-
tion about the measurement result could have been communicated to the other 
particle. Our previous calculation shows the key of the paradox: the instantane-
ous character of the measurement is simply false, the “collapse” of the quantum 
wave only results from the supposition (without any mathematical proof) that 
this situation may be described by a tensor product of Hilbert spaces. Attention! 
We don’t deny quantum entanglement; we say that the paradox is only in the 
interpretation of this situation by a non-relativistic Hermitian theory, whereas 
physics must account for this: each “fixed” observer is journeying in time on the 
space-time manifold, even if he does not travel in space. 

The understanding of the true geometry of space-time simply requires the use 
of the space-time manifold itself, not merely the use of a flat tangent space-time 
at the particular point-event O. The main difference between the flat space-time 
of restricted relativity and the space-time manifold as part of the *

3Cl  Lie group 
is the fact that the light cone is not included in the manifold: it is the single 
boundary of the manifold, included only in the Lie algebra 3Cl . This was diffi-
cult to detect, because the only indication to see this inclusion was the two-valued 
representation of rotations in quantum mechanics. 

Einstein, Podolsky and Rosen said [19]: “From this follows that either: 1) the 
quantum-mechanical description of reality given by the wave function is not 
complete or 2) when the operators corresponding to two physical quantities do 
not commute the two quantities cannot have simultaneous reality. For if both of 
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them had simultaneous reality—and thus definite values—these values would 
enter into the complete description, according to the condition of complete-
ness.” 

Experiments with the polarization of two photons simultaneously emitted can 
neither prove (1) nor (2) because the absorption of these photons cannot be si-
multaneous at the points where each absorption is effective. The quantum wave 
used in [14], with value in ( )3End Cl , not only with value in  , is enough to 
prove that (1) was true in 1935, independently of what we now think about (2). 
More generally no contradiction can exist between general relativity and quan-
tum mechanics. Any apparent contradiction results from bad approximations of 
relativistic laws. 

3.3. The Time Arrow and the Expansion of the Universe 

Any point of the space-time manifold is at a position:  

( ) ( ) ( ) ( )exp ; e cosh ; e sinh .a a
a aX l a b l A B A b B b= + = + = =u u    (33) 

Then the time position ( )e cosha
al b  is the product of positive real numbers: 

time is an oriented quantity, the time arrow has a geometric root. The A varia-
ble goes from 0 to +∞. 

Now we consider a photon received at this position X, coming from a distant 
galaxy, for instance with the 1σ  direction. It was emitted at the position:  

( ) ( ) ( )1 2 3
1 2 3 1 1 1exp exp ,a al a y bx y b x x l a bσ σ σ − + − + + = +  u     (34) 

with2 

( ) ( ) ( )2 2 21 2 3 1 2 3
1 1 1 1 1 2 1 3 1 1 1; ; 1,a a y x x x x x xσ σ σ= − = + + + + =u  

( ) ( ) ( ) ( )
2 2 2 221 2 3 11 2 ,x y b x x x y b y b− + + = − +          (35) 

( )
( )

( )

1 2 3
1 2 321

1 1 21
1 2 ; .

1 2

x y b x x
b b x y b y b

x y b y b

σ σ σ− + +
= − + =

− +
u  

The photon was emitted at:  

( ) ( )1
1 1 1e cosh sinh .a

e ax l b b= +  u                (36) 

At this point-event the local time was ( )1 1 1
1e cosh e 2a a b

e a at l b l += ≈ . The 
same photon is absorbed at the point-event X, then at the local time  

( )e cosh e 2a a b
a a at l b l += ≈ . The only constant object of this geometry is the Lie 

algebra: each local tangent space, in each point of the manifold, is isomorphic to 
the Lie algebra of the group. We will then suppose that:  

( ) ( )1 1
d d

d d ; e a

e a

t t
a b a b

t t
+ = + =                  (37) 

And we have:  

 

 

2Since we now look at past, 1a a< . 
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d
.

d
a e

e a

t
t

ν
ν

=                           (38) 

In first approximation, 1b b≈ , we obtain:  

( )
( )

( )
( )

1
1d e cosh d e coshd1 1 1 .

1 d 1d e cosh ed e cosh

a a y
a aa e

a ya
e a aa

l b l a bt
z t yl a bl b

ν
ν

−  = = = ≈ = ≈
+ +  

  (39) 

This means that the redshift, previously interpreted as a Doppler effect, due to 
the expansion of the universe, is a direct effect of the geometry of space-time, 
and the z parameter, defined as ( )e a aν ν ν− , is almost equal to y. But this is 
true only as a crude approximation, or as a false velocity. When y is small this 
redshift seems proportional to y. The Hubble parameter (73.3 ± 1.4 km/s/Mpc) 
gives for the distance 1 Mpc the value 0.0002443z = , thus giving  

25e 2 6.3 10 ma b
aR l += ≈ × . 

Using the geometric condition (37), which results from the Lie algebra as the 
only fixed framework, independent from the space-time position on the mani-
fold, we may calculate more precisely the ratio d de at t  in the case where y is 
small. We have:  

( )
( )

( )
( )

( )
( ) ( )

1
1 1 1

d e cosh d e cosh e cosh 1
coshd e cosh d e cosh

a a y y
a

a a
a

l b b b
b f yl b b

− −      = = =
      

     (40) 

( ) ( )
( ) ( ) ( ) ( )2

1

cosh 0
: e 0 0

cosh 2
y b f

f y f yf y
b

′′
′= ≈ + + +          (41) 

We use:  

( ) ( )
21

2 1 2
1 : 2 ; 1 2 ,x yb bg y b x by y g y y

b b
 = = − + = − +  
 

 

( )
( ) ( )22 1 111

2 3
2 3

11
1 .

2 2

x xxxg y y y y
b b b

 −−   ≈ − + + +          (42) 

And we obtain:  

( ) ( )
1

ee = e
e

b
a yy

bf y ≈                       (43) 

( ) ( ) ( ) ( )22 1 11
1 2 3

1 2

11
1 ,

2 2

x xx
a y y b b x y y y

b b

 −−   = + − ≈ + − − +  

( ) ( ) ( ) ( ) ( ) ( )
1 11

1 2
2

3 11e 1 1 e .
2

a y a yx xxf y a y x y y
b b

 −− ′ ′≈ = + − − +
  

    (44) 

From values of the Hubble parameter and of al  we obtain 142a b+ ≈ . We 
only know that 0a b> > . The ratio a/b is unknown. If our position in the ma-
nifold is anywhere, for instance is ( )a b a a b+ ≈ , we could have 88a ≈  and 

54b ≈ . This should give a ratio B/A very close to 1. We now look at the accele-
ration or deceleration of the expansion. 
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3.4. Beginning of the Acceleration 

Defining h such that ( ) ( ):h y f y y=  the redshift seems accelerated if and only 
if h is increasing, hence if ( ) 0h y′ > . We obtain:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

2

22 1 11
1 2 3

2

1 e

3 11
1 1 e .

2

a y

a y

y h y yf y f y ya y

x xx
x y y y

b b

′ ′ ′= − ≈ −  
  −−   = − + + − − + 
 
 



  (45) 

For instance if 40b =  and 1 0.6x =  we have:  

( ) ( )2 2 31 1.6 0.016 0.00036 ea yy h y y y y ′ ≈ − + − − +          (46) 

Thus, in this case, ( ) 0h y′ >  if and only if  

0 0, 0.63.y y y> ≈                       (47) 

Moreover the sign of the coefficient of 3y  indicates a sign change for large y, 
but the method of calculation used here does not give the value of this new 
change of sign. 

Hence the acceleration of the expansion seems to begin near 0y , with possi-
ble differences depending on the directions of observation. And the expansion 
seems to decelerate for very large z. Thus there is no need for either black matter 
(but the movement of stars in galaxies and the movement of galaxies in galaxy 
clusters is another question) or repulsive gravity to explain all modern observa-
tions of cosmological redshifts. 

4. Conclusions 

The expansion of the Universe, as resulting of the geometry of the whole space- 
time, is much more satisfying than cosmological models issued from the hypo-
thesis of a homogeneous and uniform density of matter at a large scale: 

1) We obtain, without any other hypothesis than (37), an acceleration of the 
expansion with a beginning of this acceleration. 

2) Since the main part of the expansion is not linked to the density of matter, 
the cosmic microwave background is necessarily uniform, its non uniformity 
coming only from the non uniformity of the density of matter. This non-uni- 
formity is automatic since gravitation is highly nonlinear. 

3) The hypothesis of uniformity of the matter density at a very large scale is 
contrary to all observations of modern astronomers [20]. 

4) We know that there is not enough ordinary matter to satisfy an expansion 
ruled by gravitation, and no satisfying supplementary matter has been found. 
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Abstract 
This paper considers the diffusive properties of Brownian motion driven by 
an Ornstein-Uhlenbeck (OU) colored noise in a biased periodic potential 
corrugated by spatial disorders in the form of zero-mean random correlated 
potential. Through Langevin Monte-Carlo simulation, a giant enhancement 
diffusion is observed in a range of bias forces. Then, theoretical analysis based 
on the trajectory of a particle in the random correlated potential (RCP) is 
performed to investigate the transport phenomenon of particles. The effective 
diffusion coefficient is measured by the envelope width of the spatial distribu-
tion of the particle, and it becomes wider due to the emergence of the RCP. 
This is because the roughness of the potential causes a large proportion of the 
test particles to be locked or trapped. Furthermore, the positive-correlation 
characteristics of the OU noise are considered, and the optimal value of the 
effective diffusion coefficient is discussed. 
 

Keywords 
Diffusion, Enhancement Phenomenon, the Random Correlated Potential, 
Roughness 

 

1. Introduction 

The dynamics of Brownian particles in a biased periodic potential is a basic non- 
equilibrium model of statistical physics. It describes a surprising range of physi-
cal situations, including the Josephson junctions [1], diffusion of atoms and mo-
lecules on the crystal surface [2], superionic conductors [3], and cold atoms 
dwelling in optical lattices [4] [5]. This model is simple but has a rich phenom-
enology as a nonlinear stochastic system [6]. Diffusion of a particle driven by 
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white noise in the one-dimensional or two-dimensional biased periodic potential 
has been investigated in [7] [8] [9] [10], where the effective diffusion coefficient 
is greatly enhanced and even quantitatively larger than that in the case of free 
diffusion. The above results can be explained by a simple two-state theory, i.e., 
test particles exit a locked state or a running state and transfer between each 
other. However, some disorders should be imposed on such periodic potential to 
study more realistic reactions such as the protein folding, where the potential 
surface may have a hierarchical structure [11]-[16]. 

In recent decades, the random correlated potential (RCP), which is formed of 
wells and hills and whose location and magnitude are random quantities, attracts 
much attention [17]. It has been applied to various disordered media [18]-[24], 
especially the motion of colloidal particles in both experimental observation and 
numerical simulation [25]. The asymptotical behavior of a force-free particle in 
the RCP is sub-diffusion at a low temperature. This is caused by a reduction of 
the kinetic energy related to both friction and the RCP [26]. Meanwhile, it has 
been pointed out that a nail effect induced by the roughness in a metastable po-
tential leads to an opposite-Arrhenius decrease in the rate with the increase of 
rough intensity [27]. However, not all occurrences of RCP are harmful. Recent 
studies [26] [28] on the diffusion have indicated that roughness can help to sep-
arate the spatial probability peaks at many disordered barriers when the external 
tilted force approaches the critical value. So, the diffusion is enhanced, and the 
value of the effective diffusion coefficient is more pronounced than the peak 
value of the biased periodic potential. Moreover, this behavior has been observed 
experimentally when tracking the motion of colloidal spheres through a periodic 
potential [29]. 

During the last few years, significant progress has been made in understand-
ing diffusion in nonlinear systems driven by colored noise. This problem is crit-
ical not only because of its immediate relevance to numerous particular systems 
but also because the white-noise approximation is an idealization [30] [31]. The 
Ornstein-Uhlenbeck (OU) colored noise has been widely investigated and dis-
cussed. Especially, the correlation underlying the OU noise is exponential and 
non-negative [32], which implies that the noise stays in one direction and the 
direction of the following ones will likely remain consistent with it. In addition, 
the study [33] has demonstrated an enhancement for the effective diffusion coef-
ficient (Deff) of a particle driven by the OU noise in a one-dimensional and 
two-dimensional periodic potential. 

All these studies present interesting viewpoints and inspire our work. The 
diffusion of a particle driven by the OU colored noise in the biased and disor-
dered periodic potential might be related to the more complex and realistic 
processes. This paper aims to explore whether an enhancement phenomenon of 
a particle driven by the OU noise will appear. Meanwhile, it is important to de-
termine the contributions of the RCP superimposed on the potential to the dif-
fusion process. 
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The rest of this paper is organized as follows. In Section II, the dynamical eq-
uations to describe the over-damped particle driven by the OU noise and de-
tailed characterization of the RCP are presented. Then, a numerical study for the 
motion of a particle embedded in a biased disordered potential under a biasing 
external force is presented in Section III. Next, the roles of the parameters of 
RCP and the noise are studied. Finally, in Section V, some comments and con-
clusions are given. 

2. The Model 

This paper considers the motion of overdamped independent Brownian particles 
evolving in a quenched random potential ( )U x  and subject to a constant ex-
ternal force F. In a one-dimensional scenario, each particle obeys the Langevin 
equation:  

( ) ( )
dd ,

d d
U xx F t

t x
γ ε= − + +                     (1) 

( )d 1 2 ,
d

D t
t
ε ε ξ

τ τ
= − +                      (2) 

where x is the reaction coordinate, t is the time, γ  is the friction coefficient, F 
is the applied external force, D represents the intensity of noise; the Gaussian 
white noise ( )tξ  obeys ( ) 0tξ = , and ( ) ( ) ( )t t t tξ ξ δ′ ′= − ; the angular 
brackets denote statistical averages. 

The OU colored noise ( )tε  has a positive correlation function:  
( ) ( ) ( )1 expt t D t tε ε τ τ−′ ′= − − , where τ  is the correlated time of the OU 

noise. The OU colored noise will be reduced into the white noise when 0τ → , 
and the fluctuation vanishes if τ → ∞ . Figure 1 presents the stochastic trajecto-
ries of the OU colored noise under various correlated time. It can be seen that 
the OU noise exhibits a positive-correlation characteristic, which means that the 
particle needs more time to reach the stationary position, especially when the 
correlated time becomes longer. 

The potential ( )U x  consists of a fixed part and a spatially random part, i.e.,  

( ) ( ) ( ) ,f rU x U x U x= +                     (3) 

where the RCP rU  is characterized by its statistics properties. Its mean ( )rU x  
is set to zero, and its correlation function given by  

( ) ( )
2

0 2

0

exp ,
2

,
2

r r

x x
U x U x g

g

λ

ε
λ

 ′− −
′  

 


=
π

=
                (4) 

where the angular brackets indicate a spatial average. The characteristic length 
λ  and the effective intensity ε  are two basic parameters characterizing the 
RCP [26] [34]. The RCP can be generated by the method of discrete Fast Fourier 
Transform (FFT). 
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Figure 1. Typical trajectories for the OU noise under various correlated time. The corre-
lated time is 1τ =  (top panel), 100τ =  (middle panel), and 500τ =  (bottom panel), 
respectively. The parameters used is 0.5D = . 
 

The perturbation ( )rU x  will be eliminated if ( )U x  is spatially averaged, 
and only the smooth background remains. The average of total potential ( )U x  
over the realization of ( )fU x  is set as an periodic potential  

( ) 0
2cos ,f

xU x U
L
π = −  

 
                     (5) 

where 0U  represents the amplitude strength of the periodic potential, and L 
represents the spatial period. Figure 2 shows the realization of the RCP ( )rU x  
and the background potential ( )fU x . It can be seen that there are many bar-
riers in the RCP profile, and the number of barriers increases when the scaled 
correlation length λ  decreases. In contrast, the increase of the intensity 0g  
results in deeper wells of the RCP. 

3. The Giant Diffusion in Rough Titled Periodic Potential 

In our study, the quantity of central interest will be the effective diffusion coeffi-
cient. Previous works have shown that it can be expressed as  

( ) ( )2lim 2eff tD x t t→∞= ∆ , where ( ) ( ) ( ) 22 2x t x t x t∆ = −  is the mean square 
displacement (MSD), and the bracket denotes the average over trajectories [8]. 
The approach of double-averaging over statistic ensemble and test particles is 
adopted to calculate the coordinate variance when the RCP is added [27]. The 
Time-dependent MSD is determined numerically by  

( ) ( )2 2

1

1 ,
K

i jj
x t x t

K =

∆ = ∆∑                    (6) 

( ) ( ) ( ) 22 2

1

1 ,
N

i i ij ji
x t x t x t

N =

 ∆ = −  ∑               (7) 
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Figure 2. The realization of the RCP ( )rU x  and the background potential ( )fU x . The 

parameters used are 0 0.01g = , 0.05, and 0.1 at fixed 2λ = π  (top panel); 1λ = , π , 
and 2π  at fixed 0 0.1g =  (middle panel); 0 1U =  and 2L = π  (bottom panel). 

 
where ( )2

i j
x t∆  is the MSD of the i-th test particle for the j-th rough titled pe-

riodic potential at time t. The present Monte Carlo simulations involves the time 
step 35 10t −∆ = × , total integration time 43 10tN = × , and test particles 410N = . 
Besides, the particles are initially located at ( )0 0x =  for all simulations, and 
the number of the RCP 100K =  is considered to perform double statistical av-
erages. 

This part first presents the results under the influence of the external biasing 
force. In Figure 3, the Deff as a function of the tilted force F for different g0 is de-
picted. Meanwhile, the diffusion behavior of the particle driven by the white 
noise corresponding to the case of 0τ →  is shown. The test particles cannot be 
trapped in well and diffuse freely when the periodic potential is tilted with its 
local minima disappearing; the motion of the particle is locked only when the 
tilted force is small. However, a particle experiences diffusion for a medium 
tilted force F, and it exhibits two spatial motion modes: the compact running 
state and the locked behind state. These two modes coexist and transform, lead-
ing to an increase in the effective coefficient of the diffusion. Furthermore, due 
to the positive correlation characteristic of the OU noise, the diffusion is en-
hanced, as demonstrated in the subgraph of Figure 3(a). The correlation effect 
of the noise is beneficial to biased diffusion. 

This paper pays more attention to the influence of the roughness of the poten-
tial, especially the intensity g0 that affects the depth of the small potential wells in 
periodic potential directly. It can be seen from Figure 3 that Deff increases as the 
value of g0 increases. The distinct potential wells will become deeper due to the 
emergence of the RCP, which results in a large proportion of the test particles  
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Figure 3. The effective diffusion coefficient Deff as a function of F for different roughness g0 with the corre-
lated time of the OU noise. The applied parameters are 2λ = π  and 1.0D = . 

 
being trapped or locked. This phenomenon is especially pronounced near the 
critical tilted force Fc, where the value 1.0cF = . 

In view of this phenomenon, this paper presents the variation of the diffusion 
coefficient with the intensity g0 under different external force values in Figure 4. 
For a small F, the value of Deff decreases as the intensity g0 increases. Due to the 
introduction of the RCP, the test particles are almost trapped in a distinct poten-
tial well. The locked state does not disappear in the absence of the RCP until the 
tilted force reaches the critical value. However, due to the existence of RCP, the 
local minima still exist, and the probability peaks are distributed at the potential 
barriers even if the external force is greater than the critical value Fc. The num-
ber of particles in locked state increases and the particles in the running state al-
so coexist at this time. Thus a giant diffusion appears near the critical force, es-
pecially when the value of g0 increases. The diffusion is also enhanced as the in-
tensity g0 increase for a larger F comparing with the case when F is small. Simi-
larly, the probability of a particle locked in local minima of the potential in-
creases when g0 is large. However, due to the large tilting force, the number of 
the local minima in the potential will decrease, which leads to a reduction of the 
Deff comparing with the case when F is near the critical value. Moreover, the oc-
currence of the RCP is not always harmful, which can be a promotion for the 
movement of particles under the right conditions. 

Note that this paper takes two different types of correlated time as examples in 
Figure 3 and Figure 4. The correlated time τ of the noise also affects the value of 
the diffusion coefficient. In this regard, this paper conducts a further in-depth 
study, and the results are illustrated in Figure 5. It can be seen that the effective 
diffusion coefficient Deff does not depend monotonically on the correlated time τ, 
and there exists an optimal τ that makes the effective diffusion coefficient max-
imum. In addition, the value of Deff induced by the OU colored noise in the 
rough potential with a finite τ is larger than that in the tilted periodic potential 

0 0g =  under the condition of 1.0cF F= = . When the value of τ is small, the 
correlation of the noise is weak. As the correlated time increases, the constant  
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Figure 4. The Deff as a function of g0 for different correlated time τ, where the solid and 
open symbols correspond to 50τ =  and 100τ =  respectively. The parameters used are 

2λ = π  and 0.5D = .  
 

 

Figure 5. The Deff as a function of τ for different values of roughness g0 and external force 
F. The parameters used are 2λ = π  and 1.0D = . 
 
driving force increases the kinetic energy of the particle, and thus the particle 
can move and transfer into the running state. At this time, the envelope width of 
the spatial distribution of the particle can measures the size of Deff. However, the 
width of this spatial distribution will shrink when the value of τ is large. For 
example, 1.0F = , 0 0.05g = , and this is because the probability of a particle in 
the locked state increases. If the value of τ is large enough, all particles will be 
locked in the located state, and the diffusion coefficient decays to zero. 

The correlation length λ, as an important parameter in RCP, also affects the 
diffusion behavior of the particle. The calculations show that Deff is a non- 
monotonic function of λ, as shown by Figure 6. From the discussions above, it 
can be seen that the roughness of the potential helps to separate the peaks of the 
spatial distribution of the particle around the disordered barrier. Meanwhile, the 
value of λ directly determines the number of small potential wells. When the 
value of λ is small, the number increases, causing many particles to be trapped in 
a small barrier and a locked state. Therefore, the phenomenon of diffusion is not 
obvious at this time. By contrast, when the value of λ is large, the number of  
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Figure 6. The effective diffusion coefficient Deff as a function of λ for different values of 
the external force F. The applied parameters are 2λ = π  and 1.0D = . 
 
small potential wells will become smaller, as shown by Figure 5. In this case, the 
RCP has little effect on the diffusion of the particles. The coexistence of the 
locked state and the running state is beneficial to the biased diffusion when λ 
takes the proper value. 

4. Summary 

This work explores the diffusive properties of overdamped Brownian motion 
driven by an Ornstein-Uhlenbeck noise in a biased periodic potential corrugated 
by the spatial disorder. As for the influence of the roughness of the potential, the 
rough potential is not conducive to directional transport. However, an en-
hancement for the effective diffusion coefficient of a particle can be observed 
when the tilted force is close to the critical value. Particularly, this enhancement 
is sensitive to the two parameters of the RCP: the correlation length λ and the 
intensity g0. The number of the local minima may increase as the roughness de-
creases. Also, the distinct potential wells become deeper with a larger value of g0. 
These all cause a large proportion of the test particles to be trapped or locked, 
and the whole distribution of the particle forms a wider envelope width. At this 
time, the effective diffusion coefficient Deff is enhanced. Furthermore, Deff varies 
non-monotonically with correlated time τ. The probability of a particle in a 
locked state increases under the effect of the OU noise, which exhibits a positive 
correlation. Therefore, the diffusion can be enhanced under the co-modulation 
of these parameters, and even the appearance of non-monotonicity depends on a 
certain parameter. 

Thus, the introduction of roughness can be used to promote the movement of 
particles under the right conditions. Our results provide a better understanding 
of the complex transport phenomenon of particles in a rough potential, which 
may provide useful information for some realistic but complicated problems. 
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Abstract 
In this study, an effort is made to find the attributes of an electron based on 
Maharishi Vyasa’s definition of kshana or moment. Kshana or moment is a 
very small quanta of time defined by Maharishi Vyasa. It is the time taken by 
an elementary particle to change the direction from east to north. It is found 
that the value of a kshana in the case of pair production is approximately 2 × 
10−21 sec, and the radius of the spinning electron or positron is equal to the 
reduced Compton wavelength. The mass of the electron is equal to the codata 
recommended value of electron mass and time required in pair production is 
about four kshanas equal to spinning period of an electron. During valida-
tion, in case of the photoelectric effect, spectral series of hydrogen atoms, 
Compton scattering, and the statistical concept of motion of electron, the 
value of the number of kshanas in a second is the same as that found in pair 
production. 
 

Keywords 
Kshana, Pair Production, Photoelectric Effect, Compton Scattering, Fine 
Structure Constant 

 

1. Introduction 

In this paper, my effort is to find some attributes of electrons based on Mahari-
shi Vyasa’s definition of kshana or moment, exceedingly small quanta of time 
[1] [2]. The attributes of electrons include spin, magnetic moment, fine structure 
constant α, anomalous magnetic moment, and charge quantization. Various 
physical parameters of the electron such as charge, mass, as well as the spin an-
gular momentum and the magnetic moment have been measured with great 
precision [3]. Different properties of electrons have revealed some facts about 
their size and shape [4].  
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The radius of electron is the key problem in elementary particle physics [5]. 
Researchers have made various approaches to give the exact value to its radius. 
Various theoretical and experimental results show that there are eight diverse 
types of radii of an electron [4].  

For example, classical electron radius, Compton radius (electron), electro-
magnetic radius (electron) etc. [4]. In the paper, Compton radius of electron is 
discussed. The radius of the electron is found based on Maharishi Vyasa’s defi-
nition of kshana [1] [2], where kshana is a very small and indivisible unit of 
time, and Maharishi Kanada’s thought on “cause and effect”. Maharishi Kanada 
says that “the attribute of the cause is found to be present in the effect” (“Kaara-
nagunapurvakaha kaaryaguno drasthaha” 2.1.24) [6]. Therefore, in case of pair 
production, in the article, it is assumed that (1) the time period (an attribute) of 
spinning electron or positron (effect) is the same as that of photon (cause), and 
(2) electron and positron spin with a relativistic velocity of light [7]. 

2. Definition of a Very Small Unit Time “Kshana” or  
“Moment” 

Maharishi Vyasa, in his commentary on Patanjali Yoga Sutra, defined a very 
small unit of time called “kshana” or “moment”, which is very small and indi-
visible [1]. According to him, it is the time taken by an elementary particle to 
change its direction from east to north [2]. Here, in the article, we assumed that 
the elementary particle is a spinning electron, as shown in Figure 1. When a 
spinning electron changes direction from east to north, the time taken is “t” 
units. Then, velocity is 

m kshanasR
v

t
θ′ =                          (1) 

where “Rs” is the radius of the spinning electron. According to the Maharishi 
Vyasa’s time, “t” is one “kshana,” and θ = 90˚ = π/2 radians, as shown in Figure 
1. Hence 

90
m kshana

1 2
s sR R

v
× π×′ = =



                   (2) 

 

 

Figure 1. Z is the axis of rotation of a spinning electron, and it changes its direction from 
east to north. The time taken to change the direction is t = 1 kshana, and for one com-
plete rotation time taken is Ts = 4 kshanas. 
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Similarly, the angular velocity ω′  is 

90 2 radian kshana
1 1 2t

θω π π′ = = = =


               (3) 

Substituting the value of π, we obtain ω′  = 1.570796326794 radian/kshana. 
Angular velocity ω′  is a constant velocity since π is a constant quantity [2]. 
Rewriting the Equation (3) 

2 1.5707963267941 Moment or kshana
1.570796326794ω

π
= =

′
            (4) 

Thus, 1 moment or 1 kshana is the time taken by a fundamental particle to 
describe an angle of 90˚ or π/2 radians while changing the direction from “East” 
to “North” and is just a constant independent of any external forces. Then, from 
Maharishi Vyasa’s definition of kshana [2], we have 

2 2
meter kshana

4 2
s s s

s

R R R
v c

T
π π π′ ′= = = =              (5) 

where c' meter/kshana is the relativistic velocity of the spinning electron, Ts = 4 
kshanas is the time period, and Rs meters is the radius of the spinning electron. 
The spinning velocity of electrons is equal to the relativistic velocity of light [7] 
[8]. Therefore, it is assumed that the electron spins with the velocity of light [7]. 

3. Determination of Number of Kshana in a Second 
3.1. Method 1 

If there are “n” kshana in a second, then from Equation (5), “n” can be found as 
shown below: 

m sec 2 kshana sec
m kshana s

c cn
c R

= =
′ π

                (6) 

where c is the velocity of light in meters/second and c' is the velocity of light in 
meters/kshana. Alternatively, we can find the number of kshanas “n” in a 
second, as shown below: 

2
1 kshana sec

4 4 2
s s sT R R

c c
π π

= = =                  (7) 

where spinning time period Ts = 2πRs/c sec and 1 kshana = 1/n sec. Therefore, 

2 kshana sec
s

cn
R

=
π

                      (8) 

Equation (8) is like the Equation (6). Substituting the values for c and π, we 
have 

81.9085380 10 kshana sec
s

n
R

×
=                  (9) 

Thus, the number of kshanas “n” in a second is reciprocally related to the ra-
dius of the spinning electron Rs. 
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3.2. Method 2 

If Ta is the time period of the electron in the first orbit of the hydrogen atom in 
sec and Ts is the time period of spinning electrons in sec, then the ratio of time 
periods is 

2 2a a aa s

s s s

T R c RR R
v cT R v Rα
π π   = = =   

   
                (10) 

where Ra, Rs, v, c, and α are the radius of the first orbit of the hydrogen atom in 
meters, radius of the spinning electron in meters, orbital velocity of the electron 
in the first orbit of the hydrogen atom in meters per sec, velocity of light in me-
ters per sec, and fine structure constant, respectively. The fine structure constant 
is α = v/c. Rewriting the above equation when time periods a aT nT′ =  and 

s sT nT′ =  are in kshana, velocities v' = v/n and c' = c/n are in meters/kshana. 

2 2a a aa s

s s s

T R c RR R
v cT R v Rα

′ ′π π   = = =   ′ ′′ ′   
               (11) 

where the fine structure constant is also α = v'/c' [2]. If there are “n” kshanas in a 
second, then 1 sec = n kshanas. Thus, from Equation (11), we have 

a a a

s s s

T nT R
T T Rα
′
= =
′ ′

                        (12) 

where orbital time period a aT nT′ =  kshanas and spinning time period  
4s sT nT′ = =  kshanas. Rewriting the above equation, we have 

4
a a

s

nT R
Rα

=                           (13) 

4 a

a s

R
n

T Rα
=                           (14) 

But time period for the Bohr first orbit (n = 1), is 2 3 4
0 04aT h m eε=  [2] [9]. 

Substituting this in Equation (14) we have 
4

0
2 3
0

4
4

a

s

R m e
n

h Rα ε
=                         (15) 

But Rydberg constant 4 2 3
0 08R m e h cε∞ =  [2] [9]. Therefore, 

4
0

2 3
0

8 8
8

a a

s ss

R cm e R R c kn
R RR h c αα ε

∞= = =                  (16) 

where, k = 8RaR∞c/α. Substituting the Bohr radius Ra = 0.52917721 × 10−10 me-
ters, Rydberg constant 10.97373156 × 106/meters, velocity of light c = 2.99792458 
× 108 meters/sec, and fine structure constant α = 7.29735256 × 10−3 [10], we get k 
= 1.90853806 × 108. Thus, number of kshanas in a second will be 

81.9085380 10 kshana sec
s

n
R

×
=                 (17) 

Equation (17) is similar to Equation (9) and 1 kshana = 1/n = 0.52396125 × 
10−8Rs sec. Thus, the number of kshanas in a second is inversely proportional to 
the radius of the spinning electron. However, the value of a “kshana” determined 
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based on the radius of the first orbit of the hydrogen atom is comparatively large 
[2], and for a large radius, the value of a “kshana” will also be large. Hence di-
visible, which goes against the definition given by Maharishi Vyasa. Therefore, it 
becomes necessary to find the value of a “kshana,” which is very small, and an 
indivisible unit of time. 

4. Possible Ultimate Indivisible Value of a Kshana 

Again, from Equation (16), we can write that 

2

8 8
kshana seca

s

R R c R cn
Rα α

∞ ∞= =                  (18) 

where, fine structure constant α = Rs/Ra. The ratio of the radius of the sphere 
(assuming that the electron is a sphere of radius Rs) to the radius of the orbit is 
equal to the fine structure constant [11]. All the terms on the right-hand side of 
Equation (18) are constants; hence, the number of kshanas “n” in a second is al-
so constant. Substituting the values of constants R∞, c, and α, we have n = 
263.1873566 × 1014/53.2513543849 × 10−6 = 4.94235986370 × 1020 kshanas. 

Again, from Equation (17) and the value of “n” from Equation (18), which is 
4.94235986370 × 1020 kshanas, the spinning electron radius Rs will be equal to 
3.86159266 × 10−13 m, which is also the reduced Compton wavelength [5] [10] 
[11]. Thus, it is clear that once the exact, ultimate, indivisible value of kshana is 
known, one can figure out the structure of the electron. From Equation (18), it 
appears that 1/n = α2/8R∞c i.e., 1 kshana = 2.02332494691 × 10−21 sec, may be the 
ultimate value for a kshana, as defined by Maharishi Vyasa, and this needs fur-
ther verification by researchers. 

5. Validation of Kshana 
5.1. Radius, Value of a Kshana in Sec and Mass of a Spinning  

Electron in Pair Production 

In pair production, electromagnetic energy is converted into matter. A gamma 
ray of sufficient energy creates an electron-positron pair each with a mass equal 
to the electron mass. If E is the energy of the gamma ray that interacts by pair 
production, then E = 2m0c2, where m0 is the rest mass of the positron or electron 
and c is the velocity of light. The rest mass energy of the electron or positron is 
0.511 MeV so that there is a threshold of 1.022 MeV for this process to take place 
[12] [13]. 

The threshold frequency of the gamma ray that undergoes pair production is ν 
= E/h = 1.022 MeV/h and which is ν = 2.4711850260 × 1020 Hz.  

In the paper, it is assumed that gamma radiation (electromagnetic wave) is 
present in electrons and positrons [6], as shown in Figure 2. As said in the in-
troduction section, the time period (an attribute) of spinning electron or posi-
tron (effect) is the same as that of photon (cause), we can calculate the number 
of wave units (frequency) in an electron by dividing the rest energy of the elec-
tron with Planck constant. Therefore, ν1 = 0.511 MeV/h = 1.2355925130 × 1020  
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Figure 2. Gamma radiation splits into two equal frequencies with wavelengths equal to λ1 
= λ2. 
 
wave units [14], which is also equal to ν1 = ν/2 = 2.4711850260 × 1020/2 = 
1.2355925130 × 1020 Hz. 

Thus, the frequency associated with electron or positron will be ν1 = 
1.235592513 × 1020 Hz or cycles/sec, and wavelength will be λ1 = 2.42631 × 10−12 
meters. 

5.1.1. Radius of a Spinning Electron in a Pair Production 
Thus, from Equation (5) 

1 1 meter kshana
2

sR
c λν

π′ ′= =                   (19) 

where ν' cycles/kshana is the frequency of gamma radiation, and Rs meters is the 
radius of the spinning electron or positron. 1 1T ν′ ′=  kshanas is the time period 
of gamma radiation , which is also equal to the period of the spinning electron. 
The attributes of gamma rays are assumed to be present in electrons or positrons 
based on the thoughts of Maharishi Kanada [6]. 

1

1

meter kshana
2

sR
c

T
λ π′ = =
′

                  (20) 

However, from the definition of kshana, the period of spinning electron is T' = 
4 kshanas. Therefore 

1 meter kshana
4 2

sRλ π
=                     (21) 

Thus, 

1 meter
2sR λ

=
π

                        (22) 

Substituting the value of λ1, we obtain the radius of the spinning electron as Rs 
= 3.8615926758 × 10−13 meters. The radius Rs can also be found by the law of 
conservation of energy in the pair production, which is hν1 = m0c2 = 0.51 MeV 
[13]. Thus, 

1
1

0.51 MeVhchν
λ

= =                      (23) 

0.51 MeV
2 s

hc
R

=
π

                      (24) 
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From Equation (22) substituting the value of λ1 and the values of other con-
stants in Equation (24), we have  

133.86915646858 10 meters CR −′= Λ = ×                (25) 

The spinning electron radius (Rs) calculated in Equations (22) and (25) are 
exactly equal to the reduced Compton wavelength C′Λ  = 3.8615926796 (12) × 
10−13 m [10].  

5.1.2. Value of a Second in Kshanas 
Substituting the value of electron radius from Equation (25) in Equation (9), we 
have 

8

13

1.90853806367 10 kshana
3.86915646858 10

n −

×
=

×
                 (26) 

Thus, we have n = 4.942359860 × 1020 kshanas and 1 kshana = 2.0233249466 × 
10−21 sec. 

5.1.3. Determination of Planck Constant in Time Unit Kshana 
The Planck constant h = 6.626070040 × 10−34 J∙sec is converted to a value that 
has a time unit of kshana instead of sec. Dividing the Planck constant by “n”, the 
new value of h will be 

34

20

6.62607004081 10 J kshana
4.942359860 10

hh
n

−×′ = = ⋅
×

             (27) 

Thus, the Planck constant h' = 1.34066928117 × 10−54 J. Kshana. 

5.1.4. Determination Velocity of Light and Orbital Velocity of Electron in  
the First Orbit of Hydrogen Atom in Meters/Kshana 

From Equation (5), we have the velocity of light c' = π3.8615926758 × 10−13/2 = 
6.0657755907 × 10−13 meters/kshana. Alternatively, we can find the velocity of 
light c' = c/n = 2.99792458 × 108/4.942359860 × 1020 = 6.0657755908 × 10−13 me-
ters/kshana. 

5.1.5. Determination of Absolute Permittivity of the Medium When the  
Time Unit Is Kshana 

In the SI system, the absolute permittivity of the medium is ϵ0 = 8.854187817 × 
10−12 coul2/nt∙m2. The unit of ϵ0 can be written as coul2∙sec2/kg∙m3. The value of ϵ0 
then when the time unit is kshana is 0ε ′  = 8.854187817 × 10−12 × (4.942359860 
× 1020)2 = 2.16280546198 × 1030 coul2/kg∙m3∙kshana−2. 

5.1.6. Mass of a Spinning Electron in Pair Production 
By the law of conservation of energy, the mass of the electron can be found as 
shown below. 

2
0h m cν′ ′ ′=                          (28) 

where h', ν' and c' are the Planck constant, gamma ray frequency and velocity of 
light, respectively, in which the time unit is kshana. Substituting c' = λ1ν' me-
ters/kshana in the above equation, we have 
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2
0 1 1h m λ ν′ ′=                           (29) 

2
0 1

s

m
h

T
λ′ =
′

                          (30) 

where 1sT ν′ ′=  is the spinning period of the electron, which is 4 kshana. Thus 
2

0 1

4
m

h
λ′ =                           (31) 

Rearranging the terms in the Equation (31), we have 

0 2
1

4hm
λ
′

=                           (32) 

Substituting the values of h' = 1.340669 × 10−54 joule. kshana (Equation (27)) and 
λ1 = 2.42631 × 10−12 meters, we have a mass of the electron m0 = 0.91093834243469 
× 10−30 kg = 9.1093834243469 × 10−31 kg, which is the same as the reported 
CODATA value (me = 9.10938356 × 10−31 kg) [10]. The rest mass of the electron 
can also be found by the law of conservation of energy when the time unit is 
kshana, as shown below. 

2
0 2

0.51MeVm c
n

′ =                       (33) 

where n is the number of kshanas in a second. Substituting c' = πRs/2, and n = 
1.90853806367 × 108/Rs in the above equation, we have 

( )
2 2 2

0
28

0.51
4 1.90853806367 10

s sm R Rπ
=

×
               (34) 

( )
6 19

0 22 8

4 0.51 10 1.60217662208 10 kg
1.90853806367 10

m
−× × × ×

=
π ×

           (35) 

31
0 9.0915757 10 kgm −= ×                    (36) 

The calculated mass of an electron from Equation (32), which originates from 
wavelength λ1 of gamma radiation is the same as the electron mass me = 
9.10938356 × 10−31 kg as reported in CODATA [10] and it shows that the time 
required in pair production is about four kshanas i.e., equal to the spinning pe-
riod of an electron. In a kshana electron mass formation is 2

1h λ′  = 0.22773458 
× 10−31 kg and in four kshanas it is equal to the reported value of electron mass 
(Equation (32)) [10]. It shows that the physical change in the matter i.e., elec-
tron/positron production is associated with the kshana or moment and its suc-
cession. Thus, one can know the end of its succession only at the end of the 
physical change [1] [2]. 

The generation of electron and positron is due to the electromagnetic radia-
tion or photon. The electromagnetic wave does not disappear but gets trans-
formed into electron and positron [15]. It relates to mass of the electron and 
wavelength of the gamma radiation. This is like the concept of electromagnetic 
origin of mass particle. Erik Haeffner (2000) proposed a concept called Con-
densed Electromagnetic Radiation (CER) as the electromagnetic origin of mass 
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particles. Erik Haeffner says, “The new concept CER (Condensed Electromag-
netic Radiation), proposed in this article, indicates an electromagnetic origin of 
mass particles, in fact, an overwhelming amount of experimental evidence con-
firms that the CER concept is fundamental for the physical explanation of mass 
particle properties [14].” 

5.1.7. Relating the Number of Kshanas in a Second to Absolute  
Permittivity and Permeability of the Medium 

Velocity of light in meter/second is 

0 0

1c
µ ε

=                            (37) 

Rewriting the above equation when the velocity of light and absolute permit-
tivity has the time unit kshana 

0 0

1c
µ ε

′ =
′

                          (38) 

However, by the definition of kshana, the velocity of light c' = πRs/2 m/kshana 
and 2

0 0 nε ε′ = × . Therefore, from Equation (38), we have 
2

s

cn
R

=
π

                           (39) 

The Equation (39) is the same as the Equation (6) or Equation (8). 

5.1.8. Photo-Electric Effect and Number of Kshanas in a Second 
When the incident photon energy is such that it only liberates an electron from 
the metal surface without any kinetic energy (i.e., mv2/2 = 0). In such case hν0 = 
Wϕ. where ν0 is the threshold frequency in cycles per second and Wϕ is the work 
function in joule. Now rewriting the equation for the work function having time 
unit kshana, we have 

0
0

ch h wφν
λ
′

′ ′ ′ ′= =
′

                      (40) 

For h' = h/n, 2W W nφ φ′ = , and 0 0 0cλ λ ν′ ′ ′= =  meters, we have 

0wn
hc

φλ′
=

′
                         (41) 

02

s

w
n

h R
φλ′

=
π

 since 
2

sR
c

π′ =                   (42) 

For a tungsten cathode of threshold wavelength 0λ′  = λ0 = 2300 × 10−10 m, 
and work function Wϕ = 5.38 eV [16], we have 

81.9085380 10 kshana sec
s

n
R

×
=                 (43) 

The above equation is same as Equation (9). 
Alternatively, from Equation (40), we can find the value of n as shown below: 

2 2
00 0

w w w
h

nn n n
φ φ φ

νν ν
′ = = =

′
                  (44) 
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Since 2W W nφ φ′ = , 0 0 nν ν′ = , where n is the number of kshanas in one 
second. From Equation (31), 2

0 1 4h m λ′ = . Therefore, 
2

0 1

0 4
w m
n

φ λ
ν

=                           (45) 

0
2 2

0 1 0 0 1

4 4w w
n

m m c
φ φλ

λ ν λ
= =                       (46) 

1) For a tungsten cathode with a threshold wavelength λ0 = 2300 × 10−10 m, 
work function Wϕ = 5.38 eV [16], and electron wavelength λ1 = 2.42631 × 10−12 
(Section 5.1), From Equation (46), the value of n will be 

204.932626423359 10 kshanan = ×                 (47) 

2) For Aluminum work function is 4.25 eV [16]. The threshold frequency will 
be 

15
0 1.0276454364795 10 Hzν = ×                  (48) 

and threshold wavelength λ0 = c/ν0 = 2.91727523 × 10−7 m. Thus, from Equation 
(46) 

204.94236082 10 kshanan = ×                   (49) 

3) For Rb, the work function is 2.16 eV [16]. Then, the threshold frequency 
will be ν0 = 0.5222856806 × 1015 Hz, and the threshold wavelength will be λ0 = 
c/ν = 5.740009 × 10−7 m. Thus, 

2
0 1 0

4w
n

m
φ

λ ν
=                         (50) 

204.9423608678 10 kshanan = ×                 (51) 

4) For Mg, the work function is 3.66 eV [16], and the threshold frequency will 
be ν = 0.88498407 × 1015 Hz. 

2
0 1 0

4w
n

m
φ

λ ν
=                         (52) 

where, λ1 = 2.42631 × 10−12 meters. 
204.94236089 10 kshanan = ×                  (53) 

5.1.9. Spectral Series of Hydrogen Atom and Kshana 
The number of kshanas in a second can also be found by taking the ionization 
energy of the hydrogen atom, which is 13.6 eV. This is the energy needed to free 
the electron from the nucleus of the hydrogen atom. In the Lyman series for n = 
1, the associated wavelength is 1026 × 10−10 meters, and the energy difference is 
−3.4 − (−13.6) = 10.2 eV [9]. Now we can estimate the value of n as shown be-
low. By the law of conservation of energy, we have 

19

0 2

10.2 1.6021766208 10h
n

ν
−× ×′ =                (54) 

19
0

2

10.2 1.6021766208 10h
n n
ν −′ × ×

=                (55) 
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where 0 0 0n cν ν λ′= =  and λ0 = 1026 × 10−10 meters is the wavelength of the 
first member of the Lyman series. Thus, 

19

0

10.2 1.6021766208 10h
nν

−× ×′ =                  (56) 

19
010.2 1.6021766208 10

'h
nc

λ−× ×
=                 (57) 

237
0 16628.6247 10'
4

m
h

n
λ−×

= =                  (58) 

37

2
0 1

4 6628.6247 10n
m λ

−× ×
=                     (59) 

Substituting the values of electron rest mass m0 and λ1, we get 
204.944266452 10 kshanan = ×                   (60) 

Equations (26), (47), (48), (49), (51), (53), and (60) show that the number of 
kshanas in a second is the same, i.e., n = 4.942359860 × 1020 kshanas and 1 
kshana = 2.0233249466 × 10−21 sec. 

5.1.10. Validation of Kshana or Moment with Statistical Concept of  
Movement of Electron 

The statistical concept of movement of electron can be considered for validation 
of kshana. For a free spinning electron with effective Lande’-g factor g* = 2, the 
radius Rs of spinning electron is [8] 

* *

0 0

5 5
4 8s

g gR
m c m c

= =
π

                        (61) 

where Planck constant h = 6.626070040 × 10−34; J∙s, rest mass of free electron m0 
= 9.10938356 × 10−31 kg, and velocity of light c = 2.99792458 × 108 m/s. Substi-
tuting these values, we get 

139.6539816887 10 metersR −= ×                  (62) 

Converting Equation (61) for radius with time unit kshana, we get 
*

0

5
8s

g hR
m c

′
=

′π
                         (63) 

where Planck constant h' = 1.34066928117 × 10−54 J. kshana, rest mass of free 
electron m0 = 9.10938356 × 10−31 kg, and velocity of light c = 6.0657755908 × 
10−13 meters/kshana. Substituting these values, we get 

139.653981690 10 metersR −= ×                  (64) 

Equations (62) and (64) give the same result even though time units of Planck 
constant h and velocity light c are different. 

Spinning period for free electron is (Ziya Saglam et al. [8]) 
2

200
*

8
2.023324947 10 sec

5
s

s
R m

T
g

−π
= = ×



              (65) 
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Rewriting the Equation (65) in which  is replaced with nh'/2π. Since  = h/2π 
and h = nh' where n is the number of kshanas in a second and h' is in J∙kshana or 
kg∙m2/kshana. Thus, the number of kshanas in a second can be calculated using 
the rewritten formula for Ts 

2 2
0

*
8 2

5
s

s
R mT

g nh
× π

=
′

                      (66) 

2 2
016 kshanas sec

5
s

s

R mn
g h T∗

π
=

′
                  (67) 

For effective g-factor g* = 2, 
204.9423598634677 10 kshanas secn = ×             (68) 

Thus, the value of “n” in Equation (68) is same as in Equations (26), (47), (48), 
(49), (51), (53), (60) and show that the number of kshanas in a second is the 
same, i.e., n = 4.942359860 × 1020 kshanas and 1 kshana = 2.0233249466 × 10−21 
sec. 

Alternatively, the ultimate indivisible value of the kshana which is 2.02332494691 
× 10−21 sec is in good agreement with Ziya Saglam et al. [8]. Ziya Saglam et al. 
calculated the spinning period for a free electron which is 1.9 × 10−20 sec (for ef-
fective Lande’-g factor, g* = 2). When this value of period is divided by 4 ksha-
nas (since spinning period of free electron is 4 kshanas) give the value of 1 
kshana equal to 4.75 × 10−21 sec for free electron. Both the values are of the same 
order of magnitude i.e., 10−21 sec. Ziya Saglam also calculated the period of spin 
in an atomic state which is Ts (n = 1, l = 0, mj = 0, ms = 1/2) = 1.48 × 10−21 sec (for effective 
Lande’-g factor, g* = 1). Again, this value of period is divided by 4 kshanas give 
the value of 1 kshana equal to 0.37 × 10−21 sec for period of spin in an atomic 
state which also has same order of magnitude i.e., 10−21 sec. 

The value of a kshana can also be determined using the circular frequency of a 
spinning electron given by Olszewski [17], which is 2π/T2 = mec2/ = 0.78 × 1021 
sec−1 [17]. Where, period T2 = 2π/0.78 × 1021 sec−1 = 8.055365778 × 10−21 sec and 
a kshana is T2/4 = 8.055365778 × 10−21 sec/4 = 2.0138414446 × 10−21 sec. Again, it 
is same as shown in the above sections of this paper.  

5.1.11. Compton Effect and a Kshana 
In a Compton scattering, the Compton wavelength λC = h(1 − cosθ)/m0c = 
h/m0c, whose value is 2.4263102367 × 10−12 meters [10] for θ = π/2, where h the 
plank constant, m0 is the mass of electron, c is the velocity of light and θ is the 
angle of scattering. Now, the Compton frequency νC = c/λC = 2.99792458 × 
108/2.4263102367 × 10−12 = 1.2355899 × 1020 Hz (or νC = ω0/2π = mc2/2π [18]), 
and period will be TC = 1/νC = 0.80932997877 × 10−20 sec. Therefore, 1 kshana = 
TC/4 = 0.80932997877 × 10−20/4 = 0.20233249 × 10−20 sec i.e., 2.0233249 × 10−21 
sec and n = 4.942359859269 × 1020 kshanas, which is same as given in the above 
sections. 

Again, it shows that the value of “n” is same as in Equations (26), (47), (48), 
(49), (51), (53), (60) and show that the number of kshanas in a second is the 
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same, i.e., n = 4.942359860 × 1020 kshanas and 1 kshana = 2.0233249466 × 10−21 
sec. 

5.2. Determination of Reduced Compton Wavelength, Fine  
Structure Constant, Rydberg Constant, Spin Magnetic Moment  
and Spin Angular Moment 

5.2.1. Determination of Compton Wavelength 
The Compton wavelength is given by the equation λC = h/m0c whose value is 
2.4263102367 × 10−12 m. The reduced Compton wavelength is ΛC = λC/2π = 
h/2πm0c which is equal to 3.8615926764(18) × 10−13 m [10]. Writing the reduced 
Compton wavelength equation where the time unit is kshana is as shown below 

0

meter
2 2

C
C

h
m c

λ ′
Λ = =

′π π
                    (69) 

Substituting the Planck constant h' = 1.34066928117 × 10−54 J. kshana, the ve-
locity of light c' = 6.0657755908 × 10−13 meters/kshana, and mass of the electron 
m0 = 9.10938356 × 10−31 kg, we obtain a reduced Compton wavelength equal to 
3.8615926760 × 10−13 m which is the same as the reported CODATA value. 

5.2.2. Determination of Fine Structure Constant 
The orbital velocity in the first orbit of the hydrogen atom is v' = 2.18769126277 
× 106/4.942359860 × 1020 = 4.426410307 × 10−15 meters/kshana. Fine structure 
constant is given by the following equation 

15

13

4.426410307 10
6.0657755908 10

v
c

α
−

−

′ ×
= =

′ ×
                 (70) 

or 

2 10.7297352565620 10
137.0359991528

α −= × =           (71) 

Thus, the fine structure constant is the same as that reported [10]. 

5.2.3. Determination of Rydberg Constant 
Using the following equation [9], the Rydberg constant R∞ is found as shown 
below. 

4
0

2 3
08

m e
R

h cε∞ =
′ ′

                        (72) 

107

115
60.0247762251 10 m

546.9856635635 10
R

−

∞ −

×
=

×
                (73) 

The value of the Rydberg constant R∞ is equal to 10973738.4768/meter. This 
agrees with the reported value R∞ = 10973731.568525(73)/m [10]. 

5.2.4. Determination of Spin Angular Momentum 
The spin angular momentum J is given by the following Equation [7], where the 
time unit is in seconds. 

2 2
0 0

2 2
s sm R w m R w

J
′

= =                      (74) 
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where ω is rad/sec and ω' = π/2 rad/kshana are the angular frequencies. From 
equation c' = πRs/2 m/kshana [2], we can write the above equation as 

0

2
sm R c

J
′

′ =                          (75) 

In semi-classical model of spinning electrons, it is assumed that [7]. 

0 0 0

meter
2 2s c

h hR
m c m c m c

′
= Λ = = =

′π π
               (76) 

Substituting the value of Rs from Equation (76) in Equation (75) we have 
541.3406690 10

4 4
hJ

−′ ×′ = =
π π

                   (77) 

540.106687049 10J −′ = ×                     (78) 

Converting time unit kshana to time unit sec, we have 
54 200.106687049 10 4.942359860 10J −= × × ×              (79) 

Thus, spin angular momentum is equal to J = 0.527285789548 × 10−34 which is 
in good agreement with the value provided by CODATA [10]. 

5.2.5. Determination of Spin Magnetic Moment 
The spin magnetic moment of a simple model of spinning electrons [7], is 

( ) ( )2 2

4s s
s

e eIS R R
T

µ
   ′ = = π = π   ′   

                 (80) 

where current sI e T ′=  and e is the electronic charge. For a simple model of 
the spin magnetic moment 2

sS R= π  [7], 4sT ′ =  kshanas is the spinning period 
of the electron. From Equation (80) 

04 2s
e hR

m c
µ

 ′ ′ = π   ′π  
                      (81) 

04 2
sR eh
c m

µ
 ′

′ =  ′ π 
                        (82) 

From Equation (11) keeping the value of c', we have 

42

0

0.018764331838931 10
4
eh

m
µ − ′
′ = = × π 

              (83) 

where h' has the unit, Joule∙kshana. When it is converted to the time unit sec, we 
have a Bohr magneton value of 0.092740080 × 10−22 = 9.27400 × 10−24 J∙T−1 which 
is equal to the reported value of Bohr magneton µB = 927.4009994(57) × 10−26 
J∙T−1. 

6. Discussion 

The focus of discussion in the paper is definition of kshana or moment and its 
physical significance. Equation (18) shows that the number of kshanas n in a 
second is a constant. Since the right-hand side of the Equation (18) has constants 

https://doi.org/10.4236/jmp.2022.138068


S. M. Wanjerkhede 
 

 

DOI: 10.4236/jmp.2022.138068 1181 Journal of Modern Physics 
 

such as Rydberg constant, velocity of light and fine structure constant. The ulti-
mate indivisible value of the kshana is 2.02332494691 × 10−21 sec which is in 
good agreement with Ziya Saglam [8]. Thus, Maharishi Vyasa’s time unit 
“kshana” is very small and indivisible quanta of time which needs further atten-
tion. 

Equation (17) shows that the number of kshanas in a second are inversely 
proportional to the radius of spinning electron. Smaller the radius of spinning 
electron larger the value of number of kshanas in a second. Table 1 shows the 
variation in number of kshanas with different values of radius of spinning elec-
tron. 

This radius of the electron is found based on Maharishi Vyasa’s definition of 
kshana [1] [2]. I obtained a reduced Compton wavelength equal to 3.8615926760 
× 10−13 m which is the same as the reported CODATA value [10]. Apart from 
Compton radius, I found the number of kshanas taking classical electron radius 
(2.8179403227 × 10−15 [10]) into account which is shown in the Table 1. 

The spinning electron model based on Maharishi Vyasa’s definition of kshana 
is successful in explaining most of the properties of the electron such as radius, 
spin angular momentum, spin magnetic moment, and rest mass of the electron. 
The radius of the spinning electron determined based on this definition is the 
same as the reported value which is equal to the reduced Compton wavelength. 
However, according to the calculations the value of the electron radius is large 
compared with the classical electron radius (Table 1) [10] and hence needs fur-
ther attention. 

According to Maharishi Vyasa’s definition, one “kshana” (exceedingly small 
quanta of time) is equal to the time taken by the electron to traverse π/2 radians. 
Obviously, it appears that it can be subdivided into time intervals needed to tra-
verse smaller angles. However, this goes against the definition of “kshana” as 
propounded by Maharishi Vyasa and may have some physical significance which 
needs further investigation. Thus, “kshana” cannot be subdivided by dividing the 
angle π/2. 
 
Table 1. Comparison of number of “kshanas” in a sec for various values of radius of the 
electron. 

Radius of an 
electron in meters 

Value of a 
kshana in sec 

Value of a 
sec in kshanas 

Classical electron radius 
2.8179403227 × 10−15 m [10] 

1.476491549 × 10−23 sec 0.677281221 × 1023 kshanas 

Electron charge radius 
0.0118 × 10−15 m [19] 

6.18274281 × 10−26 sec 1.617405138 × 1025 kshanas 

Hardon electron 
radius 10−18 m [20] 

5.239612554 × 10−27 sec 1.90853806 × 1026 kshanas 

Graviton radius 
1.369 × 10−76 m [21] 

0.71730295 × 10−84 kshanas 1.394111076 × 1084 kshanas 
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7. Conclusion 

The spinning electron model based on Maharishi Vyasa’s definition of kshana is 
successful in explaining most of the properties of the electron such as radius, 
spin angular momentum, spin magnetic moment, and rest mass. The radius of 
spinning electron determined based on Maharishi Vyasa’s definition is the same 
as the reported value which is equal to the reduced Compton wavelength. 
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Abstract 

Except for the speed of photons in vacuum, all speeds are relative. Could we 
develop an absolute scale for speed in which relative values for speed may be 
arbitrarily positioned and compared in absolute terms? The currently ac-
cepted definition for the meter as the distance covered by photons in vacuum 
during 1/299,792,458 s, and the view that the greater a material particle is ac-
celerated towards c, the greater time dilation and length contraction will be, 
suggest that anything disturbing one of the four spacetime dimensions may 
affect the other three as well. One hypothetical experiment, one real experi-
ment performed in the 1970s, and one experiment from a different field of 
science are discussed to propose that both time and velocity are only partially 
relative. In the first experiment, person A is standing still on the Earth’s sur-
face, and person B is onboard a train passing by person A at the constant 
speed of 60 km/h (as measured by person B on the train’s speedometer). Per-
sons A and B define two distinct inertial frames of reference, which corres-
pond to two different spacetime conditions and which are therefore characte-
rized by comparatively different lengths of the meter and durations of the 
second, as predicted by the Lorentz factor. Therefore, if person B onboard the 
train measures the train’s speed relative to person A as 60 km/h, a simple 
calculation will show that person A will perceive the train passing by at 
59.99999999999981455834 km/h. If we consider the speed of photons in va-
cuum (c = 299,792,458 m/s) as a universal reference, and if we consider that 
the greater a material particle is accelerated towards c, the greater time dila-
tion and length contraction will be, then person C, occupying an indepen-
dent, distinct inertial frame of reference, will be unable to determine persons 
A and B’s absolute speeds, but may infer which one is moving at a speed 
closer to c by comparing, with his own meter and second, the durations of the 
second and the lengths of the meter experienced by persons A and B. The re-
lativity of time may not be complete due to the bias that derives from the lim-
it imposed on spacetime by c and the Lorentz factor, causing relativity to be 
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partial. The second and third experiments further help understand this par-
tiality. 
 
Keywords 
Spacetime, Relativity, Speed of Light, Space, Time 

 

1. Introduction 

Except for the speed of photons in vacuum, all speeds are relative. However, 
could we develop an absolute scale for speed in which relative values for speed 
may be arbitrarily positioned and compared? 

Suppose we successively accelerate a spacecraft to the constant speeds of 0.1c, 
0.2c, 0.3c, …, and 0.9c (speeds adjusted at the spacecraft velocimeter) relative to 
an inertial frame of reference A (or the surface of the Earth, if we discard any ef-
fects due to the atmosphere, to gravity and to non-inertial motion). At each con-
stant speed, the spacecraft passes near the Earth, making it possible, from the 
Earth’s surface, to compare the duration of each second and the length of each 
meter in the moving spacecraft with those measured on the surface of the Earth. 
It seems reasonable to assume that the faster the speed in relation to the Earth’s 
surface, the comparatively longer the duration of each second will be, and the 
comparatively shorter the length of the meter will be. 

Let us now imagine that two spacecraft, one moving at the constant speed of 
0.1c and the other at the constant speed of 0.5c (speeds adjusted at each space-
craft velocimeters), pass near the Earth. If, from the Earth’s surface (or any other 
place), we succeed in comparing the duration of each second and the length of 
each meter in the two moving spacecraft, the one with a comparatively longer 
duration of the second and comparatively shorter length of the meter will be the 
one moving faster in absolute terms relative to the Earth. 

In relation to time alone, this effect has been widely demonstrated. For exam-
ple, the Global Positioning System (GPS), a United States of America (USA) 
global satellite-based radio navigation system, may be regarded as a continuous 
operating experiment since the clocks onboard the satellites are corrected for 
both gravity-dependent and non-gravity-dependent time dilation to pass time at 
the same rate as clocks on the surface of the Earth. 

The debate about the symmetry or asymmetry of time dilation has been going 
on for over 100 years. Time dilation symmetry arose as a logical deduction of 
Einstein’s 1905 postulates: if two clocks occupying two distinct inertial frames of 
reference are in relative motion, each one is expected to run slower than the 
other [1]. Abramson [2] proposed an alternative view, in which the symmetry 
would break if the two inertial frames of reference are defined by two widely dif-
ferent masses (e.g., one GPS satellite and the Earth). It is difficult to accept the 
existence of an absolute reference without breaking the symmetry of time dila-
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tion. Nevertheless, as a counterpart of the special theory of relativity, Burde re-
conciled the existence of a preferred frame with the relativity principle and the 
universality of the speed of light [3]. However, in the same article [1], Einstein 
discussed the relative rates of time ticking in one clock located at one Earth pole 
and in another clock located at the Equator and concluded that “…a balance 
wheel clock that is located at the Earth’s equator must be very slightly slower 
than an absolutely identical clock, subjected to otherwise identical conditions, 
that is located at one of the Earth’s poles.” In the subsequent years, many expe-
riments were performed to test these two theories (including the continuous ex-
periment conducted at the GPS satellites), and the results seem to confirm that 
time dilation is an asymmetric phenomenon [4]. 

In 1908, Hermann Minkowski merged the three dimensions of space with time 
to conceptualize a four-dimensional continuum known as Minkowski space, 
Minkowski spacetime, or simply spacetime. It seems increasingly evident that 
space and time do not exist as separate features of our universe and that a 
change in speed and/or gravitational acceleration of a material object (e.g., a 
spacecraft) will not only comparatively alter the duration of the second but will 
also affect the length of the meter in one or in the three dimensions of space. 
Therefore, as predicted by the Lorentz factor and for a clock at rest on the 
Earth’s surface and another moving at a relativistic speed, the moving clock is 
expected to dilate time and contract length (or the three dimensions of space) 
comparatively to the clock at rest. In contrast, the stationary clock will compress 
time and expand length (or the three dimensions of space) comparatively to the 
moving clock. 

Albert Einstein’s special and general theories of relativity have clearly estab-
lished the basis for understanding the relative nature of spacetime. However, the 
speed of light in vacuum (c = 299,792,458 m/s) and the Lorentz factor (γ) seem 
to impose a limit on spacetime. This has implications for observers looking at 
each other from distinct spacetime conditions, and may ultimately require a 
third, independent observer. We propose analyzing three experiments to further 
comprehend this idea. 

2. Experiment 1 

It is generally accepted that velocities are relative. Imagine two people: person A, 
standing still on the Earth’s surface, and person B, onboard a train passing by 
person A at the constant speed of 60 km/h (as measured by person B on the 
speed meter of the train). Both speeds considered (0 and 60 km/h) are relative. 
Indeed, discarding any effects due to the atmosphere, to gravity and to non- 
inertial motion, two inertial frames of reference are considered, corresponding 
to two objects moving at constant velocities relative to one another. Therefore A 
and B occupy inertial frames of reference, meaning that they are both at rest 
within each one’s frame of reference. The common explanation is as follows: 
from person B’s point of view, person B is inside the train sitting still as he/she 
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looks through the window at person A passing by at 60 km/h. However, from 
person A’s point of view, person A is standing still outside the train, and it is 
person B the one who is moving at 60 km/h. 

Which one of them (i.e., person A or person B) is truly moving and which one 
is truly stationary? At first sight, person A seems to be stationary, and person B 
is moving. However, recall that both person A and the train moving at 60 km/h 
are standing on Earth, which is rotating and moving around the Solar System’s 
barycenter, which in turn is moving within the Milky Way. In addition, our ga-
laxy is rotating and moving in space. The most obvious explanation would be 
that there is no absolute rest, i.e., there is no universal stationary reference frame 
against which all other reference frames may be referenced. Consequently, there 
is no universal velocity, meaning that only relative velocities exist. Going back to 
persons A and B, the only relevant conclusion is that the relative velocity be-
tween person A and person B is 60 km/h, with neither of them being more or 
less stationary than the other. This reasoning would be “absolutely” correct if it 
were not for length contraction, time dilation and the speed limit imposed by the 
speed of photons in vacuum. Indeed, there seems to exist a universal velocity: c. 
For now, let us ignore rotational and translational movements of the Earth, Solar 
System and Milky Way, gravitational fields of the Earth and of any other astro-
nomical bodies, and any effects due to the atmosphere. Under these conditions, 
person A and person B have two points of view which correspond to two differ-
ent inertial frames of reference, which are characterized by comparatively dif-
ferent lengths of the meter and durations of the second, as predicted by the Lo-
rentz factor, i.e., they are experiencing distinct spacetime conditions. Neverthe-
less, each one will obviously perceive the meter and the second as normal in 
their own frame of reference. 

If person A and person B experience comparatively different lengths of the 
meter and durations of the second, and if person B measures the speed of the 
train as 60 km/h relative to person A, then person A cannot see person B passing 
by at 60 km/h. If person B onboard the train measures the speed of the train rel-
ative to person A as 60 km/h, then person A will look at the moving train and 
will see each train meter slightly shorter and each train second slightly longer 
than person A’s own meters and seconds (at this non-relativistic speed, such ef-
fects are so small that it is not possible to measure them experimentally), as giv-
en by the Lorentz factor.1 

As expected, in what concerns the comparative length of 1 meter and duration 
of 1 second in the two inertial frames of reference, person A will measure 
 mA in A’s own frame of reference, and from A’s own frame of reference, 1 mB 

= 0.99999999999999845465 mA in the moving train; 

 

 

1It is important to note that for such low speeds an assumption must be made here, as highlighted 
below by the results shown in Table 1, obtained in the experiments conducted during October 1971 
by Hafele and Keating [5] [6]: for the commercial jet flying westwards, time contracted, i.e. shorter 
seconds were recorded, in comparison with the surface of the Earth seconds, and specially in com-
parison with the duration of the seconds in the commercial jet flying eastwards. Most probably, this 
derives from all movements and gravitational accelerations persons A and B are subject to.  
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 sA in A’s own frame of reference, and from A’s own frame of reference, 1 sB = 
1.00000000000000154535 sA in the moving train; 

And therefore, from A’s own frame of reference, person A will see the train 
moving at 60 kmB/hB = 59.99999999999981455834 kmA/hA. 

The main conclusion of this hypothetical experiment is that person B onboard 
the train will see person A passing by at 60.00000000000000000000 kmB/hB, 
whereas person A, standing still on the Earth surface, will see the train moving at 
59.99999999999981455834 kmA/hA. 

One other prevailing view is that each one, A and B, will see the other moving 
at a speed slower than 60 km/h, and therefore each one will perceive a shorter 
meter and a longer second when observing the other, something which some-
what contradicts the Lorentz factor. This view derives directly from relativity, 
considering that all speeds are relative. If time dilation were symmetric, we 
would expect both time dilation values to be identical relative to an external ob-
server (person C). 

3. Experiment 2 

Of course, several factors other than relative speed will affect length contraction 
and time dilation. Indeed, if we could consider the movements and gravitational 
fields of the Earth and beyond, we would obtain different values for the relative 
speeds between A and B, meaning that the result could be different from that 
obtained above. The experiment conducted during October 1971 by Hafele and 
Keating [5] [6] to test Einstein’s theory of relativity with macroscopic clocks 
provides a good example of this situation. Their working hypothesis was to test 
whether the time recorded (relative to a clock at rest on the Earth surface) by 
four caesium atomic clocks onboard two regularly scheduled commercial jets 
flown twice around the world (at typical jet aircraft speeds), one eastward, the 
other westward, would run faster or slower, depending on the direction and 
ground speed, after circumnavigation of the Earth. The variables under consid-
eration were the speed (relative to a reference atomic clock maintained at the 
United States of America Naval Observatory), the altitude, the direction of the 
circumnavigation and the rotational speed of the Earth. 

Special relativity [1] predicts that a moving standard clock will record less 
time compared with coordinate clocks distributed at rest in an inertial reference 
space (assuming the Earth surface as an inertial frame of reference). However, 
since the Earth rotates, coordinate clocks distributed at rest on its surface are not 
suitable to test Hafele and Keating’s working hypothesis [6]. 

The Earth’s rotation is computed by comparison to the “fixed stars”, stars that 
move very slowly relative to the Earth and are therefore considered as a good 
reference frame. The sidereal period, the time taken by a celestial body within 
the solar system (the Earth, in the present case) to complete one revolution with 
respect to the “fixed stars”, equals 23 h, 56 min and 4.09053 s. With a circumfe-
rence of ca. 40,075 km at the equator, an object at the equator on the surface of 
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the Earth moves, relative to the “fixed stars”, with a speed of 460 m/s.2 As the 
Earth rotates, everything on the ground, in the water, and in the air (e.g., the 
atmosphere or airplanes flying inside it) also rotates at the same angular speed 
because of gravity. Therefore, the rotation of the Earth should have no direct 
differential influence on how long airplanes take to fly eastward or westward 
when comparing the airplane clocks with that on the surface of the Earth (con-
sidering here the atomic timescale of the USA Naval Observatory as the external, 
independent observer), but they have a differential influence if the “fixed stars” 
(in this case considered as the external, independent observer) are taken into 
account. In addition, there is an indirect influence on the travel time taken by 
airplanes eastward or westward: as a result of the Earth’s rotation, the Coriolis 
effect is responsible for the high-speed, high-altitude winds of the jet stream, 
winds prevailing westward at some latitudes and eastward at others. This means 
that flight times are sometimes shorter eastward and sometimes shorter west-
ward. 

The experimental design was based on the predicted assumption that an 
asymmetry would be found in the time difference between the flying clocks and 
the ground reference clock, depending on the direction of the circumnavigation 
[7] [8]. The time elapsed in each case (i.e., eastward, and westward) was com-
pared to that of a reference atomic clock maintained at the USA Naval Observa-
tory (Table 1). Consequently, for the flying clocks, and relative to the corotating 
Earth surface reference clock, circumnavigation in the direction of the Earth’s 
rotation (eastward, comparatively longer seconds, increased speed) should ori-
ginate a shorter time recording (i.e., time dilation), whereas circumnavigation in 
the opposite direction (westward, comparatively shorter seconds, decreased 
speed) should originate a longer time recording (i.e., time contraction). As pre-
dicted by general relativity [9], one other factor considered in Table 1 that also 
affected time dilation was the difference in gravitational acceleration between the 
flying and ground reference clocks.  

The results recorded, presented in Table 1, show direction-dependent time 
differences which are in good agreement with the predictions of conventional 
relativity theory. Relative to the atomic timescale of the USA Naval Observatory, 
the flying clocks measured less 59 ns ± 10 ns during the eastward trip and meas-
ured more 273 ns + 7 ns during the westward trip [5]. Obviously, both the at-
mosphere and the jets are corotating with the Earth surface at the same angular 
speed (unlike the linear speed relative to the “fixed stars”, which increases with 
the flight altitude). If the speed relativity between both jets and the USA Naval 
Observatory were 100%, we would expect both time differences (eastward or  

 

 

2Let us assume that an imaginary observer located at one of the “fixed stars” is monitoring the angu-
lar velocity of a fixed point on the Earth equator. Ideally, the observer must view the Earth from a 
position perpendicular to the rotation axis of the Earth. If only the rotation of the Earth is taken into 
account, the angular velocity, but not the speed, will be zero after successive periods of Earth 23 h, 
56 min and 4.09053 s. The only possibility he would have to assess the angular velocity of the equa-
tor, albeit impossible to achieve at present, would be to compare the relative duration of each second 
at the equator with its own. 
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Table 1. Recorded versus predicted relativistic time differences observed during the ex-
periment performed in October 1971 by Hafele and Keating [5] [6]. Data are presented as 
the mean ± standard deviation of the results obtained from four different caesium atomic 
clocks. 

Effect 

Time difference (ns) 

Direction: 
East* 

Direction: 
West 

Total (predicted) −40 ± 23 +275 ± 21 

Gravity-dependent (predicted) +144 ± 14 +179 ± 18 

Non-gravity-dependent (predicted) −184 ± 18 +96 ± 10 

Clock 120 (measured) −57 +277 

Clock 361 (measured) −74 +284 

Clock 408 (measured) −55 +266 

Clock 447 (measured) −51 +266 

Total (mean) (measured) −59 ± 10 +273 ± 7 

*Negative signs indicate that upon return the flying clocks showed an earlier time (com-
paratively longer seconds, increased speed) than the time indicated on the reference 
atomic clock maintained at the USA Naval Observatory. Positive signs indicate that upon 
return the flying clocks showed a later time (comparatively shorter seconds, decreased 
speed) than the time indicated on the reference atomic clock maintained at the USA Na-
val Observatory. 
 
westward) to be identical relative to an external observer (person C, in the 
present case the USA Naval Observatory).  

If we consider a single airplane in the Hafele-Keating experiment, then we 
have an experiment similar to that in our Experiment 1. Hafele and Keating 
could not measure length contraction, but they recorded time dilation/contraction, 
meaning that time adjustments had to be made. 

The results of the Hafele-Keating experiment, presented in Table 1, show the 
gravity-dependent time dilation predicted values of +144 ns ± 14 ns (eastward 
flight; shorter seconds) and +179 ns ± 18 ns (westward flight; shorter seconds). 
This result was expected, as the airplanes were both subjected to a lower gravita-
tional acceleration, resulting in shorter seconds in both flights (implying time 
dilation asymmetry). 

However, different predicted time dilation values were found between the 
eastward and westward flights for the non-gravity-dependent time dilation: −184 
ns ± 18 ns (eastward flight; longer seconds) and +96 ns ± 10 ns (westward flight; 
shorter seconds). This could be interpreted to mean that, in absolute terms, one 
plane moved faster (the eastward flight), the other slower (the westward flight) 
than the clock standing still at the Earth’s surface.  

A comparison of the relative length of the second in two frames of reference 
(such as the two airplanes that occupied distinct spacetime conditions) may be 
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established from any other frame of reference (e.g., the USA Naval Observatory, 
standing still on the Earth surface). 

4. Experiment 3 

An interesting analogy may be established with spectrophotometry, used rou-
tinely throughout the world in most analytical laboratories (Experiment 3 in 
Table 2). If we fill a glass cuvette with an aqueous solution of betanin (betanidin 
5-O-β-D-glucopyranoside; λmax = 535 nm), the pigment responsible for the red 
colour of beetroot (Beta vulgaris), and measure its absorbance at 535 nm, we get 
an absorbance value ( 535A′′ ), a dimensionless number that does not allow us to 
know the absolute amount or concentration of pigment present in the cuvette. 
But if we use a blank control, consisting of an identical glass cuvette filled with 
water, and measure its absorbance also at 535 nm, we get a different absorbance 
value ( 535A′ ), another dimensionless number which is completely unrelated to 
betanin. However, if we subtract 535A′  from 535A′′ , we obtain an absolute, di-
mensionless number which allows us to indirectly determine the absolute con-
centration of betanin present in the first cuvette.  
 

Table 2. The three experiments selected to obtain absolute values from relative measurements. 

 

Experiment 1 Experiment 2 Experiment 3 

Person A standing still on the 
Earth surface (person B’s 

perspective), and person B 
onboard a train moving at 

60 km/h (person B’s perspective) 

Caesium clocks onboard 
two jets, one flying eastward, 

the other westward 

Spectrophotometric 
measurement of betanin 
absolute concentration 

Relative measurement 1 
(person A’s perspective) 

Person A 
standing still on the 

Earth surface 
Jet flying eastward 

Sample: betanin solution of 
unknown concentration 

Relative measurement 2 
(person A’s perspective) 

Person B 
onboard a train 

moving at 60 km/h 
Jet flying westward Blank control 

Common reference 

Person C occupying any 
independent spacetime 

condition, different from 
those occupied by A and B 

Reference atomic clock maintained 
at the USA Naval Observatory 
(at rest, on the Earth surface), 

occupying an independent 
spacetime condition, different 
from those occupied by the jets 

Anything filling the 
cuvette holder (e.g., air) 
against which both A535 

values are measured 

Relative readings to be 
compared 

Comparative time dilation or 
comparative duration of each 

second experienced 
by persons A and B, 

as measured by person C 

Comparative time dilation relative 
to Earth, or comparative duration 

of each second in both jets, 
as measured from a fixed 
point on the Earth surface 

A535 readings of sample 
and blank control 

Absolute value obtained 
Which person is moving 
faster in absolute terms 

Which jet is moving 
faster in absolute terms 

Betanin 
absolute concentration 

USA: United States of America. 
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In the 60 km/h-moving train hypothetical experiment, how would it be possi-
ble to obtain an absolute value starting from two relative speed measurements? It 
could be achieved by employing the same reasoning used in the spectrophoto-
metric Experiment 3 (Table 2). The absolute concentration of betanin may be 
obtained from two relative absorbance measurements ( 535A′  and 535A′′ ), each 
made against a common reference (which may or may not contain an unknown 
amount of betanin; this reference is the analogous equivalent to person C in Ex-
periment 1, and to the USA Naval Observatory clock in Experiment 2 (Table 
2). In the betanin spectrophotometric experiment, two relative A535 readings are 
made at first. These readings are relative because they are made with reference to 
a common medium. Most frequently, the spectrophotometric cuvette holder is 
empty (i.e., filled with air) so that the 535A′  and 535A′′  values represent the dif-
ferences in absorbance at λ = 535 nm between each one of the liquid-containing 
cuvettes and air. However, the common reference may be any, as long as the 
same is used for both readings. In this experiment, we do not know how much 
535 nm radiation is absorbed by the air molecules that fill the cuvette holder. 
What is really important is that both readings, 535A′  and 535A′′ , are made against 
the same reference. Instead of air, we could as well use a cuvette filled with an 
unknown (or known) amount of betanin, even if this is larger than that present 
in the blank control or even in the betanin solution, the end result will be the 
same.  

The difference between the two spectrophotometric readings obtained (i.e., 

535A′  and 535A′′ ) do not provide directly the amount or concentration of betanin 
present in each sample. However, they tell us about their relative positions in an 
imaginable absolute scale, i.e., which sample contains more betanin and which 
sample contains less. To determine the amounts/concentrations of betanin 
present in absolute terms, we need to construct the corresponding “imaginable 
absolute scale”, which under laboratory routine conditions is provided by a 
standard curve, for which a series of pure betanin concentrations are used to re-
late, under precisely identical conditions, betanin content/concentration with 
A535. Therefore, within reasonable limits and regardless of the absorbance of the 
blank control (i.e., 535A′ ), an absolute value for betanin amount/concentration 
can be obtained from the difference between two relative values, 535A′′  and 535A′  
using a standard curve. 

Let us consider that the cuvette holder (most often filled with air) contains a 
cuvette filled with a residual yet unknown amount of betanin dissolved in water 
that produces a given A535 value (xref; i.e., analogous to the unknown absolute 
speed of the Earth in Experiment 2, Table 2). As an example, we will consider 
this betanin concentration as intermediate between that of the blank control and 
the betanin sample under analysis. If we now measure the absorbance at λ = 535 
nm of both blank control ( 535A′ ) and betanin solution ( 535A′′ ), readings will give 
one value higher ( 535 refA x′′ > ) and one value lower ( 535 refA x′ < ) than that con-
tained in the cuvette holder. By calculating 535 535A A′′ ′−  and using the standard 
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curve, we will be able to determine the absolute concentration of residual beta-
nin in the cuvette holder. 

( ) ( )535 ref 535 ref 535 535A x A x A A′′ ′ ′′ ′− − − = −  

In addition, we may also conclude that the residual betanin concentration in 
the cuvette holder is between those of the blank and the betanin sample under 
analysis. 

5. Discussion 

A similar reasoning could be applied to the Hafele-Keating experiment [5] [6], 
which starts with the Earth moving at an unknown absolute speed. The airplanes 
lift from the Earth’s surface, one moving eastward, the other westward. In abso-
lute terms, it is possible to conclude, from the results presented in Table 1, that 
one is moving slower than the Earth’s surface reference (i.e., the USA Naval Ob-
servatory), the other faster. Which one is moving faster? It takes far more than 
the rotational movement of the Earth to tackle our planet’s absolute speed. It is 
also necessary to consider its movement in the solar system, that of the solar 
system within the Milky Way, and so forth. Then, as predicted by the theory of 
relativity, the complex and constantly changing gravitational field acts differen-
tially on every single particle of our planet. How can we go around it?  

By analogy, regardless of the unknown absolute speed of the Earth, a compar-
ison between the relative duration of each second (persons A and B in Experi-
ment 1, and jets flying eastward and westward in Experiment 2), made from an 
external, independent spacetime condition (person C in Experiment 1, and USA 
Naval Observatory on the Earth surface in Experiment 2), will indicate which 
one is moving faster in absolute terms. Note that the spacetime condition of the 
external, independent reference may be unknown, but it must be the one used to 
compare the two spacetime conditions under analysis. The absolute reference is 
therefore the speed of light in vacuum, c = 299,792,458 m/s.  

Going back to persons A and B and the train moving at 60 km/h (as measured 
by person B relative to the Earth’s surface), if person B were to increase his/her 
speed gradually towards c, B would obviously experience, at each speed, B’s 
length of the meter and B’s duration of the second as unchanging. However, to 
person A or to any other person occupying a distinct but constant spacetime 
condition, B’s length of the meter and B’s duration of the second would compa-
ratively and endlessly decrease and increase, respectively, as predicted by the 
Lorentz factor. Therefore, the relativity between persons A and B in what speed 
is concerned is not total, since an external observer, person C, occupying a third, 
distinct inertial frame of reference, will be able to tell which one, A or B, is mov-
ing faster in absolute (i.e., not relative) terms: the one for which person C perce-
ives the length of the meter to be comparatively shorter and the duration of the 
second comparatively longer. This will be the person moving closer to c. 

Let us flip the reasoning followed by Hafele and Keating [5] [6] to analyse the 
results they obtained in October 1971. The Earth is moving at an absolute speed 
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which is not known. However, when perceived from a reference point, the 
greater the speed (towards c), the comparatively greater time dilation is.  

Although person C cannot look at A and B individually and measure their 
absolute speeds, C will be able to establish an absolute comparison of their 
speeds as (with the exception of the intrinsic 60 km/h speed of person B relative 
to A) each one of them is (almost exactly) identically affected by all possible 
movements and gravitational fields they may be subjected to. Due to the limit 
imposed by c on spacetime, A and B’s measurements are asymmetrical and C is 
needed to “break the tie”. 

In summary, from the 1971 Hafele-Keating experiment [5] [6] we may infer 
that, in absolute terms, the jet flying eastward (time dilation −59 ns ± 10 ns; 
comparatively longer seconds, shorter meters and increased speed) moved faster 
than the jet flying westward (time dilation +273 ns ± 7 ns; comparatively shorter 
seconds, longer meters and decreased speed). The reasoning is as follows: when 
seen from the Earth’s surface, the faster jet is the one in which seconds are per-
ceived to be longer, therefore a lower number of seconds will elapse when com-
pared to the Earth’s surface, meaning that less time will pass compared to the 
Earth, meaning that the jet crew will be slightly younger than the people that 
remained at the USA Naval Observatory when the jet lands. 

One other conclusion may be drawn from the experimental data obtained 
under the conditions selected for the study performed by Hafele and Keating [5] 
[6], which used the surface of the Earth as the common reference for both jet 
flights. In absolute terms, it seems that the jet flying eastward is moving faster 
than the USA Naval Observatory, whereas the jet flying westward is moving 
slower.  

For any significant degree of accuracy, this analysis should go beyond the 
speed of the train/jets since, as predicted by general relativity, other factors affect 
spacetime. 

This type of experiment does not depend on the spacetime condition of the 
common reference (in this case, the Earth’s surface). Changing the spacetime 
condition of the reference would alter the time dilation values of the jet flying 
eastward (−59 ns ± 10 ns) and of the jet flying westward (+273 ns ± 7 ns). In any 
case, the relative positions of the westward flying jet, the eastward flying jet and 
c would be unaltered in an absolute speed scale. 

Finally, in what spacetime is concerned, a special mention to the absolute 
universal reference against which all other reference frames may be referenced: 
the speed of photons in vacuum, c. 

6. Conclusions 

It is assumed that time and the three dimensions of space do not exist as separate 
features of our universe, but form a four-dimensional continuum known as 
spacetime. These observations suggest that space is also relative and that any-
thing disturbing one of the four spacetime dimensions will affect the other three 
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as well. In support of this is the currently accepted definition for the meter as the 
distance covered by light in vacuum during 1/299,792,458 s, as well as the view 
that the greater a material particle is accelerated in the direction of c, the greater 
the time dilation and length contraction will be. 

In this article, one hypothetical experiment, one real experiment performed in 
the 1970s, and one experiment from a different field of science are discussed to 
denote that both time and velocity are relative but subject to an upper limit im-
posed by the speed of photons in vacuum. In the first experiment, person A is 
standing still on the Earth surface, and person B is onboard a train passing by 
person A at the constant speed of 60 km/h (as measured by person B on the 
train’s speedometer). Because we do not know the absolute speed of planet 
Earth, and since there is no universal, stationary frame of reference against 
which all other frames of reference may be referenced, we come to conclude that 
neither person A nor person B is more or less stationary than the other, and both 
speeds are thusly relative. This reasoning would be “absolutely” correct if it were 
not for length contraction, time dilation and the speed limit imposed by the 
speed of photons in vacuum.  

Indeed, persons A and B define two distinct inertial frames of reference, 
which correspond to two different spacetime conditions and which are therefore 
characterized by comparatively different lengths of the meter and durations of 
the second, as predicted by the Lorentz factor. Therefore, if person B onboard 
the train measures the train’s speed relative to person A as 60 km/h, then person 
A cannot see person B passing by at 60 km/h, as person A will look at the mov-
ing train and perceive each meter in the train’s frame of reference slightly short-
er and each second in the train’s frame of reference slightly longer than person 
A’s own meters and seconds (at this non-relativistic speed, such effects are so 
small that it is not possible to measure them experimentally), as given by the 
Lorentz factor. A simple calculation shows that person A will perceive the train 
passing by at 59.99999999999981455834 km/h. 

If we consider the speed of photons in vacuum (c = 299,792,458 m/s) as a 
universal reference, and if we consider that the greater a material particle is ac-
celerated in the direction of c, the greater time dilation and length contraction 
will be, then we will have a way to position any two particles’ velocity directly 
and absolutely in relation to c, which means we can tell which particle is moving 
closer to c.  

If, in addition to persons A and B, there is person C occupying an indepen-
dent, distinct inertial frame of reference, and considering that such person C is 
capable of comparatively measuring the duration of 1 second experienced by 
person A and by person B, person C will be unable to determine persons A and 
B’s absolute speeds, but may infer which one is moving at a speed closer to c. 
How can this inference be reconciled with the understanding that regardless the 
speed (or more accurately, the spacetime condition) of the observer, he/she will 
always perceive the speed of photons in vacuum as c = 299,792,458 m/s? The 
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answer may be provided by the observation that we are not dealing with time or 
space considered individually, but with spacetime instead. 
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Abstract 
Research on magnetic mirror reactors has had two serious problems since the 
beginning stage. One is the magnetohydrodynamic instability due to the 
negative curvature of the magnetic field lines around the center region of a 
mirror bottle. Another is the loss of charged particles escaping from the loss 
cone of a magnetic mirror. We have continued to inquire into a means to 
solve the latter problem. We here propose a new way which will be able to 
make a magnitude of a loss angle of a magnetic mirror for deuterons virtually 
zero. 
 

Keywords 
Magnetic Mirror, Control of Escaping Deuterons, Plasma Heating by an  
Extraordinary Wave 

 

1. Introduction 

It would seem that researches for a magnetic mirror fusion reactor are far be-
hind in comparison with ones for Tokamak. The cause may be that a magnetic 
mirror field has configuration being open-ended [1] [2]. However, recently, a 
new magnetic mirror reactor scheme [3] was proposed. The scheme tries to 
solve the problem of the negative curvature by making a mirror length very long 
so that the region with the negative curvature may nearly vanish. Also, it uses 
helical winding coils at both ends of the mirror bottle. The helical windings re-
semble those in Stellarator and will be stronger than a magnetic field of a sole-
noid, with respect to the magnetohydrodynamic instability due to gravity or 
charge-separation. However, the helical windings do not intend to suppress the 
number of escaping charged particles as much as possible. We previously re-
ported a plan [4] in which a supplemental magnetic mirror (called SMM) is 
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connected to the exit of a magnetic mirror bottle. SMM had the spaces for heat-
ing charged particles by cyclotron resonance waves within. The main results are 
as follows: 1) The magnitude of the loss angle decreased from 14.5˚ (in the exit 
of the bottle) to about 5˚ (in the exit of SMM) by accelerating velocity compo-
nents perpendicular to the magnetic field. 2) However, nonrelativistic particles 
(deuterons) had inherent disadvantage that the acceleration invites deuterons 
from being outside the loss cone into inside the loss cone. Relativistic particles 
(electrons) were not related to such an effect. 3) Heavy deuterons required a very 
long flight length and a very powerful electric field in order for those to get a 
necessary velocity by the acceleration. 

Also, we found a mistake (deuterons are not heated, in a high density plasma, 
by an extraordinary wave with an ion cyclotron frequency). It may be impossible 
to make a loss angle for deuterons zero by relying only on acceleration with 
electric waves. In this work, together with re-consideration of the plasma heating 
by an extraordinary wave [5] [6] [7], we inquire into a new way of reflecting a 
deuteron having a very fast velocity by a constant electric field which is not ex-
tremely large. 

2. A New Plan to Reclaim Escaping Deuterons 

We assume that the most part of the bottle is filled with such an ideal plasma 
consisting of electrons and deuterons as shown below: 
◎ Electron density ne = deuteron density 21 3

i 10 mn −= . 
◎ Plasma temperature 84 10 KT = × . 

Then, the most probable thermal velocity imυ  of deuterons is 

( )1 2 6
im B i2 1.8 10 m sec= = ×k T mυ  

23
B 1.38 10 J K−= ×k , 

mi is a deuteron mass 3680me where me is the rest mass of an electron 9.1 × 10−31 
kg. 

The mean thermal velocity iυ  of deuterons is 
1 2

6B
i

i

8
2 10 m sec.

 
= = × π 

k T
m

υ  

The mean thermal velocity υ  of electrons 
1 2

8B

e

8
1.2 10 m sec.

 
= × π 



k T
m

υ  

We show in Figure 1 a plan to reclaim deuterons escaping from a magnetic 
mirror bottle. In the exit in the left-hand side of the bottle, Apparatuses (A) and 
(B) (called App (A), App (B)) are installed. Each of those has a square cross sec-
tion. App (B) is a rolled one of App (A) by 90 degree. App (A) is divided into an 
upper space and an under space, and in each space the following electric field is 
imposed: 
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Figure 1. A schematic diagram of an apparatus to reclaim escaping deuterons. Extraordinary waves with r2ω  (in Equation (10)) 
and r1ω  (in Equation (9)) are sent to Apparatus (A), Apparatus (B), respectively. 

 

y z

y z

V m in the upper space,

V m in the under spa

ˆ ˆ
ˆ ˆ ce.

− +
− −

y z

y Ez

E E

E
 

The left-hand side of App (B) is connected with a system (corresponding to 
App (B)) in the right-hand side of the bottle by a solenoid. Coils, Solenoid, App 
(A) and App (B) must be cooled against collisions with high energy particles. 

Since heavy deuterons take electrons together through the Coulomb forces, we 
roughly regard that, in a steady state, gases within App (A) and App (B) are 
plasmas. A plasma pressure pP  corresponding to 21 3

i e 10 m−= =n n  in the bot-
tle is 

( ) 7 2
p i e B 1.1 10 N m 110 atmospheric pressure.= + = × P n n k T      (1) 

A necessary magnetic pressure 2 22 N mB µ  (where, B is a magnetic field 
and μ is the permeability of vacuum 4π × 10−7 mT/A) to stand against pP  is 
given by 

2
7 2

p 1.1 10 N m or 5.26 T
2

= = × =
BP B
µ

               (2) 

So, we assume that a magnetic field in the central part of the bottle is 6 T, also 
that a magnetic field B “in the exit (plane (a)) of the bottle and accordingly 
within App (A) and App (B)” is 6 × 4 × 4 T. Though a velocity distribution (with 
respect to the y-components) in plane (a) is unclear, here we consider sending 
back deuterons with the y-components (denoted by yυ ) of velocities between 0 
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and im2υ  to plane (a).  
Let us aim a deuteron (called D+ ion) starting from plane (a) with yυ  given 

by “ ( )1 2
im B i y02 2 2= ≡k T mυ υ ” at time t = 0. D+ ion is a nonrelativistic particle. 

The velocity yυ  of D+ ion decreases according to 

y
y y0

i

= −
qE

t
m

υ υ                          (3) 

In the flight from plane (a) to plane (c), let us an effective length by which the 
electric field yE  acts on D+ ion to be   m.  

When yυ  of D+ ion becomes zero in plane (c), a mean velocity of yυ  in the 
flight is y0 2υ . Then, we have 

y
y0

i y0

0
2

− ⋅ =


qE
m

υ
υ

 

or 
2

i y0 5
y

1 1.4 10 V.
2

= = ×

m
E

q
υ

                    (4) 

If 10 m= , a necessary electric field yE  is 1.4 × 104 V/m. This value will be 
a producible one. The electric field zˆ±zE  in App (A) moves D+ ion in the direc-
tion of ( z yˆˆ± ×zE yB ). The movement-length ⊥  is, when 4

z 10E  V/m and 
an effective length for z±E  to act in the flight from plane (a) to plane (b) is 

2 5 m= ,  

z

y0

2 4.6 mm
2⊥ = =





E
B υ

                      (5) 

The mean Larmor radius Lr  of deuterons is 

i i
L 0.78 mm= =

mr
qB
υ

                        (6) 

Since the ratio L⊥ r  is 4.6/0.78 ≃ 6, the most part of deuterons escaping 
from plane (c) to the solenoid ought not to touch the wall of the solenoid. Even 
if a part of high-energy deuterons collide with the wall, a sincere problem will 
not arise if only we make the number of colliding deuterons sufficiently small. 

3. Plasma Heating by Extraordinary Waves (Called X-Waves) 

Since we consider that heating of charged particles should be slowly done out-
side a main bottle so as not to disturb the stability of a plasma within the bottle, 
we consider heating deuterons in App (A) with X-wave (the frequency r2ω  
shown after) and electrons in App (B) with another X-wave (the frequency r1ω  
shown after). 

The refractive index xn  for X-wave with a frequency ω [8] is given by 

( )( ) ( )
( )( ) ( )

2 2 2 4
i e i e2

x 2 2 2
i e i e

1 1 2 1

1 1 1

− − − − +
=

− − − −
n

β β α β β α

β β α β β
              (7) 

Here, 
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where c is the light speed, 

ii
i

i e
i

, 3680qB m m
m

ω
β ω

ω
 

=  


=


  

1 22
p e

p
er 0

n q
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ω
α ω

ω ε

  
     

   

Two resonance frequencies are found from 

( )( ) ( )2
i e

2 2
i e1 1 1 0− − − − =β β α β β                  (8) 

1) When 2
e 1β , Equation (8) is simplified to 

2 2 2 2 2 2
e e p r11 0 orβ α ω ω ω ω− − + ≡                 (9) 

2) When 2
e 1β , Equation (8) is simplified to 

( ) ( )2 2 2 2 2
e i p i e 0− − − − =ω ω ω ω ω ωω  

Accordingly, 

( )2 2 2
i e i p p2 2 2 2

i i r22 2 2
e p p

i e 2
e

1

1

 
 

−  
= + + ≡ +   +   

  



ωω ω ω ω
ω ω ω ω

ω ω ω
ωω

ω

       (10) 

From (10), under the condition 2 2
r2 eω ω , we have 

( )

2
p e i r2 i

2
p e i r2 i

1 22 2
p e r2 i e

When , ,

When , 2 ,

When , .


 =



 



 

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ωω

                (11) 

We try concrete numerical calculations on r1ω  and r2ω . 
We assumed just now that a magnetic field strength B in the exit of the main 

bottle is 6 4 4 96 T= × × =B . A half vertical angle hα  of the magnetic mirror is 
14.5 degree, from ( )1 2

hsin 6 96=α . We roughly regard that a gas within App 
(A) is a plasma and also that a deuteron density An  in a steady-state is a quan-
tity of order of 

21 21 3
A

14.510 0.16 10 m
90

−= × = ×




n  

Then, within App (A), 
1 22

12 1 12A
p 0

er 0

Farad0.68 10 sec , 8.855 10
m

− −   = × = ×   
  



n q
m

ω ε
ε
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13 1
e

er

1.55 10 sec ,−= = ×
qB
m

ω  

9 1
i

i

4.59 10 sec ,−= = ×
qB
m

ω  

( )1 22 2 13 1
r1 e p e1.551 10 sec−= + × ω ω ω ω  (from (9)), 

1
r2 i2.9 sec−
ω ω  (from (10)). 

An ordinary wave (O-wave) can pass through a plasma if ( )2 2
p1 0− >ω ω . 

O-wave with ( r1=ω ω ) is not cut off because 2 2
p r1 1ω ω . O-wave with ( r2=ω ω ) 

is cut off because 2 2
p r2 1ω ω . However, O-wave passing through a plasma will 

hardly heat the plasma. Energy of a wave with a resonance frequency ought to be 
absorbed by a plasma. We presume that the wave with ( r2=ω ω ) will heat main-
ly deuterons because r2 eω ω . 

4. Discussion and Conclusion 

In order to reclaim the most part of deuterons escaping from the loss cone of a 
magnetic mirror bottle, we have proposed the new means based on the idea of 
decreasing those velocity components parallel to the magnetic field to zero by 
the external constant electric fields. 

The new plan is under the premise that the external electric fields within Ap-
paratus (A) do not suffer a large variation by escaping charged particles. We 
consider, in the upper space of the lower figure of Figure 1, movements of 
charged particles in the ±z-directions. Electrons drift in the -z-direction and 
some electrons arrive at Anode (upper space) after having passed (B = 0)-space. 
Deuterons drift in the z-direction and some deuterons arrive at Cathode (upper 
space) after having passed another (B = 0)-space. Let us assume that the number 
na of electrons arriving at Anode per unit time is more than the number nc of 
deuterons arriving at Cathode per unit time. Then, the nc electrons flow as a 
current in an external circuit, but the na – nc electrons remain in the (B = 
0)-space and create a negative potential space. As a result, a potential on the (B = 
0)-boundary plane becomes lower than the potential of Anode. However, since 
the charged particles are tightly restrained by very strong magnetic force lines 
and drift velocities of deuterons and electrons in the ±z-directions ought to be 
very slow, we consider that such an effect as mentioned above has hardly influ-
ence on the magnitudes of Ey and Ez. 

“If the constant electric field Ey works well”, the apparatus in Figure 1 can 
make a magnitude of a loss angle for deuterons virtually zero. We consider that a 
combination of the apparatus in Figure 1 and a long mirror bottle has engi-
neering simplicity. 
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Abstract 
This study investigates the diffusive motion of a Brownian particle in a 1D 
periodic potential. The reactive flux theory for finite barriers and memory 
friction is developed to calculate the escape rate in the spatial diffusion re-
gime. The diffusion coefficient is obtained in terms of the jump-model. The 
theoretical results agree well with the Langevin simulation results. The me-
thod can be generalized to other colored noises with Gaussian distribution. 
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1. Introduction 

The Kramers rate [1] theory and its successive development for all damping, the 
original Melnikov and Meshkov (MM) theory for white noise [2], and Pollak, 
Grabert and Hanggi (PGH) theory for general noise [3], are correct for high po-
tential barriers. Nevertheless, the finite or the lower barrier is universal in prac-
tical stochastic processes. Two main approaches are employed for finite barrier 
correction. One is based on the generalized Langevin equation equivalent to 
Hamiltonian formulism, and the other is based on the Fokker-Planck equation. 
The perspective of the former is the finite barrier correction in the framework of 
PGH theory and improved PGH theory [4]. The improved PGH theory with fi-
nite barrier correction for Ohmic friction is quite accurate over the whole fric-
tion range up to the reduced barrier height 4. However, high accuracy agreement 
between theoretical and numerical exact results in the spatial diffusion regime 
cannot be expected, especially when the reduced barriers are low, because the 
perturbation parameter in the theory is no longer small. Within the framework 
of the Fokker-Planck processes in the spatial diffusion regime, a perturbation 
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theory was developed to calculate the finite barrier escape rate by means of the 
flux over population expression, the Rayleigh quotient, and the mean first pas-
sage time to the stochastic separatrix [5]. Although a simple analytical perturba-
tion solution can be obtained for a polynomial potential, obtaining a simple 
analytical solution for a nonpolynomial potential is difficult. The two approach-
es mentioned above have some limitations. The equivalent Hamiltonian ap-
proach is a perturbation theory for weak damping and extrapolation to spatial 
diffusion regime is questionable. In addition, obtaining a simple analytical ex-
pression from the finite barrier correction to the PGH theory is difficult. The 
Fokker-Planck equation approach relies on the existence of a Fokker-Planck eq-
uation. However, this situation is not always the case for a generalized Langevin 
equation with general noise and an arbitrary potential. This approach is also 
based on perturbation expansion, which is not suitable for low barriers. 

To develop a simple, accurate and widely applicable approach to incorporate 
the finite barrier correction in analytical calculation of the escape rate, the reac-
tive flux theory for finite barriers is proposed in [6]. The theoretical results 
match well with the simulation results until lower barriers for a Brownian par-
ticle moving in a cubic metastable potential and subjected to a Gaussian white 
noise. 

The Brownian motion in a periodic potential can model many physical and 
chemical situations, such as the motion of ions in superionic conductors [7], the 
Josephson supercurrent in tunneling junctions [8] [9], the mass transport in 
solids [10] [11], and the diffusion on surfaces [12]. Several analytical results with 
finite barrier correction were given in the spatial diffusion regime for the diffu-
sion of a Brownian particle in a periodic potential. The escape rate for an inter-
nal Ornstein-Uhlenbeck noise has been investigated within the frameworks of 
Grote-Hynes [13] theory with high potential barriers and PGH theory [14] [15] 
for not too large damping and correlation time. In the present work, we extend 
our finite barrier correction scheme [6] to an internal Ornstein-Uhlenbeck noise 
to calculate analytically the diffusion coefficient in the spatial diffusion regime 
with finite barrier correction. 

2. Reactive Flux Theory for Finite Barriers and Memory  
Friction 

We consider a Brownian particle with unit mass diffusing in a 1D periodic po-
tential under the influence of an internal Ornstein-Uhlenbeck noise. The particle 
is in contact with a heat bath at temperature T, which provides fluctuation and 
dissipation. The dynamics of the process is governed by the following genera-
lized Langevin equation:  

( ) ( ) ( ) ( )
0
d .

t
x t t t x t V x tγ ε′ ′ ′ ′+ − = − +∫               (1) 

where ( )tε  is the Ornstein-Uhlenbeck noise, which is associated with the mem-
ory kernel function ( )tγ  by the fluctuation-dissipation theorem: 
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( ) ( ) ( ) ,Bt t k T t tε ε γ′ ′= −                    (2) 

where Bk  is the Boltzmann constant, ( )tγ  is the memory kernel function, 
given by  

( ) ( )exp ,t tγγ τ
τ

= −                       (3) 

where τ  is the correlation time of the noise, and γ  is regarded as the effec-
tive friction coefficient due to ( )

0
dt tγ γ

∞
= ∫ . In Equation (1), ( )V x  is the 1D 

periodic potential, given by  

( ) 0 cos .V x V x=                         (4) 

What we want to investigate is the diffusion coefficient in the spatial diffusion 
regime, which can be attributed to the calculation of escape rate, because single 
jump is dominate in the spatial diffusion regime. 

In the traditional reactive flux formulation, an initial equilibrium distribution 
is assumed for the trajectories of particles starting at the top of the barrier. The 
equilibrium state assumption at the top of the barrier is reasonable for higher 
potential barriers because the current is small. It is no longer a good approxima-
tion for lower potential barriers where the current is not small enough. For finite 
barriers, we remove the starting point of the trajectories to somewhere 0x x=  
in the potential well where the probability distribution can be regarded as an 
equilibrium one, and replace the potential barrier from 0x  to bx  (top of the 
barrier) with an equivalent parabolic barrier in the spatial diffusion regime. 0x  
is given by ( )0 b BV x V k T= − , where 02bV V=  is the potential barrier height, 
and Bk T  is the average energy fluctuation of a quasi-equilibrium distribution. 
The equivalent potential ( )eV x  is given by  

( ) 2 21 .
2e b bV x V m xω= −                       (5) 

The equivalent potential barrier frequency bω  can be determined by the po-
tential approach scheme in the barrier region, that is by minimization of the fol-
lowing average  

( ) ( ) ( )1

0

2
d ,

x
e ex

I x V x V x P x= −  ∫                   (6) 

where ( )eP x  is the Boltzmann distribution normalized in barrier region, in 
which the potential ( )eV x  is used. 0 1,x x  are two intersection points of the 
straight line b BV V k T= −  with the original potential. Similar to the derivation 
of the escape rate in original reactive flux theory, the expression of the escape 
rate for Gaussian white noise can be worked out [6]:  

2 2 4 2 exp .bB
b

b B

Vk Tk
nQ k T

ω γ γ
ω

  = + − −     
             (7) 

The population n in the expression can be approximated by  

( )0
2
0

0
1 d d exp exp ,

2
x

B B

V x v
n x v

Q k T mk T
∞

−∞ −∞

   
= − −   

   
∫ ∫            (8) 

where Q is the partition function for the particles in the potential well. 
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When the theory is extended to an internal Ornstein-Uhlenbeck noise, a dif-
ficulty is encountered: the second order moments appearing in the probability 
density in barrier region is a oscillation function and the limits as time t tend to 
infinite do not exist, that is, the steady-state probability density does not exist. 
The steady-state probability density only exists for a small parameter region be-
low the dashed line in Figure 1. 

By using the method of characteristic function, the Fokker-Planck equation 
for transition probability density ( ), ,P x v t  in the barrier region is given as fol-
lows [16]:  

( ) ( ) ( ) ( )
2 2

2
2

( ) ,b b b b
P P P vP P Pv t x t t t
t x v v x v v

ω γ ψ φ∂ ∂ ∂ ∂ ∂ ∂
= − − + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
      (9) 

where the subscript b signifies the dynamical quantities defined at the barrier 
top. The expressions of these quantities can be found in [16]. ( )b tω  and ( )b tγ  
in the above equation can be called the renormalized (by the noise) potential 
barrier frequency and friction coefficient, and the original potential barrier fre-
quency can be called bare frequency. For an internal Ornstein-Uhlenbeck noise, 
the steady-state transition probability density only exists in the region below the 
dashed curve in Figure 1. We use ( )1,2,3is i =  to denote the three poles of the 
Laplace transformation of the coordinate Green function, i.e., the roots of the 
following characteristic equation:  

3 2 0,s as bs c+ + + =                       (10) 

with 2 21 , ,b ba b cτ γ τ ω ω τ= = − = − . For large time, i.e., ( )1 2 1s Res t− +  , 
( ) ( ),b bt tψ φ  in Equation (9) can be approximated as  

( ) ( )( ) ( ) ( )2 2 1 , ,b B b b b B bt k T t t k T tψ ω ω φ γ= − =             (11) 

and ( ) ( )2 ,b bt tω γ   are given by  
 

 

Figure 1. The applicable parameter region of the theory is below the solid line. (a) for 
0.4T = , (b) for 0.6T = . 
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( ) ( ) ,

2 2
2 b 2 b 2
b 22 2

2 2

ω Re ω Im
ω t = + tan Im t

τ τ

s s
s

s s
              (12) 

( ) ( ) ( )1 2 2 2tan ,b t s Res Ims Ims tγ = − + +  

where 1s  and 2s  denote the roots of Equation (10) with the maximal and the 
secondary maximal real parts, respectively, and “Re” and “Im” denote the real 
and imaginary parts of the complex, respectively. If the root 2s  satisfies 

1t 2Ims , we integrate two sides of the Fokker-Planck equation for large 
number periods, which results in an effective steady-state Fokker-Planck equa-
tion satisfied by an effective probability density, which is the long term average 
of the usual probability density and is just the quantity we need for the calcula-
tion of the mean escape rate for the time. If 1t 2Ims  is not satisfied, the im-
aginary part of ( )2

b tω , ( )b tγ  can be neglected because of the large barrier 
passing time t and the effective steady-state Fokker-Planck equation remains in 
the same form. Some details can be found in our previous work [17]. The barrier 
frequency bω  in the above expressions is the renormalized one, which incor-
porates the finite barrier correction. The expression of the escape rate has the 
same form as (7), but 2 ,bω γ  are replaced with the renormalized long term av-
erage frequency and damping, given by  

( ) 2
2

2

,st
s

= −
τ



2
2 b
b

ω Re
ω                       (13) 

( ) ( )1 2 ,b t s Resγ = − +  

and the expression of the escape rate is  

( )
( ) ( ) ( )22

2
4 2 exp ,bB

b b b
Bb

Vk Tk t t t
k TnQ t

ω γ γ
ω

  = + − −     
  



   (14) 

n is given by Equation (8). Because single-jump is dominant in the spatial 
diffusion regime, the diffusion coefficient is given by  

2 21 ,
2

D d kd= Γ =                         (15) 

where 2kΓ =  is the total jump rate, and d is the spatial period of the potential, 
here 2d = π . For some parameters, ( ) 0b tγ ≤ , which is physically unreasona-
ble. The theory is applicable below the solid line (plotted with ( ) 0b tγ = ) in 
Figure 1. In contrast to the PGH theory [14], the proposed method can also be 
applied to large damping and correlation time case provided that the parameter 
is below the solid line in Figure 1. 

3. Diffusion Coefficient: Theory versus Simulation 

To avoid a direct simulation of the generalized Langevin Equation (1), we in-
troduce an auxiliary variable  

( ) ( ) ( )
0
d ,

t
z t t t x t tγ ε′ ′ ′= − − +∫                   (16) 

which satisfies the following differential equation  
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1 0,z v zγ
τ τ

+ + =                        (17) 

in which the fluctuation-dissipation theorem (2) has been used, and v is the ve-
locity. Hence, the generalized Langvin Equation (1) is equivalent to the following 
Markovian-type Langvin equations  

x v=                            (18) 

( )v V x z′= − +  

1z v zγ
τ τ

= − −  

We simulate the Langevin Equations (18) by the second-order Runge-Kutta 
algorithm. In the calculation, the natural unit ( 1m = , 1Bk = ), the dimension-
less parameter 0 1V = , and the time steps are 410t −∆ =  for 0.1τ =  and 

45 10t −∆ = ×  for 0.4τ = . The test particles start from the a potential well and 
have zero velocity. The number of test particles 55 10N = ×  is used to describe 
the diffusion motion of a Brownian particle. The mean square displacement 

( )( )2
x t∆  reveals a good linear relation at long times. The diffusion coefficient 

D is obtained by the long time behavior of the mean square displacement  

( )( )2
2 .x t Dt∆ =                       (19) 

Figure 2 shows that the theoretical results of the diffusion coefficient (Equa-
tion (14) and Equation (15)) match well with the Langevin simulation results. In  
 

 

Figure 2. Diffusion coefficient: theory versus simulation. The solid lines are theoretical 
results, and the dashed lines are simulation results. Where 2bV = , other parameters are: 
(a) 0.4, 0.1T τ= = ; (b) 0.4, 0.4T τ= = ; (c) 0.6, 0.1T τ= = ; (d) 0.6, 0.4T τ= = . 
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the spatial diffusion regime, specified by 2 bγ ω≥ , the maximal errors are about 
4% for 0.4, 0.4T τ= =  and 2% for other cases. 

For higher temperatures or lower reduced potential barrier heights, the error 
increases, which can be interpreted as the jump-model being no longer a good 
approximation. 

4. Summary 

In the spatial diffusion regime, the calculation of diffusion coefficient is attri-
buted to the calculation of the escape rate. The reactive flux theory for finite bar-
riers is developed to incorporate finite barrier effect. The starting point of the 
Brownian particle is removed into the potential well where the probability den-
sity can be viewed as an equilibrium one, and the potential barrier is equivalent 
to a parabolic one. An equivalent steady-state Fokker-Planck equation is estab-
lished to overcome the difficulty of the absence of the steady-state probability 
density. The theoretical results for diffusion coefficient indicate a good agree-
ment with the Langevin simulation results in a certain range of parameters. 
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Abstract 
In course of a direct calculation we demonstrate the activity of parameters of 
the Lorentz transformation entering the original electric and magnetic field 
vectors E  and H . The validity of the transformation is shown with the aid 
of the relation 2 2 2 2′ ′− = −E H E H  which holds for any suitable pair of the 
vectors E , H  and ′E , ′H . No special geometry of the vector pairs en-
tering ( ),E H  and ( ),′ ′E H  is assumed. The only limit applied in the pa-

per concerns the velocity ratio betweeen v and c which should be smaller than 
unity. 
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1. Introduction 

The aim of the paper is to examine the effect of the Lorentz transformation of 
the electromagnetic field when the field formulae are general. The Lorentz 
transformation of the electromagnetic field is a well-known tool applied in nu-
merous motion occasions [1] [2]. But, in spite of its importance, a general kind 
of the Lorentz transformation concerning three dimensions of the electromag-
netic field, seems to be rather seldom discussed. Usually the transformation is 
limited to a special geometry assumed for a moving particle, or specific values of 
the applied mechanical parameters. 

The main aim of applying the Lorentz transformation seems to be a search for 
the application of some invariant expressions which remain exactly unchanged. 
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A well-known example is a tensor built up of the electric and magnetic com-
ponents [1] [2]:  

( )

0
0

0
0

− − 
 − − =  − −
  
 

z y x

z x y
ik

y x z

x y z

H H iE
H H iE

F
H H iE
iE iE iE

                 (1) 

which represent field intensities belonging to one four-dimensional electromag-
netic tensor [2]. 

2. Requirements Concerning the Lorentz Transformation 

In general the Lorentz transformation replaces the original components of the 
electromagnetic field, viz.  

, , ,

, , ,
x y z

x y z

E E E

H H H
                          (2) 

by the new components  

, , ,

, , .
′ ′ ′

′ ′ ′

x y z

x y z

E E E

H H H
                          (3) 

Both kinds of components are coupled according to the fomulae [2]:  

,′=x xE E                             (4) 

( ) ( )2

2

,

1

′ ′ ′
′

+
= = +

−

y z zy
y

v vE H HEc cE
p v c p v cv

c

                (5) 

( ) ( )2

2

,

1

′ ′ ′
′

−
= = −

−

z y y
z

z

v vE H HEc cE
p v c p v cv

c

                (6) 

,′=x xH H                            (7) 

( ) ( )2

2

,

1

′ ′ ′
′

−
= = −

−

y z zy
y

v vH E EHc cH
p v c p v cv

c

                (8) 
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Here  

( )
2

21= −
vp v c
c

                      (10) 

where v represents the velocity of the system. 
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It should be noted that sometimes a simplification is done in which instead of 
(10) the number  

1≈p                             (11) 

is assumed. Our aim is however, to perform the Lorentz calculation on an accu-
rate basis of (4) - (9), and not with the aid of the Formula (11). 

3. Lorentz Transformation and a Search for the Difference  
E H2 2−  

We find that our application of the Lorentz transformation gives as a result that 
the invariance property of the difference  

2 2 const− =E H                        (12) 

does hold. 
The first term on the left of (12) becomes:  

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

2
2

2 2
2

2 2 2

2
2

2

2 2 2

2

2
.

′′ ′
′

′

′′ ′
′

= + +

= + + +

 
 
 + − +

E x y z

zz yy
x

yy z
z

E E E

vv HH EE c cE
p v c p v c p v c

vv HH EE cc
p v c p v c p v c

             (13) 

In the next step, the second term on the left of (12) taken without a minus 
sign gives:  

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

2
2

2
2

2 2 2

2
2

2

2 2 2

2

2
.

′′ ′
′

′

′′ ′
′

= + +

 
 
 = + − +

 
 
 + + +

H x y z

zy zy
x

yz y
z

H H H

vv EH EH ccH
p v c p v c p v c

vv EH EH cc
p v c p v c p v c

            (14) 

Because of the minus sign which has the expression for 2H  in (12) we ob-
tain the following result for the difference in (12):  

( )

( )

2
2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

1 1

.

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

 
− = − + + − − − 

 

= − + + − −

= −

E H

E H

x x y z y z

x x y z y z

vE H E E H H
p c

E H E E H H       (15) 

Here the full Formula (10) concerning expression ( )p v c  is taken into ac-
count. 

4. Summary 

The paper examines the Lorentz transformation extended to the case when the 
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electromagnetic field represented by a general vector formula acting on a system 
is applied. 

We show that also in this situation the difference of the square values of the 
electric and magnetic field remains equal to a constant term which is uninflu-
enced by the transformation. 
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Abstract 

Considering only the wave aspect, we determine the energy of a bond be-
tween 2 nucleons; this quantified energy is associated with a standing wave. 
Then, starting from the mass loss corresponding to this energy, we determine 
the number of bonds in this nucleus. The mass defect value for a link is used 
to determine a specific length at that link. Fixing a precise distance between 
nucleons makes it possible to determine a geometry of the nucleus and its 
dimensions. It makes it possible to understand when this bond is stronger 
than the electrostatic force and allows deducing a shell model built in a pre-
cise order. The calculation on the mass defect will also make it possible to de-
termine that one or more nucleons concerned by the radioactivity will be 
bound by a single bond to the rest of the nucleus or, on the contrary, bound 
by several bonds which induce short ½ lives or, on the contrary, very long. 
The analysis of the bonds on H, He and C make it possible to write formulae 
which are then applied to the nuclei to find the radioactive ½ lives. To find by 
equations the radioactive ½ lives does not call into question the standard 
model since it concerns only the defect of mass of the nuclei with energies 
that are not used to find the main particles of the standard model. This mod-
el, which favours a geometric approach to the detriment of a mathematical 
approach based on differential equations, can lead to theoretical questions 
about the possibility of interpreting the structure of the nucleus in a more 
undulatory way. It is possible to explain radioactivity in a more deterministic 
way. 
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1. Introduction and Theoretical Postulate 

For each particle, we will consider only the wave aspect, which will allow study-
ing the binding as interferences or combinations of waves. The calculation is 
made from the number of proton-neutron bonds δ that will be isolated and 
counted from the mass defect Δm. (Δm is the difference between the masses of 
the neutron and the proton and it is considered that this corresponds to the 
energy of a bond). 

1) The nucleons are thus considered as a combination of waves of which we 
can determine a main or resulting wave whose frequency f is calculated simply 
by posing Ep = mpc2 and Ep = hfp ⇒  fp = mpc2h−1 (with Ep proton energy, mp 
proton mass, c = light velocity, h = Planck constant, fp proton associated fre-
quency); Similarly the frequency associated with the neutron will be fn = mnc2h−1 

2) The frequency Δf of the resulting interference wave of 2 others waves will 
be Δf = |fn − fp|  

The bonds inside stable nuclei, such as helions, are not taken into account in 
the calculation of the ½ lives. Nor is there any attempt to find the bond energies 
of particles such as mesons, bosons or gluons. These particles from the standard 
model have energies far superior to the mass defect of the binding energies.  

This p-n interference wave takes an energy of Δm = 0.001389u to the neutron, 
the neutron and the proton vibrate at the same frequency. It is postulated that 
this induces a standing wave which will favour and thus determine a very precise 
distance d between the nucleons corresponding to a ½ wavelength λ of the pe-
riod Pp of proton vibration (Pp = 0.433 × 10−23 s), so d = 0.65 × 10−15 m. The an-
ti-node of this standing wave explains an “attractive force” between 0.65 and 
0.97 fm and a “repulsive force” when the distance is less than 0.65 fm. It provides 
an explanation to a repulsive strong interaction when the distance tends to 0 and 
attractive at medium distance. In fact, theoretically and thus verifiable, depend-
ing on the distance with other anti-nodes, the force would be alternately repul-
sive or attractive. (Attractive when n × 0.65 fm < d < n × 0.97 fm, n N∈ ). The 
size of a proton can thus be defined as the distance between 2 anti-nodes or 0.65 
fm on average with a maximum size of 0.97 fm. This size assumption is consis-
tent with the estimated radius of the proton (proton radius = 0.831 fm [1]) (see 
Figure 1). 

In fact, it is assumed that the binding between two nucleons consists of 
standing waves and an interference wave. This postulate with a standing wave 
therefore induces a precise and necessary distance d for the bond to be estab-
lished between a proton and a neutron. This precise distance forces the nucleus 
to have a precise geometry. Thus, if the distance between a proton and a neutron 
can remain fixed, the bond will be stable. If geometry prevents the nucleon from 
staying at this ideal distance, the bond will be unstable. 

The energy E of a wave is of the form 2dE xψ= ∫  (ψ = amplitude of the 
wave), therefore for a wavelength λ, E is of the form E = ψ2λ or for the standing 
wave since d = λ/2, E = ψ2d. When d increases, the energy or the mass defect  
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Figure 1. Proton-neutron liaison. The proton p has a period of 4.3 × 1024 s or a wave-
length of 1.29 × 10−15 m. When the neutron n loses 0.00139 u in the p-n bond, standing 
waves can be established between the 2 nucleons. We take the shortest possible distance d 
or a ½ wavelength, which means that the nucleons are “in contact”. The anti-nodes of the 
standing wave are at points A, B, C. The centres p and n of the 2 nucleons will tend to 
remain at the nodes where the vibrations are of lower amplitudes. The maximum distance 
dm without break will be when the point n reaches C with the point p remaining in place 
or when the point p reaches B with the point n remaining in place. dm = d/2 = 0.9675 × 
10−15 m. B and C are points where the amplitudes of the waves from n and p cancel each 
other out. It is the same beyond B and C. However on the right perpendicular to BC 
passing by A, there will be maxima of amplitude in D and E and beyond. There will be 
nodes in N1 and N2 located exactly at the distance d from n and p that will allow 2 other 
nucleons to be positionned there. 
 
increases. If d corresponds to an energy Δm, then we can write that the total 
length of the bonds dt corresponds to a total mass defect Δmt. 

( )t td d m m= ∆ ×∆                         (1) 

3) It is the Ppn periods of the interference bond and the nucleon period that 
are useful in determining the ½ lifes. 

If a bond assumes 2 identical frequencies so that a standing wave can be estab-
lished, it is necessary that the neutron loses Δm = 0.001389 u to have a vibration 
frequency identical to the proton; thus, there may be a interference pn in the 
bond between a proton and a neutron; 2 isolated neutrons will tend to group in 
pairs with no additional loss of mass. With this rule, nothing prevents a nucleon 
from interfering with several nucleons or groups of nucleons as long as their vi-
bration frequencies are identical and it is located at a vibration node. When the 
nucleon is located at one or more distances d, the bond and thus the nucleus is 
stable. 

We do know, however, that for a theory, stationary wave superimposition is a 
questionable element. Sazdjian [2] writes in his thesis that the superimposition 
will see “the position of the zero point move over time with a certain pulsation” 
and will no longer correspond to a fixed point. When the distance d cannot be 
identical for 2 bonds, there will be superposition of several standing waves of 
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slightly different periods, which will cause instability in the binding with a com-
putable period.  

2. Method of Calculation 
2.1. Reminder of the Equivalence between Frequencies, Periods  

and Mass Defect 

The interference wave p-n will have a frequency Δfpn = fn − fp (fn frequency of 
neutron vibrations, fp frequency of proton vibrations). Its period Ppn will there-
fore be Ppn = 1/|fn − fp| = 3.19 × 10−21 s (This period can be calculated directly by 
posing Ppn = h/E with h = Planck constant, E = energy in J corresponding to 
0.00139u which is the mass difference between a neutron and a proton. For the 
neutron, the period would be 0.44 × 10−23 s and for the proton 0.433 × 10−23 s) 

The period Ppn of the interference pn will have a larger period than the stand-
ing wave of period Pp in a ratio P = Ppn/Pp. the standing wave and the interfe-
rence wave will therefore be in phase with this periodicity P. 

This periodicity P in the bond L, depending on whether we consider the pe-
riod of the proton Pp or that of the neutron Pne, will be equal to  

pn pP P P=                            (2) 

or 

pn neP P P= .                          (3) 

Considering the frequencies, (2) and (3) become: 

p pnP f f= ∆                           (4) 

or 

n pnP f f= ∆                           (5) 

(The frequencies fn, fp and Δfpn are all of the form fx = mxc2h−1. There is there-
fore a simplification that allows to directly calculate the period P from the 
masses in u) 

pP m m= ∆                           (6) 

or 

nP m m= ∆                           (7) 

(with Δm = mn − mp; mn = 1.008665 u and mp = 1.007276 u) 
(The order of magnitude is P = mp/Δm = 725.18 s (if the nucleon has lost 

more mass, e.g. 5Δm, then the bond will have a P period equal to 720.18 s (P = 
(mn − 5Δm)/Δm)) 

2.2. Calculation Methods That Can Be Used to Determine the  
Number of Isolated Bonds 

1) The mass defect Δmt found for each nucleus, will make it possible to de-
termine how many bonds δ with an energy of 0.000139u (δ = Δmt/0.001389 (8)). 
We can reasonably assume that when the number of bonds within a group is 
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very large, the group will be particularly stable: for helium4, we find a mass de-
fect corresponding to 21 bonds p-n (δ = 21.07), which confirms the special role 
of this grouping. The mass defect for a helium nucleon can so reach 5Δm (the 
maximum of isolated bonds does not exceed 9 for the heaviest elements) (See 
Table A1 in Appendix 2). 

2) The number of bonds corresponding to the number of N helions present in 
the nucleus (21 bonds per helion) is subtracted and so the number of bonds of 
the triplets 3H (6 bonds) or 3He (5 bonds), or doublet 2H (1 bond) when they 
are present. These groupings are formed primarily as shown by the results on 
how the mass defect increases, the analysis of the elements from H to C, and the 
consequence that the elements with odd Z are monoisotopic. We thus determine 
the number of isolated bonds δ' between the helions or with the groups 3H, 3He, 
2H starting with the stable elements. 

1 2 321.07 6.41 5.17N N N Nδ δ′ = − − − −             (9) 

(N1, N2, N3 are respectively the number of 3H, 3He, 2H; N1, N2, N3 are 0 or 1, 
when one is 1, the other 2 are 0) 

3) Finally, for a given isotope Y of greater and generally radioactive mass, the 
number of additional bonds δ'' in relation to the precedent lower isotope X is 
determined, taking into account that these additional bonds may be double on 
shell 2, triple on the 3, etc. (on multiple bonds and shells, see paragraph 3-3-2). 

( )y x nδ δ δ′′ = −                      (10) 

(δy = total number of bonds of Y, δx = total number of bonds of X, n = 1 for a 
single bond, n = 2 from shell 2)  

2.3. Half-Life Calculation 

Figure 2 shows the ½ radioactive lives of 3337 radioactive isotopes from H to Pb 
elements from Nubase [3] [4] [5] [6]. Most of the ½ radioactive lives are between 
10−4 and 107 s, a small part around 10−7 s; the ½ long lives above 1010 s are di-
vided into 4 undulations; a peak of ultrashort lives is around 10−22 s. These 3 dis-
tribution zones correspond to different mass defects: 

Since there are 3 zones and a correlation between the times of ½ lives and the 
number of bonds δ'' (see Table A1), we considered 3 ways of interfering for 
waves: 
 Interferences of several bonds for one nucleon (δ'' > 3) for 1/2 long lives.  
 Interference of a bond of one nucleon with another (0 < δ'' ≤ 3) for short 1/2 

lives. 
 Pass time (δ'' ≤ 0) for the ultra short 1/2 lives. 

2.3.1. ½ Life When There Is a Nucleon for Several Bonds (δ'' > 3) 
The nucleon concerned by radioactivity will have several bonds with different 
nucleons located at distances d1, d2, dn. Each link will have an average period of 
725 s when d is the average distance. The relationship between the period and 
the distance is given by 
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Figure 2. Distribution of radioactive ½ lives of 3337 isotopes: There is: 1) a central zone with a main peak between 10−4 and 107 s 
where most ½ lives are located (median between 10 and 102). 2) A peak between 10−22 and 10−20 s. 3) Another peak around 10−7 s. 4) 
Above the central zone, 4 increases in the number of ½ lives are observed from 1010 to 1015, from 1015 to 1020, from1020 to 1025, 
from 1025 to 1030 s. These 4 increases could correspond to wave combinations, but the number is statistically small. 

 

2pnP P c d= ×                         (12) 

(see calculation Appendix 2). (The distance d varying between a minimum 
and a maximum, the period P will vary between 363 s and 1088 s) It is assumed 
that radioactivity will occur when the nucleon or helion has several such bonds 
in phase. This is a long half-life. 

Thus a neutron with k bonds of period P will have a 1/2 life  
kT P=                            (17) 

2.3.2. ½ Life When There Is One or More Nucleons for a Bond (δ'' = 1 or  
2) 

The nucleon concerned by the radioactivity will have a 1/2 life T due to the dif-
ference of periods P1 and P2 of 2 waves. 

1 2T P P= −                          (15) 

or 

( ) 1 2 1 22pnT P c d d d d= × × −                  (16) 

This formula (calculation in Appendix 2) allows us to find, according to the 
constraints on distances d1 and d2, the durations of the 1/2 lives for isotopes 
with ½ lives between 10−4 and 107 s.  

2.3.3. Ultra Short 1/2 Lives Less Than 10−20 s (δ'' = 0 or −1) 
For the 1/2 lives of the order of 10−20 s, there is no additional bond since there is 
no additional mass defect and we propose to interpret this time as that of the 
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passage time of a wavelength or a vibration. The additional nucleons, cannot in-
terfere long enough to create bonds with the vibrations of the neighboring 
nucleons. When the ½ life is of the order of 10−21 s (e.g., for 5He) this could cor-
respond to the vibration period of the interference pn of 3.2 × 10−21 s. 

When the period is of the order of 10−24 s, it could correspond either to the 
period of vibration of the nucleon (4.33 × 10−24 s), or to the time of passage of an 
interference in a part of the nucleus since a fm is traversed in 0.33 × 10−24 s. 

3. Results in Applying This Method to the Different Isotopes 

The results of the number of bonds from the mass defect, and the correlation 
with the 1/2 lives are reported in Appendix 2 Table A1. This table shows that: 

1) There is a substantial increase of δ to 21Δm from 3He to 4He. 
2) Whenever, when Z is even, the number N of neutron reaches Z, then there 

is an increase of δ allowing the formation of a new helion. 
3) When, in addition to helions, there are 1 proton and 2 neutrons, they will 

form a 3H. Similarly, when 2p and 1n are available, δ' increases by 5 to form a 
3He. 

4) Stable elements can be spotted; δ'' is highest for stable or very long 1/2 life 
elements (δ'' > 3). For short 1/2 lives: 0 < δ'' ≤ 3 and for 1/2 ultra short lives: δ'' 
≤ 0. 

3.1. H and He (Nucleon-Nucleon Interaction) 

 2H-total mass defect Δmt = 0.001848, (8) ⇒  δ = 1 (1.3) There is only one 
bond that cannot interfere with others; the distance d between the centres of 
neutron n and proton p can remain constant around an average value; the 
nucleus is therefore stable. 

(The total length of the deuterium will therefore be 2d or 1.3 fm) 
 2He cannot exist since there is no pn interference to put the 2 protons at the 

distance d and the repulsive electrostatic force dominates at this distance d. 
The energy of the bond corresponding to 0.00139u is Epn = 2.0711 × 10−13 J. 
Since there is a distance d = 0.645 fm between the centres of 2 nucleons, the 
energy Ee of the electrostatic force of Coulomb between 2 protons can be 
calculated and is 3.567 × 10−13 J (Ee = Kc × q2/d with Kc constant of Coulomb 
= 8.987 × 10−9, q charge of a proton). Between 2 protons, energy Ee decreases 
to Epn = 2.0711 × 10−13 J at a distance dp = 1.111 × 10−15 m which is greater 
than the maximum distance dm of 0.9675 × 10−15 m (see Figure 1). So the 
bond cannot be made. 

 3H have a mass defect. Δmt = 0.00891 u or δ = 6.41. The total mass defect 
corresponds to 6 bonds. (The additional mass defect δ'' compared to 2H cor-
responds to 5 proton-neutron bonds). Each neutron being equivalent, we can 
say that there are 3 bonds per neutron (k = 3). As shown in Figure 1, the po-
sitioning of a 2nd nucleon seems possible in N3 or N4, which requires the 
proton and the 1st neutron to be positioned at a wavelength that is a distance 
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2d (see Figure 3). N3 is located exactly 2.24d from the centre of the 2 other 
nucleons. The total of the bonds is of 6.48d allowing to predict an energy 
corresponding to 6.48Δm according to Equation (1). The observed mass de-
fect is 6.41Δm. The value of the radioactive 1/2 life (3.88 × 108 s) will be per-
fectly recovered by the calculation ((17) ⇒  T = 3.83 × 108 s) since, spatially 
without interference, the 3 nucleons can be placed at an ideal distance mul-
tiple of d. 

 3He The mass defect Δmt corresponds to the energy of 5.17 bonds (or 
5.17Δm). As for 3H, we can imagine a geometric configuration allowing to 
find the defect of mass: the 2nd proton binds with the neutron. The electros-
tatic force brings proton and neutrons to the maximum distance of 1.5d. The 
protons will be on a node of the bond between the neutron and the other 
proton. The total distance between the 3 nucleons is then 5.12d (see Figure 
4). 

 

 

Figure 3. Possible geometry of the nucleus 3H. 
 

 

Figure 4. Possible geometry of 3He. This configuration of 3He where the nucleons have only one antinode 
of vibration instead of two with a distance between them does not vary is a hypothesis that would explain 
why 3He which contains yet 2 protons is more stable than 3H. 
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 4He has a significant mass defect Δmt = Δfα = 0.02930 corresponding to δ = 
21.07 bonds L. This significant mass defect Δfα with many bonds involves a 
very stable nucleus and makes it possible to say that nucleons first form he-
lions or particles alpha; these mass defects are found whenever 2 protons and 
2 neutrons can be grouped by 4. We can imagine many geometric solutions 
to explain this mass defect of 21.07Δm and it would be very risky, because of 
the lack of precise dimensions of the nucleus, to say which one is the right 
one. We give an example (see Figure 5) simply to say that the hypothesis of a 
precise geometry with standing waves makes it possible to find the defect of 
mass. The total dt of the bonds (dt = 21.07d) makes it possible to find a 
maximum diameter of the nucleus at 3.379 fm in accordance with the meas-
ured diameter of the 4He nucleus at 3.35648 fm [7]. 

 5He with an atomic mass Ma of 5.0123 u will have: Δm = 2p + 3n – Δfα – Ma = 
–0.00085u, δ' = 0 therefore no additional bond (δ'' = 0) for the 3rd neutron. It 
is a neutron emission decay with a 1/2 life of 0.7 × 10−21 s, which could cor-
respond to the period of one vibration or to the passage time of a part of the 
path of the interference pn which has a period of 3.2 × 10−21 s. (1/4 of the 
wavelength beats in 0.8 × 10−21 s and is 0.25 × 10−14 m, length of the order of 
magnitude of the nucleus). So, it could be interpreted as a nucleon that passes 
at the level of the nucleus and that interferes only the time of its passage. 

 6He has a 1/2 life of 806 ms and with Δm = 0.00136 u has a single additional 
bond compared to 4He (δ' = 1) for 2 neutrons that form a halo. 

Since δ'' = 1 (a single additional bond compared to 5He, the precedent lower 
isotope), the 1/2-life T will be calculated from the difference between 2 adjacent 
periods P1 and P2 according to Equation (16). A 1/2 life of T = 0.806 s corres-
ponds to a variation of length Δd of only 0.007 fm.  
 7He (Δm = 0.00057 u so δ'' = 0 additional bond compared to 6He. It is a dis-

integration by neutron emission as for 5He. The 1/2 life will also correspond 
to the passage time of a wavelength (we can try the ad hoc explanation that 
this 1/2 life of 2.9 × 10−21 s corresponds to the time that passes 3/4 of the wave 
pn, that is 2.4 × 10−21 s). 

 

 

Figure 5. Hypothetical example on the geometry of 4He. If we consider the atomic mass 
of 4He, the vibration period is 1.1 × 10−24 s. 
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 8He (½ vie = 119 ms) will have two bonds (δ' = 2.40) for the four neutrons in 
halo. The spatial configuration is a hypothesis that would make it possible to 
better explain the different daughter isotopes (see Figure 6). 

3.2. From Li to C 

 4Li and 5Li release a p and have ½ lives of 0.09 × 10−21 s and 0.37 × 10−21 s. 
 6Li, δ = 23.5, there are 21Δm to form a helion, 1Δm for a bond p-n and 

1.5Δm for 2 bonds between the group pn and the helion. 
 7Li, δ'' = 6, the group pn is replaced by a group 3H with its 6 internal bonds. 

8Li, δ'' = 1.5, which suggests a bond of 1.5d for the last neutron and that the 
group 3H of the 7Li is not modified. Therefore, the halo should be non-symme- 
trical since it consists of a neutron and of a group 3H and not 1p + 3n. 

9Li, δ'' = 3.1 there are 3 bonds more than the 8Li; a bond will unite the new 
neutron to the previous; the group will be bound to the central nucleus by a 
double bond 2d. So, 9Li will have an elongated shape. When this neutron be-
comes a proton, there will be formation of 2 4He and depending on whether the 
remaining neutron will have its 2 bonds straddling the 2 He or on a single one, 
we will have the 2 modes of decay at 50% (see Figure 7). 

10Li releases a neutron and has a 1/2 life of 1.35 to 3.7 × 10−21 s that can be 
conjectured to correspond to a passage time proportional to the diameter of the 
nucleus variable according to the isomer. 

11Li has an additional bond to 10Li or 9Li. The pair of neutron attaches to a dis-
tance 1d. The long length of 11Li would thus reach about 9d. 

12Li emits a neutron and we find an ultrashort 1/2life.  
 8Be (Ma = 8.0053 u) 4p + 4n − 2Δfα − Ma = −0.00006. δ' = 0, there is no bond, 

so this element exists only the time of a wave passage.  
 9Be (9.01218u): δ'' = 1.34. This element is interesting: it is stable despite a 

small δ'' allowing for the neutron a bond with each of the helions at a short 
distance (0.67d). The stability, with the idea of standing waves, would be due  

 

 

Figure 6. Spatial configuration and 8He daughter isotopes. The configuration 1 where neutrons are dispersed is the 
most common (83.1%); 1) in 2, 3 nucleons are grouped together (16%); 2) in 3, the 4 nucleons are grouped together 
(0.09%). 

https://doi.org/10.4236/jmp.2022.138073


M. Mignonat 
 

 

DOI: 10.4236/jmp.2022.138073 1226 Journal of Modern Physics 
 

 

Figure 7. Possible configurations of lithium and berylium. 8Li has 10 bonds in addition 
to the helion, that is 6 bonds to make a group 3H and 4 bonds to unite at a distance 2d the 
group 3H and the nucleon to the helion. 9Li has 3 additional bonds. The 2 n can grouped 
together in pair. The position of the 2 n relative to the group 3H at the time of decay could 
explain the daughter isotopes. 11Li: The peripheral neutrons could be grouped by two be-
cause the isolated neutron of the 10Li remains only 2 × 10−21 s. 

 
to the fact that the geometry allows the 2 bonds to have identical distances 
and therefore frequencies of vibrations without phase shift (Figure 7). The 
shape of the 9Be that can be deduced is consistent with that described by 
Ebran, et al. [8]. 

 The carbon atom 12C: it will be composed of 3 helions; subtraction of 3 times 
the mass defect of one helion makes it possible to find 6 bonds L (we can 
suppose that each proton of one helion interferes with one of the six neu-
trons of another helion): 

6p + 6n − 3Δfα − 6Δfpn = 12.09714 − 3 × 0.0297 − 6 × 0.00138 = 11.99971. We 
find the exact mass of the 12C, which makes it possible to assume that all 6 bonds 
have the ideal distance d and that this nucleus is particularly stable. 

For 13C, the mass defect (δ'' = 3.82) makes it possible to find 4 additional 
bonds p-n, which makes it possible to imagine that the additional neutron is 
fixed by 2 double bonds (bonds of length 2d as for 3H) (see Figure 8). 

For 14C, there are 6 additional bonds compared to 13C, the last neutron can be 
linked by 4 bonds (2 doubles and 2 singles). 

3.3. Above C, It Is Possible to Construct the Hypothesis of a Model  
in Shells or Corona 

3.3.1. Starting from C, We Start from the Findings from Table A1 
1) Helions are primarily constituted. Systematically, for all isotopes, when the 

number of neutrons reaches the even number of protons Z, there is a loss of  
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Figure 8. The atom of carbon. 
 
additional mass of at least 21Δm allowing to constitute a new helion. If a helion 
cannot be formed, it can be seen that then, first of all, the triplets 3H or 3He are 
formed (there is a defect of additional mass of 6 or 5Δm). 

2) Table A2 (Appendix 2) recalls that, above C, the number of stable nuclei is 
greater when Z is even. For elements where Z odd, an additional neutron added 
to the stable isotope will be converted by radioactivity β− into a proton to form a 
new helion (When Z odd, the lower-mass stable element above nitrogen is al-
ways made up of helions with or without neutron pairs and a group 3H (see pa-
ragraph 3-3-3)). 

3.3.2. A Model of the Nucleus Will Be Able to Be Drawn from Stable  
Nuclei Which, Like C, Have a Number of Helions Multiple of 3  
(see Figure 9) 

We note that for the 12C, there are 6 bonds (6Δm) between the 3 helions, or 2 
bonds by helion. 

To interpret the large number (12Δm) of additional bonds of 24
12 Mg  for the 3 

new helions compared to the 12C:  
1) Or we imagine a very large number of connections between the 3 new he-

lions and then, the bigger the nucleus would be the more stable it would be. The 
nucleus being less stable when it grows, this hypothesis must be rejected. 

2) The other hypothesis to explain the large number of additional bonds (the 
important mass defect) is to say that the distance between the new helions is 2d 
(2 nodes on the standing wave forming the bond) and not d (distance between 2 
nodes). (This is the hypothesis we made for 3H and resumed for 4He, 13C and 
14C). Each link at a 2d distance that we will now call double bond corresponds to 
an average mass defect of 2Δm. 

This hypothesis also has the advantage of being able to describe an excited 
nucleus. An excited nucleus could be a nucleus where the nucleons are placed at 
distances of 2, 3 or 4d. This is consistent with the representations of excited 
nuclei [8].  
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Figure 9. Formation of a 2nd shell. 
 
 So for 16O, if there are still 2 bonds by helion, with a loss of mass of 5.53 Δm, 

the additional helion will attach itself to the outer part of the 12C corona 
starting a second shell. Trigonometry makes it possible to verify that the dis-
tance between a neutron of this helion and a proton of the 1st shell is exactly 
2d. The geometry does not allow it to attach itself to the top of the corona 
because the square shape of the new helion does not correspond to the hex-
agonal shape of the 12C. Placing the new helion above would not keep the 
nucleons at a distance d and protons would be in contact (see Figure 9). 

 It is the same for 20Ne where 4 additional Δm allow to link a new helion on 
the second shell by 2 double bonds. 

For 24
12 Mg , there is a mass defect allowing two double bonds to connect the 

3rd helion on shell 2. This hypothesis where the distance increases with the size 
of the nucleus could explain an increasing instability and goes in the direction of 
the model of the nucleus in shells. Thus, most of the mass defect of 36

18 Ar  is ex-
plained if the 3 additional helions are connected on a 3rd shell by 6 triple bonds. 
Similarly, 6 quadruple bonds are obtained for 50Cr and 6 quintuple bonds for 
64Zn (Figure 10). 
 This principle of connecting as soon as possible the last 3 helions per n times 

6 bonds allows, from the mass defect (and more precisely the additional mass 
defect δs compared to the previous element multiple of 3 helions), to deter-
mine on which shell n are the last 3 helions and to define a fill order. n = δs/6 
with δs < 25 (18). This empirical formula is valid until neutrons are needed to 
stabilize the nucleus. Neutrons use a variable number of bonds depending on  
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Figure 10. Formation of shells 3 to 5. The shell number n is given by n = δs/6 when there is no neutron in addition to the helions. 
δs is the additional mass defect for an element with helions multiple of 3 compared to the previous element, multiple of 3 helions. 
n will become δs/7 then δs/8 depending on the number of additional neutrons. δ'' (number of new bonds in relation to the next 
lower isotope) is indicative of the number of bonds between the new neutrons and the new helion. (nuclei are seen from above, so 
only half of each helion is seen). 
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the shell in which they are fixed and this must be taken into account. So, 
when 35 > δs > 25, (18) becomes n = δs/7 (19), when δs > 35, (18) becomes n 
= δs/8 (20). For the other multiple elements of 3 helions, 50

24Cr  will have 4 
shells (n = 4.85), 64

30 Zn  will fill the rest of the shell 4 (n = 4.28), 80
36 Kr  will 

have 5 shells (n = 5.00). 92
42 Mb  will fill the rest of shell 2 (n = 2.17), 106

48Cd  
will fill the rest of shell 3 (n = 3.00), 124

54 Xe  part of shell 5 (n = 5.5) as 142
60 Nd  

(n = 5.25) (see Figure 10 and Table A4). 
 This filling helps to understand the role of additional neutrons and how they 

stabilize the nucleus. The filling brings, after the 40
20Ca , helions to have their 

protons in contact with other protons. Two pairs of protons will be in contact 
(at a distance of 0.645 fm where the electrostatic repulsive force is stronger), 
which will bring each helion in this position to need two neutrons to be sta-
ble. For the construction of the nucleus, this leads to say that a helion that 
does not need 2 neutrons is fixed on one of the three branches; a helion that 
needs 2 neutrons is fixed between two branches. Thus, above the 40

20Ca , it 
can be assumed that the last helion of 46

22Ti  is fixed between 2 branches, that 
the last helions of 54

26 Fe  and 56
28 Ni  are fixed on the branches. From 64

30 Zn , 
there is a steady increase in the number of neutrons. It is tempting to interp-
ret the decrease in mean energy per nucleon from the Fe and Ni by this neu-
tron augmentation mechanism; this is in agreement with the Aston curve. It 
can be verified on Table A4 and Table A5 in the Appendix 2 that the in-
crease of neutrons for the stable elements is 2 in 2. We can see that, when Z is 
even, the number of neutrons in addition to those of the helions is even and 
that, for each element, the stable isotopes of lower mass between Ca and Pb, 
32 elements, all have stability for 2n neutrons then 2n + 2 neutrons (e.g. 54Fe 
and 56Fe, 64Zn and 66Zn) (exception of 46

22Ti  and 47
22Ti  which are stable, 90Zr 

with 91Zr and 142Nd with 143Nd) It can however be noted that this does not ex-
plain why, almost systematically, there is a stable isotope with an odd num-
ber of neutrons 2n + 3 (e.g.; 57Fe, 67Zn, …). 

From 124
54 Xe , the order in which the shells are filled and how the additional 

neutrons are placed is easier to understand by taking the excess of mass loss for 
each additional helion (see Table A5). The increase in the loss of mass from one 
nucleus to another to uranium is variable but remains in a narrow range corre-
lated with the number of neutrons required for the stability of the nucleus. 

This filling can be followed on the geometry of the nucleus and is more un-
derstandable on a graphical representation. The geometric form in trifide corona 
by growing creates spaces that are then occupied (see Figure 11).  

The existence of empty spaces within the nucleus is one hypothesis that has 
already been made by several studies speaking of a “bubble structure” [9] [10] 

The nucleus gradually takes the form of a 6-pointed star with 5 levels or shells. 
(at no time is there a mass defect sufficient to form a 6th shell and bind the new 
neutrons) Between the branches, spaces are available and we note that the filling 
of shell 5 which can contain 14 He ends with the Pb (Figure 12) (NB: On the 
figure, at shell 5, there are 2 times between 2 branches of the star, 2 He instead of  
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Figure 11. Filling of the spaces of the nucleus and hexagon shape. 
 

 

Figure 12. End of filling of shell 5 with Pb. 
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one, which is logical since with a diameter of 9d, the outer limit of the 4th shell 
can contain exactly 14.01 He of dimension 2d). As part of a corona model, it is 
happy to see that this filling based on geometry could give us an explanation: 
and the principle of quantum numbers associated with shells and sub-shells, and 
to an exclusion principle since each helion having a specific place, there cannot 
be 2 helions in the same place. It should be noted, however, that our 5 shells do 
not correspond to quantum shells and that we do not systematically find a cor-
relation with magic numbers. 
 Between Pb and U, there is always an average increase of 2 neutrons for each 

additional helion with only an average of 3.2 bonds for a helion with 2 neu-
trons. This excess mass defect of 3.2 is small and comparable to that of lighter 
elements below C. Also, instead of considering a sixth shell, this small in-
crease in the number of bonds makes us think that helions, as for the C, will 
group by 3 with one or two helions of the shell 5 and that these latter helions 
will have weaker links with the rest of the nucleus. This is a hypothesis that 
could explain the fissions of heavy elements where Ra gives Pb + C, Th be-
comes O + Pb or Yb + Ne + Ne or Hg + Ne, U becomes Pb + Ne or Hg + Mg 
or Hf + Ne + Ne. This suggests for our model that the magnification of the 
nucleus above the Pb is done by fixing an extension having the shape of a C, 
a O, a Ne or a Mg (see Figure 13). 

Our model suggests that there is no super-heavy stable element. The magnifi-
cation of the nucleus above Pb is done by fixing an extension in the form of a C, 
O, Ne or Mg. It then seems logical to think that the larger this extension, the 
more unstable the nucleus. 
 

 

Figure 13. From Lead to Uranium. 
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(One could also imagine a sixth shell consisting of 14 helions which would be 
placed in front of the 14 helions of the shell 5 of the Pb. But it is difficult to see 
why there would appear an additional defect of 12Δm per helion necessary to 
constitute this shell when there is only 3.2Δm by helion from Po to U). It should 
be noted that knowing the mass defect of these stable elements, it is easy to veri-
fy that the immediately superior radioactive isotopes have a small number of 
bonds to retain their additional neutrons. The number of bonds can give us an 
idea of their position within the nucleus and will allow us to choose the formula 
to use to determine their ½ life. This geometric position would induce by what 
wave interferences they are bound and thus their radioactive ½ life. 

3.3.3. Consequences of This Model on Stable Monoisotopic Nuclei (Odd  
Z) 

The fact that they are monoisotopic is logical for our model since helion forma-
tion is a priority as soon as a neutron is added. We can predict which monoiso-
topic element will be stable: we take the stable isotope X of the element with the 
lowest mass A with Z even, or XA

Z , and we add a 3H group with 0 or 1 or 2 pairs 
of neutrons depending on the shell reached by the previous element with even Z. 
 Thus, for even elements XA

Z  from 16
8O  to 40

20Ca  stable without neutron in 
addition to helions, elements Y with a stable number of odd protons will all 
be of the form:  

Y = 3
1XA

Z
+
+  (Z even, 6 < Z < 20)             (21) 

 Between 40
20Ca  and 90

40 Zr , the stable element Y, with number of odd pro-
tons will have a mass number of: A + 3 + 2. 

3 2
1Y XA

Z
+ +

+=  (Z even, 18 < Z < 40)            (22) 

 Between 90
40 Zr  and 142

60 Nd , the stable odd element is obtained by adding to 
group 3H either a pair of neutrons (Ag, Pr),or 2 pairs (Rh, In, I), or 3 pairs 
(Sb, Cs, La), or no pair (Nb). For our model it can be interpreted by the pro-
gressive filling of shells 4 to 2. 

 Between 144
62Sm  and 204

82 Pb , the stable element Y with number of odd pro-
tons will have a mass number of: A + 3 + 4 (except 165

67 Ho  which has 6n 
more instead of 4).  

3 4
1Y XA

Z
+ +

+=  (Z even, 60 < Z < 82)             (23) 

For our model, this stability in the addition rule could be explained by filling 
only of shell 5. 

In the few cases where there are two stable isotopes, (Cu, Ga, Br, Ag, Sb, Ir, 
Tl), the second stable isotope is obtained by adding a pair of neutrons. 

As soon as an additional neutron is added to this group in addition to the 
pairs of neutrons needed to stabilize the nucleus, a neutron will most often be 
transformed into a proton (β-decay) to form a new helion. This is the possible 
explanation for the low number of stable isotopes for elements with odd Z. 
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3.4. Results on ½ Lives 

It is the number of δ'' and therefore the geometry that will make us choose one 
of the formulas below to use to determine the ½ lives. 

3.4.1. ½ Life When There Is a Nucleon for Several Bonds (δ'' > 3) 
The ½ life will be calculated from the formula T = Pk (17). 

In Table A3 in the Appendix 2, we reproduce all isotopes of masses greater 
than stable elements (Radioactivity α and β) of ½ long lives (>10 years) from the 
classification (64 isotopes) and find a very good correlation between the ob-
served½ lives and what our calculation provides (only 4 heavy isotopes come out 
of our calculation). The deviation that often exists from the mean value could be 
explained by the variation in the distance of the nucleon or helion bonds con-
cerned by the radioactivity. The ½ life is then a way to calculate the distance d of 
the bonds. ((12) (17) ⇒  12 k

pnd P c T= × × ) (24) 
It is also interesting to note that for all these elements at ½ long life, from the 

lightest to the heaviest, δ'' is always greater than 3 and between 5 and 8. 

3.4.2. ½ Life When There Is One or More Nucleons for a Bond  
(0 < δ'' ≤ 3) 

 The first thing is to note that there is a total correlation for isotopes between 
their ½ lives between 10−4 s and 107 s and their δ'' between 0 and 3.  

 The formula ( ) 1 2 1 22pnT P c d d d d= × × −  (16) allows to find the exact du-
rations of ½ lives. This is done from distances d1 and d2 below the maximum 
that we have set to remain within the framework of standing waves. The 
knowledge of the 1/2 life allowing to predict the distances, the validation of 
this formula could come from such measures. 

 For some periods, for example around 10−9 s halfway between ultra short and 
short periods, the existence of a peak might suggest a different type of inte-
raction than described for short periods. The combination of 2 waves T1 and 
T2 from the formula (16) with periods around 10−4 s would allow to find the 
periods T of the peak at 10−9 s according to a formula T = T1 × T2, but in the 
absence of any observation, this is only a conjecture.  

3.4.3. Ultra Short ½ Lives (<10−20 s) 
Similarly, for these ½ lives, we can verify that all radioactive elements have a δ'' ≤ 0.  

4. Discussions and Conclusion 

The model we propose remains valid from the H to the heaviest elements. 

4.1. On Characteristics of the Bond 

The initial postulate is that the bonds between the nucleons start from the 
two-body interaction between a proton and a neutron; the energy of the bond 
then corresponds to the difference in mass between this neutron and this proton. 
Since the neutron has lost 0.00139u, neutron and proton then vibrate at the same 
frequency; it is then postulated the existence of standing waves whose periods 

https://doi.org/10.4236/jmp.2022.138073


M. Mignonat 
 

 

DOI: 10.4236/jmp.2022.138073 1235 Journal of Modern Physics 
 

will interfere with that of the energy corresponding to the difference in mass 
between a neutron and a proton. The period will be P = Ppn/Pp (2). 
 This model based on standing waves makes it possible to set a precise dis-

tance of 0.65 fm between the nucleons. The maximum length of the bond will 
be at the level of the antinode of the wave which will give a maximum length 
of dm = 0.975 × 10−15 m and a minimum length of 0.325 × 10−15 m. This vari-
ation in the distance d between 2 nodes induces a variation in the period P, P 
= Ppn × c/2d (12) which will give a period between 363 s and 1088 s with an 
average of 726 s. This principle of a standing wave where the nucleons stabil-
ize at the vibration nodes would allow us to understand that the strong inte-
raction is repulsive below 0.65 fm, attractive between 0.65 fm and 0.975 fm 
and weaker or absent beyond.  

Considering superpositions for standing waves is not theoretically impossible. 
When, for a geometric reason, the distance cannot be identical for 2 bonds in-
volving a nucleon, the difference in the periods of the 2 standing waves will 
cause instability responsible for the radioactivity. This hypothesis makes the fis-
sion mechanisms understandable but is less satisfactory for radioactivity β. 
 The energy of the bond allows to calculate the precise distance of 1.11 fm 

(greater than the maximum distance of 0.975 fm) where the energy of the 
electrostatic force of Coulomb equals the force of the bond. This allows us to 
understand how a neutron allows 2 protons to remain neighbours.  

4.2. The Helions Are Constituted in Priority 

The increase of the mass defect as the masses increase is used to verify that the 
nucleons are first grouped to form helions since each time 2 protons and 2 neu-
trons appear, either by addition or following a decay β, an additional mass defect 
of about 21Δm is immediately observed corresponding to the number of bonds 
constituting a helion. Similarly, each time a neutron and two protons or a proton 
and two neutrons are added, there is a mass defect supplement of 5 or 6 Δm 
corresponding to the bonds contained in the groups 3He or 3H. The 3 added free 
nucleons form these 2 triplets in priority. When in addition to helions, a neutron 
proton pair is added, the additional loss of 1Δm suggests that this proton and 
neutron bind. This observation that helions are formed in priority explains why 
stable nuclei with even Z are more numerous than those with odd Z. 

4.3. Model of the Nucleus in Concentric Shells or Corona 

Starting from the idea that helion is the basic element for constructing the nuc-
lei, it is possible to represent the geometry of the nuclei from 3 criteria: 

1) The neutrons inserted between the helions have the role of allowing pro-
tons to remain nearby but up to the Ca, to be stable the nuclei do not need addi-
tional neutrons which indicates that the protons are not neighboring. 

2) For stable elements, the additional mass defect for each new helion and new 
neutrons necessary to keep protons close together, makes it possible to make the 
hypothesis of a positioning of the helions in shells, The additional mass defect 
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makes it possible to specify what this shell is. (a) It is a minimum of 2Δm × n (n 
= shell number) for each additional helion. b) The shell n is determined from the 
empirical formulae n = δs/6 with δs < 25 (18) or n = δs/7 when 25 < δs < 35 (19) 
or n = δs/8 when δs > 35 (20), δs = additional mass defect of the last 3 helions 
compared to the previous element multiple of 3 helions). 

3) When helions begin to bind, starting from 3, so from 12C (consisting of 3 
helions bound by 6 simple bonds making necessary a ring shape), the standing 
waves will have nodes of vibration in the plane of the corona. The waves will be 
“destructive” above or below this plane, hence the choice of a corona or snow-
flake model and not a ball model. 

These 3 criteria lead to the hypothesis of a nucleus where helions are arranged 
in concentric shells.  

In order for the nucleus to remain stable without additional neutrons until Ca, 
we have tried to show that the nucleus, from 12C, begins to be built into a 
3-pointed star. Up to Ca, helions can be added without the protons being in 
“contact” since the nuclei are stable without the addition of neutrons. This me-
chanism continues until Fe and Ni after the addition of 2 neutrons with Ti. The 
installation of helions or 3H groups between these 3 branches then requires the 
presence of neutrons from 45

21Sc  and 46
22Ti . Indeed, when a helion is placed 

between existing helions its 2 protons will necessarily be close to 2 protons. 
Neutrons, in addition to helions or 3H groups, are therefore in even numbers 
and this hypothesis explains why between C and Pb when Z even, the first 2 sta-
ble isotopes have 2n then 2n + 2 neutrons. 

Similarly, when the number of protons is odd, we can verify that the stable 
nucleus has, in addition to helions and the 3H group, a number of null or even 
neutrons depending on the shell, according to a formula: Y = 3

1XA
Z
+
+  (even Z, 6 

< Z < 20) (21) or Y = 3 2
1XA

Z
+ +

+  (even Z, 18 < Z < 40) (22) or Y = 3 4
1XA

Z
+ +

+  (even 
Z, 60 < Z < 82) (23) ( XA

Z  = stable element of lower mass immediately below Y)  
The 5th shell finishes filling with Pb. Above, the small increase in mass defect 

and the type of fission decay suggest that the nucleus grows by fixing an element 
between C and Mg on a nucleus of Pb.  

This corona model has a large diameter (6.45 fm when 5 shells) but its thick-
ness remains relatively constant (1.2 fm). 

Nucleon periods and distances within the nucleus are correlated according to 
equation P = Ppn × c/2d (12) for the short ½ lives or d = Ppn × c/2 × T1/k (24) for 
some isotope bonds with long ½ lives. This means that, starting from ½ life, it 
should be possible to specify some of the dimensions of a nucleus and the dis-
tances between the nucleons within it. The ½ life is so a way of calculating dis-
tances. In addition, if an ultra-short ½ life of the order of 10−20 s corresponds to a 
time of passage of a wave through all or part of the nucleus, then the time of the 
½ life allows to determine a dimension of the nucleus. 

Therefore, one way to confirm or invalidate our model would be to make very 
accurate measurements of the dimensions in the nucleus. 

Of course, it is not said that there cannot be other possible configurations 
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meeting these 3 criteria. This corona model is identical to shells models where 
we start from interactions with 2 bodies; the geometry allows to define locations 
that could explain the “boxes” defined by the quantum numbers. (with the dif-
ference that we finish filling the 5th and last shell with the Pb). The shells that we 
define are different from those from previous shells models and we do not find 
all the magic numbers.  

4.4. The ½ Lives 

The fact that this model is based on standing waves and their superpositions 
could explain that the radioactive periods are not randomly distributed but have 
preferential zones around 10−22 s, around 10−7 s, between 10−4 and 107 s, then in 4 
waves between 1010 and 1030 s. 

The number of bonds concerned by radioactivity and the number of nucleons 
are deduced from the mass defect resulting from the experimental observation. 
The number of additional bonds in relation to the immediately below isotope, 
almost without exception, makes it possible to deduce for all the elements if the 
radioactive ½ life is short or long and induces the use of the corresponding for-
mula. These formulas, T = Pk (17) for the long ½ lives,  

( ) 1 2 1 22pnT P c d d d d= × × −  (16) for the short ½ lives and to match a passage 
time of a wave for the ultra short ½ lives, allow to find the radioactive ½ lives. 
However, these formulas have limits: the ultra short ½ lives are found starting 
from a distance travelled but this distance is not a fact of observation. For the 
short ½ lives, it is necessary to set a precise distance between nucleons; this dis-
tance is likely and possible, but has not been measured. (For some periods, for 
example around 10−9 s halfway between ultra-short and short periods, the exis-
tence of a peak could conjecture another type of interaction than that described 
for short periods; the combination of 2 waves from the formula. (16) with pe-
riods around 10−4 s would allow to find the periods of the peak at 10−9 s). For 
long ½ lives the number k of bonds involved in radioactivity is not calculated 
from the number of new bonds δ''. k could only be deduced from a geometry 
that we do not know. 

However, the fact that we can find the radioactive ½ lives of all the elements by 
a theoretical calculation that requires experimental verifications could be a step 
forward. This raises a question since the only postulate we have put is to associate 
a wave to a nucleon and then study the interferences between the nucleons. 

4.5. Limits to This Theory 

Our theory does not call into question the standard model but we must ask our-
selves if, for the nucleus in the part we studied, it would not be better to use what 
was first put forward at the beginning of quantum mechanics by Bohr, namely 
wave mechanics rather than the probabilistic mechanics introduced by Bohm. 
Indeed, the model is in agreement with only part of the fundamental hypotheses 
of quantum mechanics: the nucleons interact according to a 2-body interaction, 
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the nucleus is an N-body system, it is not relativistic. But nucleons are not pointed 
objects and there is no correspondence for our shell with quantum numbers that 
assume a number of shells and sub-shells.  

Radioactivity is explained by superpositions of waves that we imagine being in 
phase at an interval of time, but even if there are arguments, other solutions 
could be imagined. To say that the link is due to interference is an assumption. 
The element of verification of our theory is a more accurate measurement of 
distances and mass defects which could make it possible to precise our model 
especially for elements of significant mass where the uncertainty does not allow 
to place with precision the pairs of neutrons ensuring the stability of the nucleus. 
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Appendix 1 

Calculation of the vibration periods of the standing wave forming the bond as a 
function of the distance d and of the period of the wave coming from 2 standing 
waves. 
 The distance d between the centres of 2 nucleons will correspond to the ½ 

wavelength λ of the standing wave that is established between the 2 nucleons. 
When the standing wave has the period of vibration of the proton Pp (Pp = 
4.33 × 10−24 s), the frequency P of the bond will be P = Ppn/Pp (2) = 725.18 s 
and d = λ/2 = Pp × c/2 (11) d = 0.645 × 10−15 m (c = speed of light, Ppn = 3.19 
× 10−21 s). 

(when the mass loss is more important, for example 6Δm for the neutron in a 
helion, the period P may decrease to 720.18 s and the distance d will be 0.6455 
fm, a decrease of only about 0.05 fm) 

(2) and (11) make it possible to express the period P according to the distance. 
(2), (11) ⇒  P = Ppn × c/2d (12). 

 This distance d is the distance between 2 nodes of vibration and we will con-
sider that this bond does not break if the centre of a nucleon does not vibrate 
beyond an anti-node. The maximum distance dm between the 2 nucleon 
centres will therefore be dm = λ/2 + λ/4 or dm = (3/2)d (13). Or dm = 0.9675 × 
10−15m. The minimum distance dmi will be dmi = (1/2)d (14). 

 When the geometry of the nucleus imposes a distance dm between 2 nucle-
ons the minimum period P' of the bond will become: (12) (13) ⇒  P' = Ppn 
× c/3d or P' = P × (2/3) or P' = 483.45 s. 

 In the case of periods in the order of the second up to several minutes it is 
assumed that the ½ life T is explained by the difference between two neigh-
boring periods P1 and P2 of two bonds (there is only one Δm for two bonds), 
T = P1 – P2 (15); (12) (15) ⇒  1 22 2pn pnT P c d P c d= × − ×  or  

( ) 1 2 1 22pnT P c d d d d= × × −  (16). 
Theoretically, a very small difference in distance between d1 and d2 makes it 

possible to find T between 0 and 1 s. Ex: for 8Li, T = 840 ms, (16) ⇒  d1 − d2 = 
0.73 × 10−3 fm or (1) ⇒  Δm = 1.56 × 10−6 u.  

If one of the two bonds has the maximum distance, the ½ life can reach (16) 
⇒  T = 159.5 s with d1 = 1.5d and d2 = d = 0.65 fm.  

If one of the two bonds has the maximum distance and the other the mini-
mum length (d1 = 1.5 × 0.65 fm and d2 = 0.5 × 0.65 fm), then (16) ⇒  T = 981.5 
s which is the maximum ½ life in the assumption of a ½ life explained by a dif-
ference between two neighboring periods.  
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Appendix 2 

Table A1. Number of bonds of some isotopes from NUBASE (3, 4, 5, 6), as examples. 

Symbol Z N 
atomic mass 

(u) 
½ life Decay 

daughter-isotope 
(s) 

δ δ’ δ’’ Comment 

1H 1 0 1.00782503207 Stable     

2H 1 1 2.0141017778 Stable 1  1  

3H 1 2 3.0160492777 12.32 (2) an β− 3He 6.41  5 The group 3H was formed 

4H 1 3 
4.02781 

(11) 
1.39 (10) × 10−22 s n 3H     

5H 1 4 
5.03531 

(11) 
>9.1 × 10−22 s? n 4H     

6H 1 5 
6.04494 

(28) 
2.90 (70) × 10−22 s 3n, 4n 3H,2H     

7H 1 6 
7.05275 

(108) 
2.3 (6) × 10−27 s 4n 3H     

3He 2 1 3.0160293191  Stable  5.17  / 3He was formed 

4He 2 2 4.00260325415  Stable  21.07 0 / 4He (α) was formed 

5He 2 3 
5.01222 

(5) 
700 (30) × 10−24 s n 4He 20.37 0 0  

6He 2 4 
6.0188891 

(8) 
806.7 (15) ms β− (99.99%) 6Li 21.82 1 1  

7He 2 5 
7.028021 

(18) 
2.9 (5) × 10−21 s n 6He 21.48 1 0  

8He 2 6 
8.033922 

(7) 
119.0 (15) ms 

β− 83.1%; 
β− n 

8Li, 7Li, 23.47 2 1  

     
16%; 

β− fis 0.09% 
5He 3H     

9He 2 7 
9.04395 

(3) 
7 (4) × 10−21 s n 8He 22.49 1 −1  

10He 2 8 
10.05240 

(8) 
2.7 (18) × 10−21 s 2n 8He 22.64 1-2 0  

4Li 3 1 
4.027 19 

(23) 
91 (9) ×  10−24 s p 3He 2.37   No group formed except 2H 

5Li 3 2 
5.012 54 

(5) 
370 (30) × 10−24 s p 4He 19.15 0 /  

6Li 3 3 
6.015122795 

(16) 
Stable   23.53 2 4 

Δm > 21. the nucleus 
α was formed 

7Li 3 4 
7.016 00455 

(8) 
Stable   29.12 2 6 One group 3H was formed 
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Continued 

8Li 3 5 
8.022 48736 

(10) 
840.3 (9) ms β− fission 2 4He 30.69 3 2  

9Li 3 6 
9.026 789 5 

(21) 
178.3 (4) ms β− n (50.8%) 8Be 33.83 6 3  

     β− (49.2%) 9Be     

10Li 3 7 
10.035 481 

(16) 
2.0 (5) ×  10−21 s n 9Li 33.81 6 0  

10m1Li   
200 

(40) keV 
3.7 (15) ×  10−21 s       

10m2Li   
480 

(40) keV 
1.35 (24) × 10−21 s       

11Li 3 8 
11.043 798 

(21) 
8.75 (14) ms 

β− n 84.9%, 
β− 8.07% 

10Be, 11Be 34.06 7 1  

     
β− 2n 4.1%, 
β− 3n 1.9% 

9Be, 8Be     

     β− fiss. (1.0%) 7He + 4He     

     β−, fi (0.014%) 8Li + 3H     

12Li 3 9 
12.053 78 

(107) 
<10 ns n 11Li 33.12 12 −1  

5Be 4 1 
5.04079 

(429) 
 p 4Li -2.17    

6Be 4 2 
6.019726 

(6) 
5.0 (3) × 10−21 s 2p 4He 19.21 0 / 

The difference with 5Be is 
21.38. One nucleus of 

He4 was formed 

7Be 4 3 
7.01692983 

(11) 
53.22 (6)j = 4.6 × 

106 s 
CE 7Li 27.46 6 / 

α (21) + 3He (5) = 26. 
One 3He was formed 

8Be 4 4 
8.00530510 

(4) 
6.7 (17) × 10−17 s fission 2 4He 42.05 0 / A second α was formed 

9Be 4 5 
9.0121822 

(4) 
Stable   43.34 1 1 

Stable despite a single bond. 
It is necessary to imagine 

that the neutron 5 is at the 
same distance of the 2 α 

10Be 4 6 
10.0135338 

(4) 
1.39 Ma = 

8.16 × 1013 s β
−
 10B 48.60 7 5 

The n has 5 bonds (13) => 
T = 7265 = 4.76 × 1013 s 

11Be 4 7 
11.021658 

(7) 
13.81 (8) s 

Β− 97.1 
β−, α 2.9% 

11B, 7Li 48.99 7 1/2  

12Be 4 8 
12.026921 

(16) 
21.49 (3) ms β− (99.48%) 12B 51.44 9 2  

     β−, n (0.52%) 11B     

13Be 4 9 
13.03569 

(8) 
0.5 (1) ns n 12Be 51.37 9 0  
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Continued 

14Be 4 10 
14.04289 

(14) 
4.84 (10) ms β−, n (81.0%) 13B 52.42 10 1  

     
Β− 14.0%, 
β− 2n 5.0% 

14B, 12B     

15Be 4 11 
15.05346 

(54)# 
<200 ns   51.04 9 −1  

16Be 4 12 
16.06192 

(54)# 
<200 ns   51.20 9 0  

7B 5 2 
7.02992 

(8) 
350 (50) × 10−24 s p 6Be 17.12   

<21, The nucleus 
of ’He4 is not formed 

8B 5 3 
8.0246072 

(11) 
770 (3) ms β+ fission 2 (4He) 27.17 1 / 

Formed with 
1He (21) + 3He (5); 

stay 1bond 

9B 5 4 
9.0133288 

(11) 
800 (300) × 10−21 s p 8Be 41.52 0 0  

10B 5 5 
10.0129370 

(4) 
Stable   48.03 6 6  

11B 5 6 
11.0093054 

(4) 
Stable   56.88 9 9 One 3H was formed 

12B 5 7 
12.0143521 

(15) 
20.20 (2) ms 

β− 98.4%, 
β−, α 1.6% 

12C, 6Be 59.48 12 3  

13B 5 8 
13.0177802 

(12) 
17.33 (17) ms 

β− 99.72%, 
β− n 0.28% 

13C, 12C 63.25 15 3  

14B 5 9 
14.025404 

(23) 
12.5 (5) ms β− (93.96%) 14C 64.00 16 1  

     β−, n (6.04%) 13C     

15B 5 10 
15.031103 

(24) 
9.87 (7) ms β−, n (93.6%) 14C 66.13 18 2  

     β− (6.0%) 15C     

     β−, 2n (0.40%) 13C     

16B 5 11 
16.03981 

(6) 
<190 × 10−12 s n 14B 66.10 18 0  

17B 5 12 
17.04699 

(18) 
5.08 (5) ms β−, n (63.0%) 16C 67.17 19 1  

     β− (22.1%) 17C     

     β−, 2n (11.0%) 15C     

     β−, 3n (3.5%) 14C     

     β−, 4n (0.40%) 13C     

18B 5 13 
18.05617 

(86) 
<26 ns n 17B 66.80 19 0  
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Continued 

19B 5 14 
19.06373 

(43) 
2.92 (13) ms β

−
 19C 67.60 20 1  

8C 6 2 
8.037675 

(25) 
2.0 (4) ×  10−21 s 2p 6Be 16.77   <21 so helion no formed 

9C 6 3 
9.0310367 

(23) 
126.5 (9) ms β+ 60% 9B 27.78 2 / 1 hélion + 3He = 26; stay 2 

     β+, p (23%) 8Be     

     β+, α (17%) 5Li     

10C 6 4 
10.0168532 

(4) 
19.290 (12) s β+ 10B 44.21 2 / 2 α formed 

11C 6 5 
11.0114336 

(10) 
20.334 (24) min β+ (99.79%) 11B 54.35 7 / two α + one 3He = 47 

     K− CE (0.21%) 11B     

12C 6 6 12 exactement Stable   68.81 6 / 
3 helions (63) + 6 internal 

bonds 

13C 6 7 
13.0033548378 

(10) 
Stable   72.63 10 4  

14C 6 8 
14.003241989 

(4) 
5.73 ×  103 ans β− 14N 78.94 16 6  

15C 6 9 
15.0105993 

(9) 
2.449 (5) s β− 15N 79.89 17 1  

16C 6 10 
16.014701 

(4) 
0.747 (8) s β−, n (97.9%) 15N 83.17 20 3  

     β− (2.1%) 16N     

17C 6 11 
17.022586 

(19) 
193 (5) ms β− (71.59%) 17N 83.73 21 1  

     β−, n (28.41%) 16N     

18C 6 12 
18.02676 

(3) 
92 (2) ms β− (68.5%) 18N 86.96 24 3  

     β−, n (31.5%) 17N     

19C 6 13 
19.03481 

(11) 
46.2 (23) ms β−, n (47.0%) 18N 87.40 24 0  

     β− (46.0%) 19N     

     β−, 2n (7%) 17N     

20C 6 14 
20.04032 

(26) 
16 (3) ms β−, n (72.0%) 19N 89.67 27 3  

     β− (28.0%) 20N     

21C 6 15 
21.04934 

(54) 
<30 ns n 20C 89.42 26 −1  
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22C 6 16 
22.05720 

(97) 
6.2 (13) ms β− 22N 90.00 28 2  

10N 7 3 
10.04165 

(43) 
200 (140) × 10−24 s p 9C 25.38    

11N 7 4 
11.02609 

(5) 
590 (210) × 10−24 s p 10C 42.81 1 / 2 α formed 

12N 7 5 
12.0186132 

(11) 
11.000 (16) ms β+ 96.5% 12C 54.42 7 / + one 3He formed 

     β+, α (3.5%) 8Be     

13N 7 6 
13.00573861 

(29) 
9.965 (4) min β+ 13C 69.92 

7 
(1) 

/ 3α (63) + 6 = 12C, stay 1 

14N 7 7 
14.0030740048 

(6) 
Stable   78.11 

14 
(8) 

8 
12C (69) + 2H (1) = 70, 

stay 8 

15N 7 8 
15.0001088982 

(7) 
Stable   86.43 

17 
(11) 

8 
12C (69) + 3H (6) = 75, 

stay 11 

16N 7 9 
16.0061017 

(28) 
7.13 (2) s β− (99.99% 16O 88.36 19 1 

Reminder: above stable 
nuclei after C, 
the additional 

groups or neutrons 
will be on a second shell 

     β−. α (0.001%) 12C    
bonds are double. δ’’ is 

calculated by dividing the 
difference of the δ’ by 2 

17N 7 10 
17.008450 

(16) 
4.173 (4) s β−. n (95.0%) 16O 92.90 24 2.5  

     β− (4.99%) 17O     

     β−. α 0.0025% 13C     

18N 7 11 
18.014079 

(20) 
622 (9) ms β− (76.9%) 18O 95.08 26 1  

     β−, α 12.2% 14C     

     β−, n (10.9%) 17O     

19N 7 12 
19.017029 

(18) 
271 (8) ms β−, n 54.6% 18O 99.20 30 2  

     β− (45.4%) 19O     

20N 7 13 
20.02337 

(6) 
130 (7) ms β− n 56.99% 19O 100.87 32 1  

     β− (43.00%) 20O     

21N 7 14 
21.02711 

(10) 
87 (6) ms Β−, n 80% 20O 104.41 35 1.5  

     β− 20.0% 21O     
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22N 7 15 
22.03439 

(21) 
13.9 (14) ms 

β− 65%, 
β−, n (35%) 

22O 
21O 

105.41 36 1/2  

23N 7 16 
23.04122 

(32) 
14.5 (24) ms β− 20.0% 21O 106.72 38 1  

24N 7 17 
24.05104 

(43) 
<52 ns n 23N 105.90 37 −1/2  

25N 7 18 
25.06066 

(54) 
<260 ns   105.21 36 −1/2  

12O 8 4 
12.034405 

(20) 
580 (30) × 10−24 s 2p (60%) 10C 42.06    

     p (40.0%) 11N     

13O 8 5 
13.024812 

(10) 
8.58 (5) ms β+ (89.1%) 13N 55.20    

     β+, p (10.9%) 12C     

14O 8 6 
14.00859625 

(12) 
70.598 (18) s β+ 14N 73.10    

15O 8 7 
15.0030656 

(5) 
122.24 (16) s β+ 15N     

16O 8 8 15.99491461956 Stable   95.41 11 / 4 α formed 

17O 8 9 
16.99913170 

(12) 
Stable   98.61 15 4  

18O 8 10 
17.9991610 

(7) 
Stable   104.82 21 6  

19O 8 11 
19.003580 

(3) 
26.464 (9) s β− 19F 107.87 24 1.5  

20O 8 12 
20.0040767 

(12) 
13.51 (5) s β− 20F 113.75 30 3  

21O 8 13 
21.008656 

(13) 
3.42 (10) s β− 21F 116.69 33 1.5  

22O 8 14 
22.00997 

(6) 
2.25 (15) s β− (78.0%) 22F 121.98 38 2.5  

     β−, n (22.0%) 21F     

23O 8 15 
23.01569 

(13) 
82 (37) ms β−, n (57.99%) 22F 124.10 40 1  

     β− (42.0%) 21F     

24O 8 16 
24.02047 

(25) 
65 (5) ms β−, n (57.99%) 23F 126.89 43 1.5  

     β− (42.01%) 24F     

25O 8 17 
25.02946 

(28) 
5.2 × 10−8 s n 24O 126.66 43 0  
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26O 8 18 
26.03834 

(28) 
4.0 × 10−8 s β− 26F 126.50 43 0  

     n 25O     

27O 8 19 
27.04826 

(54) 
<260 ns n 26O 125.60 42 −1/2  

28O 8 20 
28.05781 

(64) 
<260 ns n 27O 124.96 42 −1/2  

1) There is a sharp increase of δ to 21Δm from 3He to 4He (δ'' = 16 is the highest value for all the classification, δ'' usually does not 
exceed 6, exceptionally 9 (11B)). 2) Every time, when Z even, the number N of neutron reaches Z, then there is an increase of δ 
allowing the formation of a new helion (ex: passage from 7Be to 8Be,11C to 12C, 15O to16O,19Ne to 20Ne). 3) When, in addition to 
helions, there are 1p and 2n, they will form a 3H (δ' increases at least 6 between 6Li and 7Li, 10B and 11B). Similarly, when 2p and 1n 
are available, δ' increases by at least 5 to form a 3He (between 8C and 9C, 11N and 12N, 12O and 13O). 4) Stable elements can be de-
tected; δ'' is highest for the elements stable or with a very long ½ life (δ'' > 3). Taking into account the shell, 0 < δ'' ≤ 3 for short ½ 
lives, δ'' ≤ 0 for ultra-short ½ lives. δ = total number of bonds. δ' = number of bonds reduced to the unit, above helions and groups 
3H, 3He or pair p-n (according to Equation (9) δ'' = additional bonds, whether single or multiple, relative to the immediately below 
isotope (δ'' is not noted when it corresponds to the creation of a 4He (α), 3H or 3He). For elements having several shells, δ'' is ob-
tained according to Equation (10) δ'' = (δy − δx)/n with n = 2 since it is assumed that the additional neutrons are fixed by double 
bonds. We made the same table for F, Ne, Ar, Kr, Fe and Pb. δ’’ always follows the same rule: when δ'' > 3, the elements are stable 
or with a long ½ life, when δ'' ≤ 3 ½ lives are short. For, F, Ne, Ar, Kr and Fe, as for N and O, δ'' is found assuming that neutrons 
have double bonds (n = 2 in Equation (10)). For Pb, δ'' is obtained without dividing by 2, suggesting simple bonds for additional 
neutrons. 
 
Table A2. Number N of stable nuclei for each element. 

Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

N 2 2 2 1* 2 2* 2 3 1 3 1 3 1 3 1 4 2 3 2* 5* 1 5 1* 4 1 4 1 5 2 5 

Z 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

N 2 4* 1 5* 2 5 1* 4 1 4* 1 6* 0* 7 1 6* 2 6* 1 10 2 6* 1 7* 1 6* 1* 4 1 5* 

Z 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 
        

N 0 5* 1 6* 1 7* 1 6 1 7 1 5 1 4* 1 6* 2 5* 1 7 2 3* 
        

The * indicates one or two additional isotopes with a very long ½ life. From Z > 6, without any exception, when Z odd, N ≤ 2, 
when Z even, N ≥ 3. Beyond Z = 82 (Pb), all elements are unstable. Elements where Z is odd are more unstable because an addi-
tional neutron added to the stable isotope will be converted by radioactivity β− into a proton to form a new helion. 
 
Table A3. Radioactive isotopes with a δ'' > 3. 

k 
Calculated 
½ life (17) 

isotope 
nber bonds δ" 
cal. For isot. 

Observed 
½ life 

decay 
% dev. from mean value 

(0% = mean value; 
100% = possible limite value) 

1 (726 s) 
     

2 (5.27 × 105 s) 
     

3 
0.48 to 12.88 × 108 s 

(3.83 × 108 s) 

228
90Th 5.49 0.60 × 108 s α −92.2% 

85Kr 6 3.4 × 108 s β− −4.75% 

3H 5.49 3.88 × 108 s β− 0.5% 
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154Eu 5.49 5.04 × 108 s β− 13.4% 
227

89Ac 5.04 6.8 × 108 s β− (98.6%) 32.8% 
210Pb 4 7.03 × 108 s β− 35.4% 

90Sr 6 9.07 × 108 s β− 58% 
232

92U 5.61 22 × 108 s α 201% 
209

84Po 5.38 32.5 × 108 s α (99.5%) 317% 

4 
0.17 to 14.01 × 1011 s 

(2.78 × 1011 s) 

226
88Ra 4.94 0.51 × 1011 s α or β−β− −69% 

14C 6 1.8 × 1011 s β− −37.5% 
229

90Th 4.06 2.32 × 1011 s α −8.80% 
231

91Pa 5.27 10.34 × 1011 s α 67% 
230

90Th 5.25 23.8 × 1011 s α 187% 

5 
0.63 to 152 × 1013 s 

(20.17 × 1013 s) 

233
92U 4.45 0.5 × 1013 s α −1.04 

99Tc 7 0.66 × 1013 s β− −99% 
126

50Sn 6.32 0.73 × 1013 s β− −97% 
234

92U 5.29 0.77 × 1013 s α −96% 
36Cl 7 0.95 × 1013 s β− −91% 
79Se 5.38 1.03 × 1013 s β− −89.7% 

208
83Bi 5.32 1.16 × 1013 s β+ −87% 

10Be 5 4.76 × 1013 s β− −50% 

93Zr 5.20 4.82 × 1013 s β− −49.7% 

150
64Gd 6.72 5.64 × 1013 s α (β−β− rare) −45% 

135Cs 6.77 7.25 × 1013 s β− −37% 
154

66Dy 7.20 9.45 × 1013 s α (β−β− rare) −28% 
98Tc 5.6 14.7 × 1013 s β− −12.3% 

107
46Pd 5.05 20.48 × 1013 s β− 0.24% 

182
72Hf 5.19 28 × 1013 s β− 5.9% 

129
43I 6.82 49.4 × 1013 s β− 22.2% 

236
92U 5.06 73.9 × 1013 s α 40.7% 

92
41Nb 6.09 109.3 × 1013 s β+ (99%) 67.6% 

6 
0.23 to 166 × 1016 s 

(14.64 × 1016 s) 

146Sm 6.50 0.32 × 1016 s α −94% 

235
92U 4.09 2.22 × 1016 s α −54% 

40K 6 4.02 × 1016 s β− −38.7% 

238
92U 4.75 20.41 × 1016 s α 3.8% 

232
90Th 4.97 44.2 × 1016 s α 19.5% 

176
71Lu 4.86 121 × 1016 s β− 70% overlap 

187
75Re 5.68 130 × 1016 s β− (99%) 76% overlap 
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7 
83 × 1016 to 180 × 1019 s 

(10.6 × 1019 s) 

87
37 Rb 7.6 151 × 1016 s 

β− 

overlap 
−91% if k = 7 or 

+90%if k = 8 
138

57La 5.79 3.2 × 1018 s β+β− −78% 
147Sm 4.90 0.5 × 1019 s α −71% 
190Pt 6.88 20.48 × 1018 s α −42% 

8 
30 × 1019 to 196 × 1022 s 

(7.71 × 1022 s) 

152
64Gd 6.63 0.34 × 1022 s α −64.6% 

115In 7 1.39 × 1022 s β− −38.6% 
59 Co 8 1.61 × 1022 s stable −35.6% 

186
76Os 6.38 6.30 × 1022 s α −5% 

174
72Hf 6.57 6.3 × 1022 s α −5% 

44
60Nd 6.04 7.21 × 1022 s α −1.7% 

113
48Cd 5.05 24.26 × 1022 s β− 8.8%: overl. with k = 9 

148Sm 6.29 25.2 × 1022 s α 9.3%: overl. With k = 9 

9 
11 × 1022 to 214 × 1025 s 

(5.60 × 1025 s) 

50V 7.2 0.44 × 1025 s 
β+ (83%) 
β− (17%) 

−7.8% 

180
74W 6.50 5.65 × 1025 s α 0.02% overlap 

151Eu 6.13 15.2 × 1025 s α 3.8% for these 7 
150

60Nd 5.7 21.1 × 1025 s β−β− 6.2% elements 
100

42Mo 6.4 26.78 × 1025 s β−β− 8.5% with k = 10 
209

83Bi 5.76 60.0 × 1025 s α 21.7% 
96Zr 6.06 63 × 1025 s β−β− 23% 

116
48Cd 6.72 97.7 × 1025 s β−β− 36% 

10 
4 × 1025 to 232 × 1028 s 

(4.06 × 1028 s) 

48Ca 7.68 0.13 × 1028 s β−β− −58% 
82Se 7.16 0.306 × 1028 s β−β− −45.6% 

130Te 6.50 2.48 × 1028 s β−β− −0.7% overlap 
136Xe 6.24 6.62 × 1028 s β−β− 1.1% with k = 11 

11 
1.4 × 1028 to 253 × 1031 s 

(2.95 × 1031 s) 
128Te 6.78 6.93 × 1031 s β−β− 1.6% 

We took back all isotopes with a long ½ life (>10 years) from NUBASE (3, 4, 5, 6) with a radioactivity β or α, or 64 isotopes. The 
number of bonds δ'' refers to the last neutron added and is usually indicative of the number of bonds k concerning the decay. (e.g.: 
3H has 5 bonds more than 2H which has one bond, so each neutron has 3 bonds). The ½ life is T = Pk (17) and P varies between 
363 s and 1088 s with an average value of 726 s according to Equation (12) depending on the distance d which is between 0.325 
and 0.967 fm. (“ideal” average distance: 0.65 fm). It is found that for all isotopes except 4 heavy elements, the observed ½ life is 
included in the area provided by the calculation. Note that, from k = 7, the areas provided by the calculation overlap. It is only for 
the 87Rb that it is not possible to know whether k = 6 or 7 (90% deviation from the mean values for k = 6 or 7), the 25 elements 
with k > 6 have a ½ life that can deviate by more than 90% from the mean value; the 11 elements with k > 7 where there is overlap 
are close to a maximum of less than 36% of the mean value. It can therefore also be considered that for all the elements with k ≥ 7, 
the observed ½ life is most probably included in the area provided by the calculation. The deviation that often exists from the 
mean value can be explained by the variation in the distance of the bonds of the nucleon or helion concerned by the radioactivity. 
The ½ life is then a way to calculate distances. ((12) (17) ⇒  d = Ppn × c/2 × T1/k) (24). Another hypothesis to find the exact value 
would be to imagine a different number of bonds. For example, for the 209Po, to find the value of 32.5 × 108 s, we would have 88.33% 
of atoms with 3 bonds and 11.67% with 4 bonds). It is an “ad hoc” explanation that allows to find precisely the observed value but 
which may have the disadvantage of implying that the geometry is different from one nucleus to another for the same isotope (ra-
tio isotopes in state of lower energy/excited states?). It is also interesting to note that for all these elements at long ½ life from the 
lightest to the heaviest, δ'' is always greater than 3 and between 5 and 8. 
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Table A4. Stable nuclei with a Z multiple of 6, determination of the shell. 

Element 
Mass defect 
in number 
of Δm = δ 

Nber δs of Δm 
remaining after 
subtraction of δ 

from previous even 
précédent & of 
the new helions 

neutrons 
in addition 
to helions 

probable 
role of 

δs 

N˚ of the 
last helion 
shell given 
by the type 

of bond 

N˚ shell 
formula 
(18) (19) 

(20) 

comments  

12
6C 68.81    1    

24
12Mg 148.38 148 − 69 − 63 = 16  

2 double bonds (L2) 
per helion (or 12Δm) 

2 2.66   

36
18Ar 229.77 230 − 148 − 63 = 19  2 L3/helion (or18Δm) 3 3.17   

50
24Cr 326.53 327 − 230 − 63 = 34 2 

2 L4/helion (24Δm) 
10 left either 1L4 per n 

or at least 2L2 per n 
4 4.86 

The 2 n stable 
would be more at the 

2nd shell level 
 

64
30Zn 419.96 420 − 327 − 63 = 30 4 

2 L4/helion or 24Δm, 
6 left for 2n (2L3) 

4 4.28 

shell 5 requires 30Δm 
and there is 2n more. 
So rather shell 4 (24). 

les 2 n are on a 
lower shell 

 

80
36Kr 522.89 523 − 420 − 63 = 40 8 

2L5/helion or 30Δm, 
10 left for 4n 

5 5.00 
The last 4 n are on a 

lower shell with 
several bonds 

 

92
42Mo 598.58 599 − 523 − 63 = 13 8 6L2 for 3 helions 2 2.17 Shell 2 fills up  

106
48Cd 680.11 680 − 599 − 63 = 18 10 6L3 for 3 helions 3 3.00 

Shell 3 fills up. 
The 2 n take bonds 

to the other n 
 

124
54Xe 786.73 787 − 680 − 63 = 44 16 

2L5/helion or 30Δm, 
14 left for 6n 

5 5.50 Shell 5 fills  

142
60Nd 891.63 892 − 787 − 63 = 42 22 

2L5/helion or 30Δm, 
8 left for 6n 

5 5.25 Shell 5 fills  

154
66Dy* 948.43 948 − 892 − 63 = −7 22    

The next 3 
elements are unstable 

 

174
72Hf* 1055.87 1056 − 948 − 63 = 45 30      

190
78Pt* 1135.31 1135 − 1056 − 63 = 34      

For the 1st shell, in 12C, the 3 helions are linked by 6 simple bonds (6Δm) between each time a proton and a neutron. To deter-
mine on which shell n are the helions, we take the element having 3 more helions. The excess of mass defect δs corresponds to 6 
additional bonds (2 per helion) which can be double, triple and to bonds for additional neutrons. The shell n is given by an em-
pirical formula to account for neutron bonds. n = δs/6 (δs < 25) (18), n = δs/7 (35 > δs > 25) (19), n = δs/8 (δs > 35) (20). 
 
Table A5. Stable nuclei with even Z from O to U. 

Element 
Mass defect 
in number 
of Δm = δ 

δ’s 
N˚ shell 
given by 
Table A4 

Probable 
role of this 

remaining Δm 

Neutrons 
in add. to 

hélions 
Comments 

16
8O 95.41 

5 
95.41 − 68.81 − 21.07 = 5.53 

2 
2 double bonds 

for the last hellion 
(2 × 2.76d) 
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20
10Ne 120.12 

4 
120.12 − 95.41 − 21.07 = 3.64 

2 
Idem 

(2 × 1.82d) 
  

24
12Mg 148.38 

7 
148.4 − 120.12 − 21.07 = 7.19 

2 idem  

Calculation/C 
(shell 1) gives: 

148 − 69 − 63 = 16 or 
16/6 = 2.66Δm 

per bond thus shell 2 

28
14Si 177 8 3 2 triple bonds   

32
16S 204 6 3 2 triple bonds   

36
18Ar 229.77 230 − 204 − 21 = 5 3 2 triple bonds  

230 − 148 − 63 = 19 
or 19/6 = 3.17 (shell 3) 

40
20Ca 256.28 256 − 230 − 21 = 5 4    

46
22Ti 298.85 299 − 256 − 21 = 22 4  2 

.δs increases strongly 
when 2 add. n are needed. 

50
24Cr 326.53 327 − 299 − 21 = 7 4  2  

54
26Fe 354.09 354 − 327 − 21 = 6 4  2  

58
28Ni 380.10 380 − 354 − 21 = 5 4  2  

64
30Zn 419.96 420 − 380 − 21 = 19 4  4  

70
32Ge 458.88 459 − 420 − 21 = 18 5  6  

74
34Se 483 483 − 459 − 21 = 3 5  6  

80
36Kr 522.89 523 − 483 − 21 = 19 5  8  

84
38Sr 548 548 − 523 − 21 = 4 2  8  

90
40Zr 589.63 590 − 548 − 21 = 21 2  10  

92
42Mo 598.58 599 − 548 − 42 = 9** 2  8  

96
44Ru 620.95 621 − 599 − 21 = 1 3  8  

102
46Pd 657.79 658 − 621 − 21 = 16 3  10  

106
48Cd 680.11 680 − 599 − 63 = 18 3  10  

112
50Sn 716.70 717 − 680 − 21 = 16 5  12  

120
52Te 765.14 765 − 717 − 21 = 27 5  16  

124
54Xe 786.73 787 − 680 − 63 = 44 5  16  

130
56Ba* 821.83 822 − 787 − 21 = 14 5 

The new He go to 
shell 5 with 2n 

18  

136
58Ce 856.62 857 − 822 − 21 = 14 5 

The new He go to 
shell 5 with 2n 

20  

142
60Nd 891.63 892 − 857 − 21 = 14 5 

The new He go to 
shell 5 with 2n 

22  
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144
62Sm 899.02 899 − 892 − 21 = −14   20 

From Sm to Er, we see 2 
decreases of −14 followed 

by 2 strong increases  
of 21 and 24 

152
64Gd 941.29 941 − 899 − 21 = 21   24 

It is interpreted as saying 
that the last helion of the Sm is 
placed at a nivel 4 and drives at 

least one other helion previously 
arrived in 5 at a level 4 

154
66Dy* 948.43 948 − 941 − 21 = −14   22 

2 n are no longer necessary 
The helion brought by Gd is 

then placed at level 5 and 
requires 4n. The same 

goes for Dy and Er 

162
68Er 993.17 993 − 948 − 21 = 24   26  

168
70Yb 1024.89 1025 − 993 − 21 = 11  

The new He go to 
shell 5 with 2n 

28 
Yb, Hf, W. The 3 He occupy 

first 3 places in level 5 
(filling sequence idem Kr Cd) 

174
72Hf* 1055.87 1056 − 1025 − 21 = 10  

The new He go to 
shell 5 with 2n 

30  

180
74W 1086.48 1087 − 1056 − 21 = 10  

The new He go to 
shell 5 with 2n 

32 
Os sees the end of the filling of 
level 4 with another He going 

184
76Os 1105.26 1105 − 1087 − 21 = −3   32 

in 4. No new n. 
n decrease in level 

190
78Pt 1135.31 1135 − 1105 − 21 = 5   34  

196
80Hg 1166.47 1167 − 1135 − 21 = 11   36 Pt to Pb end of filling shell 5 

204
82Pb 1209.15 1209 − 1167 − 21 = 21   40  

209
84Po* 1231.57 1232 − 1209 − 21 = 1   41  

222
86Rn* 1285.32 1285 − 1232 − 21 = 32   50  

226
88Ra* 1302.62 1303 − 1285 − 21 = −3   50  

232
90Th* 1328.93 1329 − 1303 − 21 = 5   52  

234
92U* 1337.32 1337 − 1329 − 21 = −13   50  

When taking the intermediate elements (with even Z pairs), the mass defect makes it possible to verify that each new helion (its 2 
neutrons) will bind by 2 multiple bonds corresponding to the shell (The method of fixing in corona makes that the 3rd helion 
terminating a corona can be fixed with a longer length (e.g., for 2nd shell length of 2.73d close to 3 instead of 2.18d close to 2) and 
this would explain the variations to 1 or 2 near the number of Δm remaining at each new helion. Hence the importance of deter-
mining the shell on the average of each new corona of 3 helions). sδ ′  = number of remaining Δm for an element X with δ = δx 
after subtraction of the Δm (δy) of the previous even element Y and of the new helion (21.07 = mass defect in Δm of helion). sδ ′  
= δx – δy – 21.07. 
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